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THE DIRAC EQUATION AS THE CONSEQUENCE OF THE

QUANTUM-MECHANICAL SPIN 1/2 DOUBLET MODEL

I.YU. KRIVSKY1, V.M. SIMULIK1, I.L. LAMER1, T.M. ZAJAC 2 §

Abstract. The detailed consideration of the relativistic canonical quantum-mechanical
model of an arbitrary −→s -multiplet is given. The group-theoretical analysis of the algebra
of experimentally observable physical quantities for the s = 1

2
doublet is presented. It is

shown that both the Foldy-Wouthuysen equation for the fermionic spin s = 1
2
doublet

and the Dirac equation in its local representation are the consequences of the relativistic
canonical quantum mechanics of the corresponding doublet. The mathematically well-
defined consideration on the level of modern axiomatic approaches to the field theory is
provided.
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1. Introduction

The extended and detailed presentation of the results of the paper [1], which was re-
ported at the 14-th International Conference on Mathematical Methods in Electromagnetic
Theory and published in the Proceedings of this conference, is given. The basic principles
of relativistic canonical quantum mechanics (RCQM) for the spin s = 1

2 doublet and the
derivation of the Dirac equation from this model are under further consideration. The
foundations of RCQM were given in [2]- [4] and a procedure of axiomatic construction of
this theory was shown briefly in [1]. Here the mathematically well-defined consideration
on the level of modern axiomatic approaches to the field theory [5] is provided.

The significance of the Dirac equation and its wide-range application in different models
of theoretical physics (QED, QHD, theoretical atomic and nuclear physics, solid systems,
etc) is well-known. The recent application of the massless Dirac equation to the graffen
ribbons is an example of possibilities of this equation. Therefore, the new ways of deriving
the Dirac equation are the interesting problems.

Here we consider a problem whether there exists a model of a ”particle doublet” (as
an elementary compound fundamental object), from which the Dirac equation would fol-
low directly and unambiguously. We are able to demonstrate that axiomatically formu-
lated RCQM of a particle-antiparticle doublet of spin s = 1

2 should be chosen as such
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a model. The illustration of this assertion on the example of electron-positron doublet,
e−e+-doublet, is given.

The model of RCQM for the elementary particle with m > 0 and spin s = 1
2 , which

satisfies equation i∂tφ(x) =
√
m2 −∆φ(x); x ∈ M(1, 3),

∫
d3x |φ(x)|2 <∞, was suggested

and approved in [2] - [4]. This model can be easily generalized to the case of arbitrary
−→s -multiplet, i. e. the ”elementary compound object” with mass m and spin −→s ≡

(
sj
)
=

(s23, s31, s12) :
[
sj , sl

]
= iεjlnsn, where εjln is the Levi-Civita tensor and sj = εjℓnsℓn are

the Hermitian M × M matrices – the generators of M-dimensional representation of the
spin group SU(2) (universal covering of the SO(3)⊂SO(1,3) group).

In this article we present the detalization of such generalization at the example of the
spin s = 1

2 fermionic doublet. All mathematical and physical details of consideration (e. g.
the algebras of all experimentally observable physical quantities, related to the choice of
the concrete form of the spin −→s doublet) at the example of e−e+-doublet are illustrated.

At first we have presented the main conceptions of RCQM. Further, the group-theoretical
analysis of the algebra of observables is fulfilled. The detailed consideration of the basic
set of operators, which completely determine the algebra of all experimentally observables
physical quantities, at the example of e−e+-doublet is given. The special role of the sta-
tionary complete sets of corresponding operators of observables is demonstrated. Finally,
we have found the operator, which translates the equation and the algebra of observables of
RCQM into the equation and the algebra of observables of the Foldy-Wouthuysen (FW)
representation for the spinor field. We have also found the operator, with the help of
which the Dirac equation in its local representation and the corresponding algebra of ob-
servables are derived directly from the equation of motion of RCQM and from the algebra
of observables in this model.

We choose here the standard relativistic concepts, definitions and notations in the form
convenient for our consideration. For example, in the Minkowski space-time

M(1, 3) = {x ≡ (xµ) = (x0 = t, −→x ≡ (xj))}; µ = 0, 3, j = 1, 2, 3, (1)

the xµ are the Cartesian (contravariant) coordinates of the points of the physical space-
time in the arbitrary-fixed inertial frame of references (IFR). We use the system of units
~ = c = 1. The metric tensor is given by

gµν = gµν = gµν , (g
µ
ν ) = diag (1,−1,−1,−1) ; xµ = gµνx

µ, (2)

the summation over the twice repeated index is implied.
The analysis of the relativistic invariance of an arbitrary physical model demands as

a first step the consideration of its invariance with respect to the proper ortochronous

Lorentz L↑
+ = SO(1,3)={Λ = (Λµ

ν )} and Poincaré P↑
+ = T(4)×)L↑

+ ⊃ L↑
+ groups. This

invariance in an arbitrary relativistic model is the realization of the Einstein’s relativity
principle in the form of special relativity.

