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ENERGY PRESERVING INTEGRATION OF BI-HAMILTONIAN

PARTIAL DIFFERENTIAL EQUATIONS

B. KARASÖZEN1, G. ŞİMŞEK2 §

Abstract. The energy preserving average vector field (AVF) integrator is applied to
evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with noncon-
stant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation
and for the Ito type coupled KdV equation confirm the long term preservation of the
Hamiltonians and Casimir integrals, which is essential in simulating waves and solitons.
Dispersive properties of the AVF integrator are investigated for the linearized equations
to examine the nonlinear dynamics after discreization.
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1. Introduction

We consider integrable evolutionary equations in bi-Hamiltonian form ([16], Ch. 7.3)
and [14, 17]:

∂u

∂t
= J1

δH2

δu
= J2

δH1

δu
(1)

in the domain Ω = (x, t) ∈ R × R, with x and t denoting space and time variables,
respectively. Here, J1 and J2 are the skew-adjoint Hamiltonian operators which may
depend on the solution u(x, t) and its partial derivatives with respect to the spatial variable
x. The variational derivative is given by

δH
δu

=
∂H
∂u

− ∂x

(
∂H
∂ux

)
+ ∂2

x

(
∂H
∂uxx

)
− · · · .

Many PDEs like the KdV equation, nonlinear Schrödinger equation, sine-Gordon equa-
tion are also represented in form of noncanonical Hamiltonian or Poisson systems with
nonconstant skew-adjoint Hamiltonian operators, i.e. skew-adjoint Hamiltonian operators
J1 and J2 are constant in (1), [14, 16, 17]. Symplectic or multisymplectic integrators do
not preserve the nonconstant symplectic or Poisson structures [12]. There exist geomet-
ric integrators which preserve the Poisson structure for certain equations. For example,
the symplectic Euler method and partitioned Lobatto IIIA-IIIB methods preserve the
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Poisson structure of the Volterra lattice equation [9]. The nonconstant structure can be
transformed to the constant one by the Darboux transformation or by using generating
functions. However, explicit construction of the transformations is difficult, in practice.

Because there exist no general symplectic or multi-symplectic integrator for the bi-
Hamiltonian systems with nonconstant structure in (1), one can look for energy preserving
integrators. Conservation of the energy and other integrals of PDEs play an important
role besides the preservation of the symplectic and multisymplectic structures, especially
in the simulation of solitons. Numerical integrators, which preserve the Hamiltonian and
other conserved quantities were developed before the geometric integrators emerged, but
they have forgotten lately. In recent years, several energy or integral preserving methods
were developed for ODEs and PDEs by using discrete gradients and discrete variational
derivatives [5, 18]. After a suitable spatial discretization of the skew-adjoint operators and
Hamiltonians in (1), the following finite dimensional Hamiltonian system is obtained:

u̇ = J(u)∇H(u), u ∈ RN . (2)

Here, J(u) is the N×N skew-symmetric structure matrix corresponding to the discretiza-
tion of the skew adjoint operator J (u), and the operator ∇ is the standard gradient, which
replaces the variational derivative.

In this paper, we apply the energy preserving average vector field (AVF) method [6]

un+1 − un

∆t
= J

(
un + un+1

2

)∫ 1

0
∇H(un + τ(un+1 − un))dτ, (3)

to KdV equation and to Ito’s system in the bi-Hamiltonian form (1). It represents an ex-
tension of the implicit mid-point rule and an extension of averaged vector field integrators
for canonical Hamiltonian systems [10] . Higher order AVF methods are constructed as
collocation methods, and they are interpreted as Runge-Kutta methods with continuous
stages for canonical and noncanonical Hamiltonian systems [6, 10]. The AVF method (3)
is second order convergent in time. The spatial derivatives of the skew-adjoint operators
and the Hamiltonians are discretized by central differences, second-order convergence is
also retained in space. The AVF integrator (4) is symmetric and conjugate to a Poisson
integrator, i.e., the quadratic Casimir functions are preserved exactly [6]. AVF methods
require accurate computation of the integrals. The Hamiltonians of many PDEs are poly-
nomial, so that the integrals in the AVF method are computed exactly at the beginning of
the integration, and the computational complexity of the AVF method is comparable with
the implicit symplectic Runge–Kutta methods. The numerical results confirm the excel-
lent long-term preservation of the energy (Hamiltonian) and the integrals of the underlying
equations. The soliton solutions obtained by the energy preserving AVF integrator show
a very similar behavior, to those in the literature obtained by other symplectic and multi-
symplectic methods. This indicates, that energy preservation provides long term accurate
solutions like the geometric integrators.

