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Abstract. The paper is concerned with a second-order abstract semilinear
evolution equation with infinite memory and time delay. With the help of the

semigroup arguments and under suitable conditions on initial data and the

kernel memory function, we state and prove the global existence of solution.
Then, we establish the decay rates of the energy using the multiplier method

by defining a suitable Lyapunov functional. This work extends previous works

with time delay for a much wider class of kernels. We give also some applica-
tions to illustrate our results.

1. Introduction

Let H be a real Hilbert space with inner product and related norm denoted
by 〈., .〉 and ‖ . ‖, respectively. Let A : D(A) −→ H and B : D(B) −→ H be a
self-adjoint linear positive operator with domains D(A) ⊂ D(B) ⊂ H such that
the embeddings are dense and compact. Let C : H −→ H is a self-adjoint linear
operator and h : R+ −→ R+ is the kernel of the memory term. τ > 0 represents

a time delay and F : D(A
1
2 ) → H is function satisfying some conditions to be

specified later. We consider the following second-order abstract semilinear evolution
equation with infinite memory and time delay utt(t) +Au(t)−

∫ +∞
0

h(s)Bu(t− s)ds+ Cut(t− τ) = F (u(t)), t ∈ (0,+∞),
ut(t− τ) = f0(t− τ) t ∈ (0, τ),
u(−t) = u0(t), ut(0) = u1, t ∈ R+,

(1.1)
where the initial datum (u0, u1, f0) belongs to a suitable spaces.
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In absence of time delay term, a large number of works are available, where
various decay estimates were obtained, see [7, 14, 21]. For the particular case of
the wave equation with finite memory, see [2, 24].

In many cases, delay is a source of instability and even an arbitrarily small delay
may destabilize a system which is uniformly asymptotically stable in the absence
of delay. Nicaise and Pignotti in [15] considered a wave equation with a linear
damping and delay term and they proved that the energy is exponentially stable
and some instability results are also given by constructing some sequences of delays
for which the energy of some solutions does not tend to zero, see also [3, 17].

When the memory term is replaced by a frictional damping But(t):

utt(t) +Au(t) +But(t) + µut(t− τ) = 0, t > 0,

where µ, τ are fixed constants and B is a given operator, there exist in the literature
different stability results. These results show that the damping But(t) is strong
enough to stabilize the system in presence of a time delay provided that |µ| is small
enough, see [10, 16, 17].

Guesmia in [11] considered the following second-order abstract linear problem
with infinite memory and time delay terms utt(t) +Au(t)−

∫ +∞
0

h(s)Au(t− s)ds+ µut(t− τ) = 0, t > 0,
u(−t) = u0(t), t ∈ R+

ut(0) = u1, ut(t− τ) = f0(t− τ), t ∈ (0, τ),

He proved that the unique dissipation given by the memory term is strong enough
to stabilize exponentially the system in presence of delay. In this work and others,
the condition h′(s) ≤ −δh(s) for all s ≥ 0 and some δ > 0 is assumed to prove
exponential decay of the energy, see [1, 4]. In [13], the previous condition is replaced
by

h′(s) ≤ −ζ(t)h(s), ∀s ≥ 0, (1.2)

where ζ is a positive nonincreasing differentiable function. The authors established
the existence and the general decay results of the energy. Dai and Yang in [8] con-
sidered the same problem in [13] and solved the open problem proposed by Kirane
and Said-Houari. Recently, Boukhatem and Benabderrahmane in [5] considered a
variable coefficient viscoelastic equation with a time-varying delay in the bound-
ary feedback and acoustic boundary conditions and nonlinear source term. They
established a general decay results of the energy via suitable Lyapunov functionals
and some properties of the convex functions where the kernel memory satisfies the
equation (1.2). In [6], the same results have obtained in the case of constant delay.