The mathematical correctness demands to consider the invariance mentioned above as
the invariance with respect to the universal coverings L = SL(2,C) and P ⊃ L of the

groups L↑
+ and P↑

+, respectively.
For the group P we choose the real parameters a = (aµ) ∈M(1,3) andϖ ≡ (ϖµν = −ϖνµ),

which physical meaning is well-known. For the standard P generators (pµ, jµν) we use the
commutation relations in the manifestly covariant form

[pµ, pν ] = 0, [pµ, jρσ] = igµρpσ−igµσpρ, [jµν , jρσ] = −i (gµρjνσ + gρνjσµ + gνσjµρ + gσµjρν) .
(3)
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2. Group-theoretical analysis of the algebra of observables in the
relativistic canonical quantum mechanics of the Fermi-doublet

The relativistic quantum mechanics in the canonical form (RCQM) for the particle of
m > 0 and spin s = 1

2 was suggested in [2]-[4]. The analysis of the principles of heredity
and correspondence with the non-relativistic Schrödinger quantum mechanics was given.
Such RCQM can be obviously generalized to the case of a multiplet with an arbitrary
mass m and SU(2)-spin

−→s ≡
(
sj
)
= (s23, s31, s12) :

[
sj , sl

]
= iεjlnsn; ε123 = +1, (4)

where, as it was already mentioned above, εjln is the Levi-Civita tensor and sj = εjℓnsℓn
are the Hermitian M × M matrices – the generators of M-dimensional representation of
the spin group SU(2) (universal covering of the SO(3)⊂SO(1,3) group).

Below we illustrate the generalization of the RCQM for an arbitrary mass m and SU(2)
spin on the test example of the electron-positron doublet as an ”elementary compound
fundamental object”. Note that the case of arbitrary spin differs from our consideration
of the particular case s = 1

2 only by the clarification of the SU(2) spin −→s operator (4). We
pay an adequate attention to the mathematical correctness of the consideration. Moreover,
the adequate attention is paid to the physical sense of the operators of the experimentally
observed physical quantities.

The quantum-mechanical space of states. The quantum-mechanical space of the
complex-valued 4-component square-integrable functions of x ∈ R3 ⊂ M(1, 3) is chosen
for the Hilbert space H3,4 of the states of the doublet:

H3,4 = L2(R
3)⊗ C⊗4 = {f = (fα) : R3 → C⊗4;

∫
d3x|f(t,−→x )|2 <∞}} (5)

where d3x is the Lebesgue measure in the space R3 ⊂ M(1, 3) of the eigenvalues of the
position operator−→x of the Cartesian coordinate of the doublet in an arbitrary-fixed inertial
frame of reference (IFR). In (5) and below, the two upper components f1, f2 of the
vector f ∈ H3,4 are the components of the electron wave function φ− and the two lower
components f3, f4 are those of the positron wave function φ+.

The Schrödinger-Foldy equation of motion. The equation of motion of the particle
doublet in the space (5) (i. e. the dependence of vectors f ∈ H3,4 from the time t = x0 as
the evolution parameter) is determined by the energy operator of the free doublet

ω̂ ≡
√

−̂→p
2
+m2 =

√
−∆+m2 ≥ m > 0; −̂→p ≡ (pj) = −i∇, ∇ ≡ (∂ℓ). (6)

In the −→x -realization (5) of the space H3,4, the canonically conjugated coordinate −→x and
momentum −→p satisfy the Heisenberg commutation relations[

xj , p̂l
]
= iδjl,

[
xj , xl

]
=

[
p̂j , p̂l

]
= 0, (7)

and commute with the spin operator −→s (4) (the explicit form of the operator −→s for the
e−e+-doublet is detalized below in (24)). In the integral form this evolution is determined
by the unitary in the space (5) operator

u(t0, t) = exp [−i(t− t0)ω̂] ; expÂ ≡
∞∑
n=0

Ân

n!
; t, t0 ∈ (−∞,∞), (8)

which is the automorphism operator in the space (5) (below we put t0 = 0).
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In the differential form the evolution equation is given as

i∂tf(t,
−→x ) =

√
−∆+m2f(t,−→x ), f ∈ H3,4; ∂t ≡

∂

∂t
. (9)

Equation (9) is the equation of motion of a ”particle” (doublet) in the RCQM, i. e., the
main equation of the model. Moreover, we will prove below that the Foldy-Wouthuysen
[2] and well-known Dirac equations are the consequences of this equation. Therefore,
the equation (9) plays an outstanding role. In the papers [3], [4] the two-component
version of the equation (9) is called the Schrödinger equation. Taking into account the
L. Foldy’s contribution in the construction of RCQM and his proof of the principle of
correspondence between RCQM and non-relativistic quantum mechanics, we propose to
call the N -component equations of the type (9) as the Schrödinger-Foldy (SF) equations.