The paper is organized as follows. In the next section, the formulation of the AVF
method for the KdV equations and Ito’s system is given with some numerical experiments,
illustrating the energy preservation in long term integration.
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2. Average vector field integration of bi-Hamiltonian PDE’s

In this section, we apply the AVF method (3) to the KdV equation and Ito’s system
in bi-Hamiltonian form (1). We consider periodic boundary conditions such that no ad-
ditional boundary terms will appear after semidiscretization. For discretization of (1) in
space, it is crucial to preserve the skew-adjoint structure of J1 and J2 to obtain the semi-
discrete Hamiltonian ODE of the form (2). The first order derivatives are discretized by
backward finite differences and the Hamiltonians are approximated by the rectangle rule.
The discrete approximation of u(j∆x, n∆t) is denoted by un = (un1 , . . . , u

n
j , . . . , u

n
N )T

2.1. Korteweg de Vries equation. The KdV equation

ut = αuux + ρux + νuxxx (4)

with the periodic boundary conditions u(−L, t) = u(L, t) is given in bi-Hamiltonian [16, 17]

J1 = D, H2 =

∫ (α
6
u3 +

ρ

2
u2 − ν

2
u2x

)
dx, (5a)

J2 =
α

3
uD+

α

3
Du+ ρD+ νD3, H1 =

∫
1

2
u2dx, (5b)

where D = ∂x denotes the first-order derivative with respect to space.

The skew adjoint operator J1 = D of the first Hamiltonian formulation (6a) is dis-

cretized using central differences Du =
uj+1−uj−1

2∆x and yields the skew-symmetric matrix
J1

J1 =
1

2∆x
A, with A =


0 1 −1
−1 0 1

. . .
. . .

. . .

−1 0 1
1 −1 0

 , (6)

where A is an N×N tridiagonal circulant matrix due to the periodic boundary conditions.
The discrete form of the Hamiltonian H2 is given as

H2 =

N∑
j=1

(α
6
u3j +

ρ

2
u2j −

ν

2∆x2
(uj+1 − uj)

2
)
∆x.

After applying the AVF method (3) and by introducing the circulant matrix

B =


−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

 ,

we obtain the system of Hamiltonian ODEs consisting nonlinear and linear parts such as

un+1 − un

∆t
=

α

12∆x
A
[
(un)2 + unun+1 + (un+1)2

]
+

ρ

4∆x
A
(
un + un+1

)
+

ν

4∆x3
A ·B

(
un + un+1

)
. (7)

The second Hamiltonian formulation (6b) of the KdV equation is discretized similarly.
The skew-adjoint operator J2 for the second Hamiltonian pair (5b) is more complicated
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than J1, but the HamiltonianH1 has a simpler form. The terms uD and Du are discretized
together to preserve the self-adjointness of J2 as in [15] adapted to periodic boundary
conditions

C(u) =


0 u1 + u2 −(u1 + uN )

−(u2 + u1)
. . .

. . .
. . .

. . . uN−1 + uN
u1 + uN −(uN−1 + uN ) 0

 . (8)

The circulant pentadiagonal matrix E

E =



0 −2 1 −1 2

2
. . .

. . .
. . . −1

−1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 1

1
. . .

. . .
. . . −2

−2 1 −1 2 0


(9)

corresponds to the discretization of D3 by using central differences. Then, the discrete
forms of J2 and H1 become

J2 =
α

6∆x
C(u) +

ρ

2∆x
A+

ν

∆x3
E, H1 =

1

2

N∑
j=1

u2j∆x.

Applying the AVF integrator (3) yields

un+1 − un

∆t
=

( α

12∆x
(C(un) + C(un+1)) +

ρ

2∆x
A+

ν

∆x3
E
)(

1

2

(
un+1 + un

))
. (10)

The fully discrete nonlinear equations (7) and (10) are solved by the Newton-Raphson
method. As the circulant matrices have sparse structure and the nonlinear terms in the
Jacobian appear in form of diagonal matrices, sparse routines of MATLAB are used to
solve the linear equations to save storage and to decrease the computing time.