Tatar in [23] introduced a new class of admissible kernels which lead to a wide
range of possible decay rates. More precisely, He consider kernels satisfying

h(t− s) ≥ ξ(t)
∫ +∞

t

h(π − s)dπ, 0 ≤ s ≤ t,

for some ξ(t) > 0. This class contains the polynomial type functions and the expo-
nential type. He proved that the last assumption on the relaxation in a viscoelastic
problem ensuring uniform stability in an arbitrary rate.
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For the case of distributed time delay, Guesmia and Tatar in [12] considered the
following class of second-order linear hyperbolic equations utt(t) +Au(t)−

∫ +∞
0

h(s)Bu(t− s)ds+
∫ +∞

0
f(s)ut(t− s)ds = 0, t > 0,

u(−t) = u0(t), t ∈ R+

ut(0) = u1, t ∈ R+,

where the function f is of class C1(R+,R) and satisfies, for some positive constant
α,

|f(s)| ≤ αh(s), and |f ′(s)| ≤ αh(s), ∀s ∈ R+.

They given well-posedness and stability of the system and they proved that the
infinite memory alone guarantees the asymptotic stability of the system and the
decay rate of solutions is found explicitly in terms of the growth at infinity of the
infinite memory and the distributed time delay convolution kernels.

Nicaise and Pignotti in [18] considered the following system{
Ut(t) = AU(t) + F (U(t)) + kBU(t− τ), t ∈ (0,+∞),
U(0) = u0,BU(t− τ) = f(t), t ∈ (0, τ),

where A generates a C0-semigroup (S(t))t≥0 that is exponentially stable, i.e., there
exist two positive constants M and w such that

‖S(t)‖L(H) ≤Me−wt, ∀t ≥ 0,

and L(H) denotes the space of bounded linear operators from H into itself. For
a fixed delay parameter τ , a fixed bounded operator B from H into itself and
for a real parameter k and F : H −→ H satisfies some Lipschitz conditions, the
initial datum U0 belongs to H and f ∈ C([0, τ ];H). They showed that, if the
C0-semigroup describing the linear part of the model is exponentially stable, then
the whole system retains this good property when a suitable smallness condition
on the time-delay feedback is satisfied, see also [19].

Motivated by previous works, we study the well-posedness and the stability result
of a semilinear abstract viscoelastic equation with infinite memory in presence of
a time delayed damping and a nonlinear source term. Our results extend the
decay results in previous works to kernels h which do not necessarily converge
exponentially to zero at infinity. Moreover, our problem generalizes the linear
problems to those with a nonlinear source term and to problems with more general
time delayed damping term.

The paper is organized as follows. In Sect. 2, we prove the well-posedness
by using the semigroup arguments under some assumptions on A, B, C, h and F .
Then, we state and prove the stability result of solution by using the energy method
to produce a suitable Lyapunov functional with arbitrary decay on h. Section 4 is
devoted to some concrete examples in the aim to illustrate our abstract result.

2. Well-posedness

In this section, we state some assumptions on A, B, C and h and prove the
well-posedness result by using semigroup theory.

For studying the problem (1.1), we introduce a new variable z as in [15]

z(ρ, t) = ut(t− ρτ), ρ ∈ (0, 1), t > 0.
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Thus, we have
τzt(ρ, t) + zρ(ρ, t) = 0, ρ ∈ (0, 1), t > 0.

Moreover, as in [9], we define

ηt(s) = u(t)− u(t− s), t, s > 0.

Therefore, problem (1.1) takes the form

utt(t) +Au(t)− h0Bu(t) +
∫ +∞

0
h(s)Bηt(s)ds

+Cz(1, t) = F (u(t)), t ∈ (0,+∞),
τzt(ρ, t) + zρ(ρ, t) = 0, ρ ∈ (0, 1), t > 0,
ηtt(s) = ut(t)− ηts(s), t, s > 0,
z(ρ, 0) = f0(−ρτ), ρ ∈ (0, 1),
z(0, t) = ut(t), t > 0,
u(−t) = u0(t), ut(0) = u1, t ≥ 0,
η0(s) = u0(0)− u0(s), s ≥ 0.