The pseudo-differential (non-local) operator (6) is determined alternatively either in the
form of the power series

ω̂ = m

√
1− B̂ ≡ 1− 1

2
B̂ +

1 · 2
2 · 3

B̂2 − ..., B̂ =
∆

m2
, (10)

or in the integral form

(ω̂f)(t,−→x ) = 1

(2π)
3
2

∫
d3kei

−→
k −→x ωf̃(t,

−→
k ); ω ≡

√
−→
k 2 +m2, f̃ ∈ H̃3,4, (11)

where f and f̃ are linked by the 3-dimensional Fourier transformations

f(t,−→x ) = 1

(2π)
3
2

∫
d3kei

−→
k −→x f̃(t,

−→
k ) ⇔ f̃(t,

−→
k ) =

1

(2π)
3
2

∫
d3ke−i

−→
k −→x f̃(t,−→x ), (12)

(in (12)
−→
k belongs to the spectrum R3

k⃗
of the operator −̂→p , and the parameter t ∈

(−∞,∞) ⊂ M(1, 3)).
Note that the space of states (5) is invariant with respect to the Fourier transformation

(12). Therefore, both −→x -realization (5) and
−→
k -realization H̃3,4 of the multiplet states

space are suitable for the purposes of our consideration. In the
−→
k -realization the SF

equation has the algebraic-differential form

i∂tf̃(t,
−→
k ) =

√
−→
k 2 +m2f̃(t,

−→
k );

−→
k ∈ R3

k⃗
, f̃ ∈ H̃3,4. (13)

Below in the places, where misunderstanding is impossible, the symbol ”tilde” is omitted.
On the Poincaré group representation. The generators of the P f representation

of the group P, with respect to which the equation (9) is invariant, are given by

p̂0 = ω̂, p̂l = i∂l, ĵln = xlp̂n − xnp̂l + sln ≡ m̂ln + sln, (14)

ĵ0l = −ĵl0 = tp̂l −
1

2
{xl, ω̂} −

slnp̂n
ω̂ +m

, (15)

in the −→x -realization of the space H3,4 (5) and

p0 = ω, pl = kl, j̃ln = x̃lkn − x̃nkl + sln; (x̃l = −i∂̃l, ∂̃l ≡
∂

∂kl
), (16)

j̃0l = −j̃l0 = tkl −
1

2
{x̃l, ω} −

slnkn
ω +m

, (17)
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in the
−→
k -realization H̃3,4 of the multiplet states space, respectively.

Note that the explicit form of the spin operators sln in the formulae (14)-(17), which is
used for the e−e+-doublet, is given in the formula (24) below.

In despite of manifestly non-covariant forms (14) – (17) of the P f -generators, they satisfy
the commutation relations of the P algebra in manifestly covariant form (3).

The P f -representation of the group P in the space H3,4 (5) is given by the converged in
this space exponential series

P f : (a,ϖ) → U(a,ϖ) = exp(−ia0ω̂ − i−→a −̂→p − i

2
ϖµν ĵµν), (18)

or, in the space H̃3,4, by corresponding exponential series given in terms of the generators
(16), (17).

We emphasize that the modern definition of P invariance (or P symmetry) of the
equation of motion (9) in H3,4 is given by the following assertion, see, e. g. [6]. The set
F ≡ {f} of all possible solutions of the equation (9) is invariant with respect to the P f -
representation of the group P if for arbitrary solution f and arbitrarily-fixed parameters
(a,ϖ) the assertion

(a,ϖ) → U(a,ϖ) {f} = {f} ≡ F (19)

is valid. Furthermore, the assertion (19) is ensured by the fact that (as it is easy to verify)

all the P-generators (14), (15) commute with the operator i∂t−
√
−∆+m2 of the equation

(9). The important physical consequence of the last assertion is the fact that 10 integral
dynamical variables of the doublet

(Pµ, Jµν) =

∫
d3xf †(t,−→x )(p̂µ, ĵµν)f(t,−→x ) = Const (20)

do not depend on time, i. e. they are the constants of motion for this doublet. Below
more detailed analysis of this and other meaningful assertions is presented.

On the external and internal degrees of freedom. The coordinate −→x (as an
operator in H3,4) is an analog of the discrete index of generalized coordinates q ≡ (q1, q2, ...)
in non-relativistic quantum mechanics of the finite number degrees of freedom. In other
words the coordinate −→x ∈ R3 ⊂M(1,3) is the continuous carrier of the external degrees
of freedom of a multiplet (the terminology is taken from [7]). The coordinate operator

together with the operator −̂→p determines the operator mln = xlp̂n − xnp̂l of an orbital
angular momentum, which also is connected with the external degrees of freedom.