Example 1: We have taken the KdV equation in [1] with the parameters α = −1, ρ = 0
and ν = −0.0222 and with the initial condition u(x, 0) = cos(πx). We have used the same
step sizes ∆x = 0.01 and ∆t = 0.001 as in [1] in the interval x ∈ [0, 2]. The computations
with AVF method are done with respect to the first Hamiltonian pair of KdV equation
(5a). The error in the Hamiltonian or energy H2 and the Casimir I2 =

1
2

∑N
j=1 u

2
j∆x, are

shown in Figure 1.
The error in the energy H1 of the second Hamiltionian pair (5b) is preserved similar

to the first Hamiltonian formulation (5a). The linear Hamiltonian H2 is automatically
preserved by the AVF method. Both are not shown here. Figure 2 shows solutions of
the KdV equation using the AVF method (7), which shows a similar solutions as with
those obtained by the symplectic and multisymplectic methods in [2] for the same time
snapshots. Similar solutions are obtained for the second Hamiltonian formulation (10).

Example 2: We consider as a second example the KdV equation (4) with soliton solu-

tions [22] under the initial condition u(x, 0) = sech2
(

x√
2

)
in the interval x ∈ [−20, 20].

The parameters are α = −6, ρ = 0 and ν = −1. The mesh sizes in space and time are
taken as ∆t = 0.02 and ∆x = 40/150. Energy error in the Hamiltonian and the Casimir
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Figure 1. KdV equation: Error in the energy H2 (left) and error in the Casimir
I2 (right) for the first bi-Hamiltonian formulation (5a).
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Figure 2. KdV equation: Solutions at various times t = 0.01, t = 1 and t = 10.

for the first formulation can be seen in Figure 3. Hamiltonian PDEs have distinguished
integrals known as Casimirs C, satisfying J δC

δu = 0, i.e., their Poisson bracket vanishes for
any function [16]. Among the infinitely many integrals of the KdV equation, the quadratic
integral I2 =

∫
1
2u

2dx is a Casimir. AVF integrators [6, 10] preserve the quadratic invari-
ants exactly.

Figure 3 shows that the energy is exactly preserved by the AVF method, whereas the
Casimir is well preserved without any drift. The second formulation computations results
are similar to those obtained from the first Hamiltonian formulation. The single soliton
solution is displayed in Figure 4, which is the same as those given in [22] computed with
the multisymplectic Preissmann scheme.

2.2. Ito’s System. Ito’s coupled KdV-type equations [11, 13, 21]

ut + αuux + βvvx + γuxxx = 0, vt + β(uv)x = 0, (11)
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Figure 3. KdV equation: Energy error H2 (left) and error in the Casimir I2 (right).

are expressed as bi-Hamiltonian PDEs in [17] with α = −6, β = −2, γ = −1 and

J1 =

(
D 0
0 D

)
, H2 =

∫ (
u3 + uv2 − u2x

2

)
dx, (12a)

J2 =

(
uD+Du+ 1

2D
3 vD

Dv 0

)
, H1 =

∫ (
u2 + v2

)
dx. (12b)

Ito equation in bi-Hamiltonian forms above, is discretized similar to the KdV equation
and solved by the AVF integrator.

Example 3: Ito’s system is solved numerically by the AVF method with the initial
conditions [21] u(x, 0) = exp(−x2), v(x, 0) = exp(−x2), in the interval x ∈ [−15,−15],
by using ∆t = 0.001 and ∆x = 30/160. The Hamiltonian H2 and the quadratic first
integral (Casimir) I2 =

∫
(2u+v2) of the Ito’s system in the first bi-Hamiltonian form (12a)

are preserved in Figure 5 up to the machine precision for the long time intervals. The

Figure 4. KdV equation: Single soliton solution
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Figure 5. Ito’s system: The error in the energy (left) and the in the conserved
quantity I1 (right).

Hamiltonian H1 and the linear Casimir I1 =
∫
(u + v), corresponding are almost exactly

preserved and they are not shown here.
Solutions of the Ito’s system for t ∈ [0, 2] and some instantaneous solutions at t = 0, 1

and 2 are shown in Figure 6. The first equation of (11) for u is a dispersive one, while there
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Figure 6. Solutions for u (solid) and v (dash dotted) at various time snapshots.

is no such dispersive term in the second equation for v. The existence of the dispersive
wave u(t) in the Ito’s equation (11) is confirmed in Figure 6, whereas v is behaving like a
shock wave, poised with some dispersion introduced by the AVF method. These results are
similar to those in [21] where (11) is integrated by a local discontinuous Galerkin method.