(2.1)

We will need the following assumptions:
(A1) There exist positive constants a and b satisfying

b‖u‖2 ≤
∥∥∥B 1

2u
∥∥∥2

≤ a
∥∥∥A 1

2u
∥∥∥2

, ∀u ∈ D(A
1
2 ). (2.2)

(A2) The kernel function h : R+ −→ R+ is of class C1 nonincreasing function
satisfying

h0 =

∫ +∞

0

h(s)ds <
1

a
. (2.3)

(A3) There exists µ ∈ R∗ such that

‖Cu‖2 ≤ |µ|‖u‖2, ∀u ∈ H. (2.4)

(A4) F : D(A
1
2 )→ H is globally Lipschitz continuous, namely

∃γ > 0 such that ‖F (u)− F (v)‖ ≤ γ
∥∥∥A 1

2 (u− v)
∥∥∥ , ∀u, v ∈ H

Let us denote U = (u, ut, η
t, z)T , the problem (2.1) can be rewritten:{

Ut(t) = AU(t) + F(U(t)), ∀t > 0,

U(0) = U0 =
(
u0, u1, η

0, f0(−τ.)
)T
,

(2.5)

where the operator A is defined by

A


φ1

φ2

φ3

φ4

 =


φ2

−(A− h0B)φ1 −
∫ +∞

0
h(s)Bφ3(s)ds− Cφ4(1)

φ2 −
∂φ3

∂s
−1

τ

∂φ4

∂ρ


and

F(φ1, φ2, φ3, φ4)T = (0, F (φ1), 0, 0)T

The domain D(A) is given by

D(A) =


(φ1, φ2, φ3, φ4)T ∈ H, (A− h0B)φ1 +

∫ +∞
0

h(s)Bφ3(s)ds ∈ H,

φ2 ∈ D(A
1
2 ),

∂φ3

∂s
∈ L2

h(R+, D(B
1
2 )),

∂φ4

∂ρ
∈ L2(0, 1;H), φ3(0) = 0, φ4(0) = φ2
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where
H = D(A

1
2 )×H × L2

h(R+, D(B
1
2 ))× L2(0, 1;H).

The sets L2
h(R+, D(B

1
2 )) and L2(0, 1;H) are respectively defined by

L2
h(R+, D(B

1
2 )) =

{
φ : R+ → D(B

1
2 ),

∫ +∞

0

h(s)
∥∥∥B 1

2φ(s)
∥∥∥2

ds < +∞
}
,

equipped with the inner product

〈φ1, φ2〉
L2

h(R+,D(B
1
2 ))

=

∫ +∞

0

h(s)
〈
B

1
2φ1(s), B

1
2φ2(s)

〉
ds.

And

L2(0, 1;H) =

{
φ : (0, 1)→ H,

∫ 1

0

‖φ(ρ)‖2dρ < +∞
}
,

equipped with the inner product

〈φ1, φ2〉L2(0,1;H) =

∫ 1

0

〈φ1(ρ), φ2(ρ)〉 dρ.

The Hilbert space H equipped with the following inner product. For all Φ =
(φ1, φ2, φ3, φ4)T and W = (w1, w2, w3, w4)T in H, we have

〈Φ,W 〉H = 〈φ1, w1〉
D(A

1
2 )
− h0〈φ1, w1〉

D(B
1
2 )

+ 〈φ2, w2〉

+〈φ3, w3〉
L2

h(R+,D(B
1
2 ))

+ τµ〈φ4, w4〉L2(0,1;H).

The well-posedness of problem (2.5) is ensured by the following theorem:

Theorem 2.1. Under the assumptions (A1)-(A4), for an initial datum U0 ∈ H,
the system (2.5) has a unique mild solution U ∈ C(R+,H) satisfies the following
formula,

U(t) = S(t)U0 +

∫ t

0

S(t− s)F(U(s))ds.

Moreover, if U0 ∈ D(A) and F ∈ C1(H), then the solution of (2.5) satisfies (clas-
sical solution)

U ∈ C(R+,D(A)) ∩ C1(R+,H).

Proof. To prove Theorem 2.1, we use the semigroup theory. The problem (2.5)
can be seen as an inhomogeneous evolution problem. It’s clear that F is globally
lipschitz continuous, let show that the operator A generate a linear C0-semigroup
(S(t))t≥0 on H. Indeed,
• First, we prove that the linear operator A is dissipative.

Take Φ = (φ1, φ2, φ3, φ4)T ∈ D(A), then〈
AΦ,Φ

〉
H = 〈φ2, φ1〉

D(A
1
2 )

+

∫ +∞

0

h(s)
〈
φ2 −

∂φ3

∂s
, φ3

〉
D(B

1
2 )
ds

−h0〈φ2, φ1〉
D(B

1
2 )

+ τ |µ|
∫ 1

0

〈−1

τ

∂φ4

∂ρ
, φ4

〉
dρ

−
〈

(A− h0B)φ1 +

∫ +∞

0

h(s)Bφ3(s)ds+ Cφ4(1), φ2

〉
.