However, the doublet has the additional characteristics such as the spin operator −→s
(4), which is the carrier of the internal degrees of freedom of this multiplet. The set of

generators (p̂µ, ĵµν) (14), (15) of the main dynamical variables (20) of the doublet are the
functions of the following basic set of 9 functionally independent operators

−→x = (xj), −̂→p = (p̂j), −→s ≡
(
sj
)
= (s23, s31, s12) . (21)

Note that −→s commutes both with (−→x , −̂→p ) and with the operator i∂t−
√
−∆+m2 of the

SF equation (9). Thus, for the free doublet the external and internal degrees of freedom
are independent. Therefore, 9 operators (21) in H3,4, which have the univocal physical

sense, are the generating operators not only for the 10 main (p̂µ, ĵµν) (14), (15) but also
for other operators of any experimentally observable quantities of the doublet.
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On the mathematical correctness of consideration. Note further that SF equation
(9) has generalized solutions, which do not belong to the space H3,4, see the formulae (28)
below. In order to account this fact it is sufficient to apply the rigged Hilbert space

S3,4 ≡ S(R3)× C4 ⊂ H3,4 ⊂ S3,4∗. (22)

Here S(R3) is the Schwartz test function space over the space R3 ⊂ M(1, 3), and S3,4∗ is the
space of 4-component Schwartz generalized functions, which is conjugated to the Schwartz
test function space S3,4 by the corresponding topology (see, e. g., [8]). Strictly speaking,
the mathematical correctness of consideration demands to make the calculations in the
space S3,4∗ of generalized functions, i. e. with the application of cumbersome functional
analysis.

Nevertheless, let us take into account that the Schwartz test function space S3,4 in
the triple (22) is kernel. It means that S3,4 is dense both in quantum-mechanical space
H3,4 and in the space of generalized functions S3,4∗ (by the corresponding topologies).
Therefore, any physical state f ∈ H3,4 can be approximated with an arbitrary precision by
the corresponding elements of the Cauchy sequence in S3,4, which converges to the given
f ∈ H3,4. Further, taking into account the requirement to measure the arbitrary value
of the model with non-absolute precision, it means that all concrete calculations can be
fulfilled within the Schwartz test function space S3,4.

Furthermore, the mathematical correctness of the consideration demands to determine
the domain of definitions and the range of values for any used operator and for the functions
of operators. Note that if the kernel space S3,4 ⊂ H3,4 is taken as the common domain of
definitions of the generating operators (21), then this space appears to be also the range of
their values. Moreover, the space S3,4 appears to be the common domain of definitions and
values for the set of all above mentioned functions from the 9 operators (21) (for example,

for the operators (p̂µ, ĵµν) and for different sets of commutation relations). Therefore, in
order to guarantee the realization of the principle of correspondence between the results
of cognition and the instruments of cognition in the given model, it is sufficient to take
the algebra AS of the all sets of observables of the given model in the form of converged
in S3,4 Hermitian power series of the 9 generating operators (21).

On the quantum-mechanical representation of matrix operators. Now the
qualification of the definition of the matrix operators, which describe the electron-positron
e−e+-doublet, will be given. We prefer the definition, which gives the modern experimen-
tally verified understanding of the positron as the ”mirror mapping” of the electron. Such
understanding leads to the specific postulation of the explicit forms of the charge sign and
spin operators.

We take into account that the definition of the electron spin in the terms of the Pauli
matrices is universally recognized. Therefore, we choose the electron spin in the form

−→s − =
1

2
−→σ , −→σ ≡ (σj) : σ1 =

∣∣∣∣ 0 1
1 0

∣∣∣∣ , σ2 = ∣∣∣∣ 0 −i
i 0

∣∣∣∣ , σ3 = ∣∣∣∣ 1 0
0 −1

∣∣∣∣ ; j = 1, 2, 3.

(23)
Thus, the above mentioned understanding of positron demands to choose the sign of the
charge g and spin operators of the e−e+-doublet in the form

g ≡ −γ0 =
∣∣∣∣ −I2 0
0 I2

∣∣∣∣ , −̄→s =
1

2

∣∣∣∣ −→σ 0
0− C−→σ C

∣∣∣∣ , I2 =

∣∣∣∣ 1 0
0 1

∣∣∣∣ , (24)

where C is the operator of complex conjugation.
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Indeed, only in these definitions one obtains the following result: if in the given state
f ∈ H3,4 the electron with the charge −e is in the state with the helicity value he− = −1