The behavior of the numerical solutions of the Ito’s system will be explained using the
dispersion relation in the next section.
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3. Dispersion relations

Nonlinear PDEs such as KdV equation (4) and Ito’s equation (11) are dispersive, which
means that the wave packets with different wave numbers travel with different velocities.
The preservation of the energy in long time can alone not explain the accuracy of the
solutions. The behavior of a nonlinear PDE can be determined by the dispersion relation in
regions where linearized PDE is a valid approximation to the nonlinear PDE. A dispersion
relation ω = ω(k) of a constant coefficient linear evolution equation determines how time
oscillations eiωt are linked to spatial oscillations eikx of a wave number k. Any linear
constant coefficients PDE has a solution of the form

u(x, t) =

∫ ∞

∞
A(k)ei(kx+ω(k)t)dk, i =

√
−1, (13)

where ω is the frequency and k is the wave number. The dispersion relation D(ω, k) = 0

is obtained by assuming that each wave Aei(kx+ωt) itself is a solution of the linear PDE.
Each wave travels with the phase velocity ωp(k) = ω/k, characterizing the speed of

the wave front. Dispersion occurs if the phase speed is not constant. The speed of the
energy transport of the composite wave packet is characterized by the the group velocity
ω′(k). The non-vanishing group velocity dispersion causes spatial spreading of the wave
packet. Numerical errors in the dispersion relation and the group velocities can lead to the
propagation of the numerical wave with different velocity and can destroy the qualitative
feature of the solutions [19]. In numerical simulations, it is important to preserve the sign
of the group velocity in order to avoid spurious solutions. Recently, dispersive properties
of symplectic and multisymplectic integrators for the KdV equation is examined in [1, 2].
It was shown that the multisymplectic Preissman box scheme qualitatively preserves the
dispersion relation of the KdV equation and any hyperbolic equation [1, 2]. These results
were generalized for linear PDEs to cover general s−stage Gauss–Legendre–Runge–Kutta
methods [8]. For the multisymplectic Preismann and box schemes there exists a diffeo-
morphism between the continuous and discrete dispersion relations, such that the sign of
the group velocity is preserved for the KdV equation [1, 2, 4], for the sine-Gordon equation
[19], for the ”good” Boussinesq equation [3].

Linearization of the KdV equation (4) around the constant solution ū gives [1, 2]

ut = aux + νuxxx, (14)

where a = αū+ ρ. The dispersion relation, phase and group velocities are

ω = ak − νk3, (15)

ω

k
= a− νk2,

dω

dk
= a− 3νk2, (16)

respectively. Similarly linearization of Ito’s system (11) around constant solutions ū and
v̄ results in

ut = uxxx + 6ūux + 2v̄vx,
vt = 2v̄ux + 2ūvx.

(17)

Continuous dispersion relations and group velocities are given as

ω1(k) = −k3 + (3b+ ac)k, ω2(k) =
(
b+

a

c

)
k, (18)

dω1

dk
= −3k2 + (3b+ ac),

dω2

dk
=

(
b+

a

c

)
, (19)

where a = 2v̄, b = 2ū, c = v̂/û. Since the phase velocity ω2(k) is constant, for the lin-
earized equation v is not a dispersive wave, whereas the solution u has the same form of
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dispersion relation ω1(k) as the linearized KdV equation (14) and, therefore, it is disper-
sive.

Numerical dispersion relations are obtained using the discrete version of the Fourier
mode (13):

ũnj = ûei(jk∆x+nω∆t) = ûei(jk̄+nω̄), (20)

where k̄ = k∆x and ω̄ = ω∆t, denote the numerical wavenumber and the numerical
velocity respectively in the range −π ≤ k̄, ω̄ ≤ π.