Using the definition of A
1
2 and B

1
2 and the fact that H is a real Hilbert space, we

conclude
〈A− h0Bφ1, φ2〉 = 〈A 1

2φ2, A
1
2φ1〉 − h0〈B

1
2φ2, B

1
2φ1〉 (2.6)
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using the Cauchy-Schwarz and Young’s inequalities and by (2.4), we have

− 〈Cφ4(1), φ2〉 ≤
|µ|
2

(
‖φ4(1)‖2 + ‖φ2‖2

)
. (2.7)〈∫ +∞

0

h(s)Bφ3(s)ds, φ2

〉
=

∫ +∞

0

h(s)〈φ2, φ3〉
D(B

1
2 )
ds.

Integrating by parts and using the definition of D(A) (φ3(0) = 0), we obtain∫ +∞

0

h(s)
〈
− ∂φ3

∂s
, φ3

〉
D(B

1
2 )
ds ≤ 1

2

∫ +∞

0

h′(s)‖B 1
2φ3(s)‖2ds. (2.8)

Also using the fact that φ4(0) = φ2, we obtain

τ |µ|
∫ 1

0

〈−1

τ

∂φ4

∂ρ
, φ4

〉
dρ =

|µ|
2

(
‖φ4(0)‖2 − ‖φ4(1)‖2

)
=
|µ|
2

(
‖φ2‖2 − ‖φ4(1)‖2

)
.

(2.9)
Consequently, inserting (2.6), (2.7), (2.8) and (2.9) in (2.6) and using the fact that
h is nonincreasing, we find

〈AΦ,Φ〉H ≤
1

2

∫ +∞

0

h′(s)
∥∥∥B 1

2φ3(s)
∥∥∥2

ds+ |µ|‖ut‖2 ≤ |µ|‖Φ‖2, (2.10)

which means that the operator A− |µ|I is dissipative.
• Let us now prove that λI − A is surjective. Indeed, let (f1, f2, f3, f4)T ∈ H,

we show that there exists Φ = (φ1, φ2, φ3, φ4)T ∈ D(A) satisfying

(λI −A)


φ1

φ2

φ3

φ4

 =


f1

f2

f3

f4

 ,

which is equivalent to

λφ1 − φ2 = f1

λφ2 + (A− h0B)φ1 +
∫ +∞

0
h(s)Bφ3(s)ds+ Cφ4(1) = f2

λφ3 − φ2 +
∂φ3

∂s
= f3

λφ4 +
1

τ

∂φ4

∂ρ
= f4.

(2.11)

Suppose that we have found φ1 with the appropriate regularity. Then, we have

φ2 = λφ1 − f1. (2.12)

We note that the third equation in (2.11) with φ3(0) = 0 has a unique solution

φ3(s) = e−λs
∫ s

0

eλy (f3(y)− f1 + λφ1) dy. (2.13)

On the other hand, the fourth equation in (2.11) with φ4(0) = φ2 = λφ1 − f1 has
a unique solution

φ4(ρ) =

(
λφ1 − f1 + τ

∫ ρ

0

f4(y)eλτydy

)
e−λτρ, ρ ∈ (0, 1). (2.14)

In particular,

φ4(1) =

(
λφ1 − f1 + τ

∫ 1

0

f4(y)eλτydy

)
e−λτ .

It remains only to determine φ1.
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Next, plugging (2.12) and (2.13) into the second equation in (2.11), we get(
A− αB + λe−λτC + λ2I

)
φ1 = f̃ , (2.15)

where

α = h0 − λ
∫ ∞

0

h(s)e−λs
(∫ s

0

eλydy

)
ds =

∫ ∞
0

h(s)e−λsds,

and

f̃ = f2 + λf1 + e−λτC

(
f1 − τ

∫ 1

0

f4(y)eτydy

)
−
∫ ∞

0

e−λsh(s)

∫ s

0

e−λyB (f3(y)− f1) dyds.