2

(left-helical electron), then the positron is in the state he+ = +1
2 (right-helical electron),

and vice versa.
The definitions (24) de facto determines so-called ”quantum-mechanical” representation

of the Dirac matrices

γ̄µ : γ̄µγ̄ν + γ̄ν γ̄µ = 2gµν ; γ̄−1
0 = γ̄0, γ̄

−1
l = −γ̄l, (25)

The matrices γ̄µ (25) of this representation are linked to the Dirac matrices γµ in the
standard Pauli-Dirac (PD) representation:

γ̄0 = γ0, γ̄1 = γ1C, γ̄2 = γ0γ2C, γ̄3 = γ3C, γ̄4 = γ0γ4C; γ̄µ = vγµv, v ≡
∣∣∣∣ I2 0
0 CI2

∣∣∣∣ = v−1,

(26)
where the standard Dirac matrices γµ are given by

γ0 =

∣∣∣∣ I2 0
0 −I2

∣∣∣∣ , γk =

∣∣∣∣ 0 σk

−σk 0

∣∣∣∣ , µ = 0, 1, 2, 3. (27)

Note that in the terms of γ̄µ matrices (26) the spin operator (24) have the form −̄→s =
i
4(γ̄

2γ̄3, γ̄3γ̄1, γ̄1γ̄2).

The γ̄µ matrices (26) together with the matrix γ̄4 ≡ γ̄0γ̄1γ̄2γ̄3, imaginary unit i ≡
√
−1

and operator C of complex conjugation generate in H3,4 the quantum-mechanical represen-
tations of the extended real Clifford-Dirac algebra and proper extended real Clifford-Dirac
algebra, which were put into consideration in [9] (see also [10]).

On the stationary complete sets of operators. Let us consider now the outstanding
role of the different complete sets of operators from the algebra of observables AS. If one
does not appeal to the complete sets of operators, then the solutions of the SF equation (9)
are linked directly only with the Sturm-Liouville problem for the energy operator (6). In
this case one comes to so-called ”degeneration” of solutions. Recall that for an arbitrary
complete sets of operators the notion of degeneration is absent in the Sturm-Liouville
problem (see, e.g., [5]): only one state vector corresponds to any one point of the common
spectrum of a complete set of operators. To wit, for a complete set of operators there is a
one to one correspondence between any point of the common spectrum and an eigenvector.

The stationary complete sets (SCS) play the special role among the complete sets of op-
erators. Recall that the SCS is the set of all functionally independent mutually commuting
operators, each of which commute with the operator of energy (in our case with the oper-

ator (6)). The examples of the SCS in H3,4 are given by (−̂→p , sz ≡ s3, g), (−→p , −→s · −→p , g),
ets. The set (−→x , sz, g) is an example of non-stationary complete set. The −→x -realization
(5) of the space H3,4 and of quantum-mechanical SF equation (9) are related just to this
complete set.

The solutions of the Schrödinger-Foldy equation. Let us consider the SF equation

(9) general solution related to the SCS (−̂→p , s̄z ≡ s̄3, g), where s̄3 is given in (24). The
fundamental solutions of the equation (9), which are the eigen solutions of this SCS, are
given by the relativistic de Broglie waves:

φ
k⃗α
(t,−→x ) = 1

(2π)
3
2

e−iωt+ik⃗x⃗Dα, Dα = (δβα), α = r, ŕ, r = 1, 2, ŕ = 3, 4, (28)
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Dr ≡
∣∣∣∣ dr
0

∣∣∣∣ , Dŕ ≡
∣∣∣∣ 0
dŕ

∣∣∣∣ , d1 = d3 =

∣∣∣∣ 1
0

∣∣∣∣ , d2 = d4 =

∣∣∣∣ 0
1

∣∣∣∣ , (29)

where the Cartesian orts Dα are the common eigen vectors for the operators (s̄z, g).
Vectors (28) are the generalized solutions of the equation (9). These solutions do not

belong to the quantum-mechanical space H3,4, i. e. they are not realized in the nature.
Nevertheless, the solutions (28) are the complete orthonormalized orts in the rigged Hilbert
space (22). In symbolic form the conditions of orthonormalisation and completeness are
given by ∫

d3xφ†
k⃗α
(t,−→x )φ

k⃗′α′(t,
−→x ) = δ(

−→
k −

−→
k ′)δαα′ , (30)

∫
d3k

4∑
α=1

φβ

k⃗α
(t,−→x )φ∗β′

k⃗α
(t,−→x ′) = δ(−→x −−→x ′)δββ′ . (31)