3.1. The KdV equation. Application of the AVF method to the linearized KdV equa-
tion (14) yields

un+1 − un

∆t
=

1

4∆x
A
[
(a+ ρ)(un+1 + un) +

ν

∆x2
(un+1 + un)

]
. (21)

and, substituting (20) into (21) , we obtain the numerical dispersion relation

tan
( ω̄
2

)
− ν

λ

∆x2
sin k̄(cos k̄ − 1)− λ

2
(a+ ρ) sin k̄ = 0, (22)

where λ = ∆t
∆x . Since the tangent function is invertible in the interval [−π

2 ,
π
2 ], the explicit

form of the numerical dispersion relation becomes

ω̄(k̄) = 2 arctan

(
ν

λ

∆x2
sin k̄(cos k̄ − 1) +

λ

2
(a+ ρ) sin k̄

)
. (23)
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Figure 7. Dispersion curves (top) and group velocities (bottom) of the
linearized exact (solid) and discretized (dotted) KdV for λ = 0.2. left
∆x = 0.005, middle ∆x = 0.02, right ∆x = 0.1.
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In Figure 7, the exact and numerical dispersion and group velocities of the linearized
KDV equation are shown for the continuous ω, k and discrete ω̄, k̄ frequencies and
wavenumbers, respectively. The dispersion curves in Figures 7(a) and 7(b) are below
the analytical dispersion curve for k̄ > 0. On the other hand, for ∆x = 0.1, the dispersion
curves for AVF make transitions from below to above the analytical curve at a value of the
wave number k̄ that depends on λ. In Figure 7a-c, for the continuous dispersion relations
there is one frequency ω̄ corresponding to each wavenumber k, whereas there are multiple
discrete wavenumbers k̄ for each ω̄. This indicates that the AVF method introduces com-
putational or parasitic modes. These are produced when the discretization yields different
branches in the dispersion relation, which indicates that AVF approximates the solution for
small wave numbers k well, but there are also modes giving poor approximations. When
we compare the dispersion graphs in Figure 7a-c with the dispersion curves in [1, 2], we
see that, the continuous and the numerical dispersion curves show similar behavior as for
the implicit mid-point rule and non-compact schemes, whereas the multisymplectic box
scheme preserves the dispersion relation for a long range of wave numbers k and spatial
mesh size ∆x.

In Figures 7d-f, the sign of the group velocity is preserved for long waves (small k), but
it is not preserved for short waves by the AVF method for all ∆x. This shows that the
direction of the energy flow obtained from the AVF method may be different from the
direction of the exact flow for short waves. The group velocity curves show that some
numerical modes travel slower than the continuous ones and some numerical modes travel
faster than the continuous ones as in [19].

3.2. Ito’s System. After application of the AVF method to the linearized Ito system in
Hamiltonian form

J =

(
3bD +D3 aD

aD bD

)
, H =

∫
1

2
(ũ2 + ṽ2)dx.

we obtain

...
un+1
j − un

j
...

vn+1
j − vn

j
...


=

∆t

2∆x

(
3bA+ ∆t

∆x2B aA
aA bA

)


...
1
2

(
un+1
j − un

j

)
...

1
2

(
vn+1
j − vn

j

)
...


.

The corresponding numerical dispersion relations are given by

ω̄1(k̄) = 2 arctan
(

λ
∆x2 sin k̄(cos k̄ − 1) + (3b+ ac) λ

2 sin k̄
)
,

ω̄2(k̄) = 2 arctan
(
b+ a

c

)
λ
2 sin k̄.

(24)

Figure 8 represents the dispersion and group velocity curves for both continuous dis-
persion relation (18) and the discrete dispersion relations (24). Dispersion properties of
u(t) (Figures 8a, 8c) are the same as the linearized KdV equation. The second component
of Ito’s system v(t) is not a dispersive wave, but we see that the discretization introduces
dispersion, so that only for a limited range of small wave numbers (Figures 8b, 8d) the
numerical solution will be qualitatively correct.
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Figure 8. Dispersion curves (top) and group velocities (bottom) of the
linearized Ito’s system u (left) and v (right) for ∆t = 0.001, a = b = 1 and
λ = 0.005.

4. Conclusions

The numerical results confirm the excellent long-term preservation of the energy (Hamil-
tonian) and the integrals of the underlying equations. The numerically obtained soliton
solutions show a very similar behavior, compared with those in the literature obtained by
other methods. Dispersion analysis reveals that there does not exist such a diffemorphism
between the continuous and discrete dispersion relations for the AVF method contrary
to the mulyisymplectic integrators. Therefore for some wavenumber parasitic waves may
exist.

Because the energy preserving methods are implicit as symplectic and multisymplectic
integrators, the resulting nonlinear equations must be solved within the round-off error,
to preserve symplecticity or the energy. This limits the applicability of these methods to
large-scale systems. In these situations, either splitting can be used which are based on
the splitting of the vector field in linear and nonlinear parts or linearly implicit methods
which require the solution of precisely one linear system of equations in each time step [7].
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