We have just to prove that (2.15) has a solution φ1 ∈ D(A
1
2 ) and replace in (2.12),

(2.13) and (2.14) to obtain Φ ∈ D(A) satisfying (2.11).
We have α < h0, by (2.3) and (2.2), we deduce that A − αB is a positive definite

operator. Then, we take the duality brackets 〈., .〉
D(A

1
2 )′×D(A

1
2 )

with w ∈ D(A
1
2 ) :〈(

A− αB + λe−λτC + λ2I
)
φ1, w

〉
D(A

1
2 )′×D(A

1
2 )

=
〈
f̃ , w

〉
D(A

1
2 )′×D(A

1
2 )
. (2.16)

Consequently, the left-hand side of (2.16) is bilinear, continuous and coercive on

D(A
1
2 ). Since, applying the Lax-Milgram theorem and classical regularity argu-

ments, we conclude that (2.11) has a unique solution φ1 ∈ D(A
1
2 ) satisfying. Using

(2.13), (
(A− h0B)φ1 +

∫ +∞

0

h(s)Bφ3(s)ds

)
∈ H.

In conclusion, we have found Φ = (φ1, φ2, φ3, φ4)T ∈ D(A), which verifies (2.11),
and thus λI − A is surjective for all λ > 0 and the same holds for the operator
λI − (A− |µ|I).

Then, the Lumer-Phillips theorem implies that |µ|I −A is a maximal monotone
operator, A−|µ|I is an infinitesimal generator of a strongly continuous semigroup of
contraction in H. Hence, the operator A generates a strongly continuous semigroup
(S(t))t≥0 in H. Consequently, by using Theorem 1.2, Ch. 6 of [22], the problem
(2.5) has a unique solution U ∈ C([0,+∞),H). �

3. Stability result

The stability result of the solution of (2.1) holds under the following additional
assumptions:

(A5) There exist a positive constant d satisfying∥∥∥A 1
2u
∥∥∥2

≤ d
∥∥∥B 1

2u
∥∥∥2

, ∀u ∈ D(A
1
2 ). (3.1)

(A6) Moreover, we assume that F (0) = 0 and there exists a continuous and

differentiable mapping ψ : D(A
1
2 )→ R satisfying

Dψ = F and 〈F (u), u〉 ≥ 2ψ(u), ∀u ∈ D(A
1
2 ). (3.2)
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(A7) The function h satisfies (A2) and there exists a positive function ξ ∈
C(R+,R∗+) satisfying lims→+∞ ξ(s) exists such that h(t− s) ≥ ξ(t)

∫ +∞

t

h(π − s)dπ, ∀t ∈ R+, ∀s ∈ [0, t],

h′(s) < 0, ∀s ∈ R+.
(3.3)

The first inequality in (3.3), introduced in [25] and [23], implies that h converges
to zero at least exponentially but it does not involve the derivative of h. This class
contains the polynomial (or power) type (h(t) = (1 + t)−a, a > 1) functions and
the exponential type (h(t) = e−at, a > 0) functions.

Let establish some several Lemmas needed of our main result. We define the
modified energy functional E associated to problem (2.1) by

E(t) =
1

2

(∥∥∥A 1
2u
∥∥∥2

− h0

∥∥∥B 1
2u
∥∥∥2

+ ‖ut‖2 +

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

−2ψ(u) + τ |µ|
∫ 1

0

‖z(ρ, t)‖2dρ
)
. (3.4)

Lemma 3.1. Assume that (A1)-(A4) hold and let U0 ∈ D(A). Then, the energy
functional defined by (3.4) satisfies

E′(t) ≤ 1

2

∫ +∞

0

h′(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds+ |µ|‖ut‖2. (3.5)

Proof. Multiplying the first equation of (2.1) by ut. Using (A6) and repeating
exactly the same arguments to obtain (2.10). �

Remark. Note that, from (3.5), the energy of solutions to problem (2.1) is not
decreasing in general. Indeed, the second term in the right-hand side of (3.5),
coming from the delay term, is nonnegative.

Now, as in [20], for n ∈ N∗, let consider the set

An = {s ∈ R+, h(s) + nh′(s) ≤ 0},

and put hn =
∫
Ac

n
h(s)ds. We have hn > 0, otherwise, Acn = ∅. Furthermore, by

the second inequality in (3.3), we have

lim
n→+∞

Acn = ∩n∈N∗Acn = ∅, and then lim
n→+∞

hn = 0.