The functional forms of these conditions are omitted because of their cumbersomeness.
In the rigged Hilbert space (22) an arbitrary solution of the equation (9) can be decom-

posed in terms of fundamental solutions (28). Furthermore, for the solutions f ∈ S3,4 ⊂
H3,4 the expansion

f(t,−→x ) = 1

(2π)
3
2

∫
d3xe−ik̃x[a−r (

−→
k )Dr+a

+
ŕ (

−→
k )D+

ŕ ], k̃x ≡ ωt−
−→
k −→x , ω ≡

√
−→
k 2 +m2,

(32)
is, (i) mathematically well-defined in the framework of the standard differential and in-
tegral calculus, (ii) if in the expansion (32) a state f ∈ S3,4 ⊂ H3,4, then the amplitudes
(aα) = (a−r , a

+
ŕ ) in (32) belong to the set of the Schwartz test functions over R3

k⃗
. Therefore,

they have the unambiguous physical sense of the amplitudes of probability distributions

over the eigen values of the SCS (−̂→p , s̄z, g). Moreover, the complete set of quantum-
mechanical amplitudes unambiguously determine the corresponding representation of the

space H3,4 (in this case – the (
−→
k , s̄z, g)-representation), which vectors have the harmonic

time dependence

f̃(t,
−→
k ) = e−iωtA(

−→
k ), A(

−→
k ) ≡ column(a−+, a

−
−, a

+
−, a

+
+), (33)

i. e. are the states with the positive sign of the energy ω̃.
The similar assertion is valid for the expansions of the states f ∈ H3,4 over the basis

states, which are the eigenvectors of an arbitrary SCS. Therefore, the transition to the
corresponding representation of the space H3,4, which is related to such expansions, is
often called as the generalized Fourier transformation.

By the way, the −→x -realization (5) of the states space is associated with the non-
stationary complete set of operators (−→x , sz, g). Therefore, the amplitudes fα(t,−→x ) =

D†
αf(t,

−→x ) = U(t)f(0,−→x ) of the probability distribution over the eigen values of this
complete set depend on time t non-harmonically.

On the additional conservation laws. As it was already mentioned above, the exter-
nal and internal degrees of freedom for the free e−e+-doublet are independent. Therefore,

the operator −̄→s (24) commutes not only with the operators −̂→p ,−→x , but also with the or-

bital part m̂µν of the total angular momentum operator. And both operators −̄→s and m̂µν

commute with the operator i∂t −
√
−∆+m2 of the equation (9). Therefore, besides the
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10 main (consequences of the 10 Poincaré generators) conservation laws (20), the 12 addi-
tional constants of motion exist for the free e−e+-doublet. These additional conservation
laws are the consequences of the operators of the following observables:

s̄j , s̆ol =
s̄lnpn
ω̂ +m

, m̂ln = xlp̂n − xnp̂l, m̂0l = −m̂l0 = tp̂l −
1

2
{xl, ω̂} . (34)

Thus, the following assertions can be proved. In the space HA = {A} of the quantum-
mechanical amplitudes the 10 main conservation laws (20) have the form

(Pµ, Jµν) =

∫
d3kA†(

−→
k )(p̃µ, j̃µν)A(

−→
k ), A(

−→
k ) ≡

∣∣∣∣ a−ra+ŕ
∣∣∣∣ , (35)

where the PA generators (p̃µ, j̃µν) of (35) are given by

p̃0 = ω, p̃l = kl, j̃ln = x̃lkn − x̃nkl + s̄ln; (x̃l = −i∂̃l, ∂̃l ≡
∂

∂kl
), (36)

j̃0l = −j̃l0 = −1

2
{x̃l, ω} − (

˘̃
S0l ≡

s̄lnkn
ω +m

), (37)

Note that the operators (36), (37) satisfy the Poincaré commutation relations in the
manifestly covariant form (3). It is evident that 12 additional conservation laws (34),
consequences of the operators (34), are the separate terms in the expressions (35) of total
(main) conservation laws.

Dynamic and kinematic aspects of the relativistic invariance. Consider briefly
some detalizations of the relativistic invariance of the SF equation (9). Note that for the
free e−e+-doublet the equation (9) has one and the same explicit form in arbitrary-fixed
IFR (its set of solutions is one and the same in every IFR). Therefore, the algebra of
observables and the conservation laws (as the functionals of the free e−e+-doublet states)
have one and the same form too. This assertion explains the dynamical sense of the P
invariance (the invariance with respect to the dynamical symmetry group P).

Another, kinematic, aspect of the P invariance of the RQCM model has the following
physical sense. Note at first that any solution of the SF equation (9) is determined by
the concrete given set of the amplitudes {A}. It means that if f with the fixed set of
amplitudes {A} is the state of the doublet in some arbitrary IFR, then for the observer in
the (a, ϖ)-transformed IFR′ this state f ′ is determined by the amplitudes {A′}. The last
ones are received from the given {A} by the unitary PA -transformation

PA : (a,ϖ) → Ũ(a,ϖ) = exp(−iaµp̃µ − i

2
ϖµν j̃µν), (38)

where (p̃µ, j̃µν) are given in (36), (37).
On the principles of the heredity and the correspondence. The explicit forms

(34)-(37) of the main and additional conservation laws demonstrate evidently that the
model of RCQM satisfies the principles of the heredity and the correspondence with the
non-relativistic classical and quantum theories. The deep analogy between RCQM and
these theories for the physical system with the finite number degrees of freedom (where
the values of the free dynamical conserved quantities are additive) is also evident.

The axiom on the mean value of the operators of observables. Note that any
apparatus can not fulfill the absolutely precise measurement of a value of the physical
quantity having continuous spectrum. Therefore, the customary quantum-mechanical ax-
iom about the possibility of ”precise” measurement, for example, of the coordinate (or
another quantity with the continuous spectrum), which is usually associated with the
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corresponding ”reduction” of the wave-packet, can be revisited. This assertion for the
values with the continuous spectrum can be replaced by the axiom that only the mean
value of the operator of observable (or the corresponding complete set of observables)
is the experimentally observed for ∀f ∈ H3,4. Such axiom, without any loss of gener-
ality of consideration, unambiguously justifies the using of the subspace S3,4 ⊂ H3,4 as
an approximative space of the physically realizable states of the considered object. This
axiom as well does not enforce the application of the conception of the ray in H3,4 (the
set of the vectors eiαf with an arbitrary-fixed real number α) as the state of the object.
Therefore, the mapping (a, ϖ) → U(a, ϖ) in the formula (38) and in the formula (18) for
the P-representations in S3,4 ⊂ H3,4 is an unambiguous. Such axiom actually removes the
problem of the wave packet ”reduction”, which discussion started from the well-known von
Neumann monograph [11]. Therefore, the subjects of the discussions of all ”paradoxes” of
quantum mechanics, a lot of attention to which was paid in the past century, are removed
also.

The important conclusion about the RCQM is as follows. The consideration of all
aspects of this model is given on the basis of using only such conceptions and quantities,
which have the direct relation to the experimentally observable physical quantities of this
”elementary” physical system (as the compound fundamental object).

The second quantization. Finally, we consider briefly the program of the canonical
quantization of the RCQM model. Note that the expression for the total energy P0 plays
the special role in the procedure of so called ”second quantization”. In the RCQM doublet
model, as it is evident from the expression of the P0 (35) in the terms of the charge sign-
momentum-spin amplitudes

P0 =

∫
d3kω

(∣∣∣a−r (−→k )∣∣∣2 + ∣∣∣a+ŕ (−→k )∣∣∣2) ≥ m > 0, (39)

the energy is positive. The same assertion is valid for the amplitudes related to the
arbitrary-fixed SCS of operators. Furthermore, the corresponding to expression (39) op-

erator P̂0 of the energy is positive-valued operator. The operator P̂0 follows from the
expression (39) after the anticommutation quantization of the amplitudes{

âα(
−→
k ), â†β(

−→
k )

}
= δαβδ

(−→
k −

−→
k ′

)
(40)

(other operators anticommute) and their substitution a∓ → â∓ into the formula (39).
Note that the quantized amplitudes determine the Fock space HF (over the quantum-

mechanical space H3,4). What is more, the operators of dynamical variables P̂µ, Ĵµν in
HF, which are expressed according to formulae (35) in the terms of the operator ampli-

tudes âα(
−→
k ), â†β(

−→
k ), automatically have the form of ”normal products” and satisfy the

commutation relations (3) of the P group in the Fock space HF. Operators P̂µ, Ĵµν deter-
mine the corresponding unitary representation in HF. Other details are not the subject
of this paper.

3. Derivation of the Foldy-Wouthuysen and the Dirac equations

We consider briefly the derivation of the Foldy-Wouthuysen (FW) and the Dirac equa-
tions on the basis of the start from the SF equation (9). That means the Dirac equation
is the consequence of the quantum-mechanical spin 1/2 doublet model.

The link between the SF equation (9) and the FW equation [2] is given by the operator
v
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v =

∣∣∣∣ I2 0
0 CI2

∣∣∣∣ ; v2 = I4, I2 =

∣∣∣∣ 1 0
0 1

∣∣∣∣ , (41)

(we mentioned about the existence of such operator in the formulae (26)), C is the operator
of complex conjugation, the operator of involution in the space H3,4. The operator v (41)
transforms arbitrary operator q of the RCQM into the operatorQ in the FW representation
for the spinor field and vice versa:

Q = vqv ↔ q = vQv. (42)

The only warning is that formula (42) is valid only for the anti-Hermitian operators!
It means that in order to avoid the mistakes one must apply this formula only for the
prime (anti-Hermitian) energy-momentum, angular momentum and spin quantities. The
examples of the prime generators of the Lie groups are given in [9], [10].

The role of anti-Hermitian operators in physics is well-known. As well as the physical
parameters of groups and algebras are real, then it is convenient to associate with them just
the anti-Hermitian generators. For example, the real parameters aµ, ϖµν of translations
and rotations of the Poincaré group are associated with the anti-Hermitian generators
p̂µ, ĵµν , where p̂µ = ∂µ, etc. The mathematical correctness of appealing to the anti-
Hermitian generators is considered in details in [12], [13]. In our papers just the use of the
anti-Hermitian generators allowed us [9], [10] to find the additional bosonic properties of
the FW and Dirac equations. The details are not the subject of this consideration.

Here, in order to work with mathematically well-defined relationship between the SF
and FW equation we slightly rewrite these equations and present them in completely
equivalent forms in the terms of the anti-Hermitian operators. Thus, we consider the SF
equation (9) in a form

(∂0 + iω̂) f(t,−→x ) = 0; ω̂ ≡
√−→p 2 +m2 =

√
−∆+m2 ≥ m > 0, (43)

and the FW equation in a form (
∂0 + iγ0ω̂

)
ϕ(t,−→x ) = 0. (44)

We also rewrite the Dirac equation similarly in a form(
∂0 + γ0γℓ∂ℓ + iγ0m

)
ψ(t,−→x ) = 0 ⇔ (∂0 + i(−→α · −→p + βm))ψ(t,−→x ) = 0 (45)

only for the reasons of analogy and orderliness. Note that the FW transformation between
the FW and the Dirac models

V ± ≡ ±iγl∂l + ω̂ +m√
2ω̂(ω̂ +m)

(46)

is well-defined both for the Hermitian and anti-Hermitian operators.
It is easy to verify that the FW equation (44) follows from the SF equation (43)

v (∂0 + iω̂) v =
(
∂0 + iγ0ω̂

)
↔ v

(
∂0 + iγ0ω̂

)
v = (∂0 + iω̂) (47)

and the general solution of the FW equation (44) follows from the general solution (32)
of the SF equation (43)

ϕ(t,−→x ) = vf(t,−→x ) ↔ f(t,−→x ) = vϕ(t,−→x ). (48)

Corresponding links between the FW and the Dirac equations are well-known from [2].
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Thus, we have found the general transformation, which gives relationship directly be-
tween the RCQM and the Dirac model

W = V +v, W−1 = vV −; WW−1 =W−1W = 1. (49)

Therefore, we derive the Dirac equation from the RCQM

W (∂0 + iω̂)W−1 = ∂0 + i(−→α · −→p + βm), (50)

ψ(t,−→x ) =Wf(t,−→x ). (51)

The vice versa links also exist as a well-defined mathematical transformations

W−1(∂0 + i(−→α · −→p + βm))W = ∂0 + iω̂, (52)

f(t,−→x ) =W−1ψ(t,−→x ). (53)

but are not so interesting for our purposes as the direct transformations (50), (51). The
direct transformations derive the Dirac equation from the more elementary model of the
same physical reality.

4. Conclusions

The model of relativistic canonical quantum mechanics on the level of axiomatic ap-
proaches to the quantum field theory is considered. The main intuitive physical principles,
reinterpreted on the level of modern physical methodology, mathematically correctly are
mapped into the basic assertions (axioms) of the model. The Einstein’s principle of rel-
ativity is mapped as a requirements of special relativity. The principles of heredity and
correspondence of the model with respect to the non-relativistic classical and quantum me-
chanics are supplemented by the clarifications of external and internal degrees of freedom
carriers. The principle of relativity of the model with respect to the means of cognition is
realized by the applications of the rigged Hilbert space. The Schwartz test function space
S3,4 is shown to be the sufficient to satisfy the requirements of the principle of relativity
of the model with respect to the means of cognition. And the fulfilling of calculations in
S3,4 does not lead to the loss of generality of the consideration.

It is shown that the algebra of experimentally observable quantities, associated with
the Poincaré-invariance of the model, is determined by the nine functionally independent
operators −→x ,−→p ,−→s , which in the relativistic canonical quantum mechanics model of the
doublet have the unambiguous physical sense. It is demonstrated that the application of
the stationary complete sets of operators of the experimentally measured physical quanti-
ties guarantees the visualization and the completeness of the consideration.

Derivation of the Foldy-Wouthuysen and the Dirac equations from the Schrödinger-
Foldy equation of relativistic canonical quantum mechanics is presented and briefly dis-
cussed. We prove that the Dirac equation is the consequence of more elementary model
of the same physical reality. The relativistic canonical quantum mechanics is suggested to
be such fundamental model of the physical reality.

An important assertion is that an arbitrary physical and mathematical information,
which contains in the model of relativistic canonical quantum mechanics, is translated
directly and unambiguously into the field model of the Dirac equation.
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