In order to state our results, we need the following four lemmas.

Lemma 3.2. Let U be solution of (2.1). Then the functional

I1(t) = −
〈
ut(t),

∫ +∞

0

h(s)ηt(s)ds

〉
, (3.6)
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satisfies, for ε1, ε2 > 0,

I ′1(t) ≤ −(h0 − ε1)‖ut‖2 +

(
ε2 +

√
dhn
2

)∥∥∥A 1
2u
∥∥∥2

− h2
0

2

∥∥∥B 1
2u
∣∣∣2

+

(
2hn −

h0

2
+

√
dhn
2

)∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

+
h0

2

∫ +∞

0

h(s)
∥∥∥B 1

2u(t− s)
∥∥∥2

ds

−
(

2nh0 +
dnh0

4ε2
+
h(0)

4bε1

)∫ +∞

0

h′(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

+

〈
Cz(1, t)− F (u),

∫ +∞

0

h(s)ηt(s)ds

〉
, (3.7)

Proof. Differentiating (3.6) with respect to t and using the third equation of 2.1,
we find

I ′1(t) = −
〈
utt(t),

∫ +∞

0

h(s)ηt(s)ds

〉
+

〈
ut(t),

∫ +∞

0

h(s)ηts(s)ds

〉
− h0‖ut‖2.

Integrating by parts with respect to s the second term in the right hand side of the
previous equality and using the fact that lims→+∞ h(s) = 0, ηt(0) = 0, we obtain

I ′1(t) = −
〈
utt(t),

∫ +∞

0

h(s)ηt(s)ds

〉
−
〈
ut(t),

∫ +∞

0

h′(s)ηt(s)ds

〉
− h0‖ut‖2.

On the other hand, by the first equation of (2.1), we have〈
utt(t),

∫ +∞

0

h(s)ηt(s)ds

〉
+

〈
Au(t),

∫ +∞

0

h(s)ηt(s)ds

〉
− h0

〈
Bu(t),

∫ +∞

0

h(s)ηt(s)ds

〉
+

〈∫ +∞

0

h(s)Bηt(s)ds,

∫ +∞

0

h(s)ηt(s)ds

〉
+

〈
Cz(1, t)− F (u),

∫ +∞

0

h(s)ηt(s)ds

〉
= 0,

using the definitions of A
1
2 and B

1
2 , we get

I ′1(t) = −h0‖ut‖2 +

〈
Cz(1, t)− F (u),

∫ +∞

0

h(s)ηt(s)ds

〉
−
〈
ut(t),

∫ +∞

0

h′(s)ηt(s)ds

〉
+

〈
A

1
2u(t),

∫ +∞

0

h(s)A
1
2 ηt(s)ds

〉
∥∥∥∥∫ +∞

0

h(s)B
1
2 ηt(s)ds

∥∥∥∥2

− h0

〈
B

1
2u(t),

∫ +∞

0

h(s)B
1
2 ηt(s)ds

〉
.(3.8)

Let estimate the last three terms in the right hand by using Cauchy-Schwarz and
Young’s inequalities and the definition of An. Then, using (2.2), (3.1) and (2.3),
we get

−
〈
ut(t),

∫ +∞

0

h′(s)ηt(s)ds

〉
≤ ε1‖ut‖2 −

h(0)

4bε1

∫ +∞

0

h′(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

〉
,
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A

1
2u(t),

∫ +∞

0

h(s)A
1
2 ηt(s)ds

〉
=

〈
A

1
2u(t),

∫
An

h(s)A
1
2 ηt(s)ds

〉
+

〈
A

1
2u(t),

∫
Ac

n

h(s)A
1
2 ηt(s)ds

〉
.

≤ ε2

∥∥∥A 1
2u
∥∥∥2

+
dh0

4ε2

∫
An

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds+

√
dhn
2

∥∥∥A 1
2u
∥∥∥2

+

√
dhn
2

∫
Ac

n

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

≤ ε2

∥∥∥A 1
2u
∥∥∥2

− dnh0

4ε2

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds+

√
dhn
2

∥∥∥A 1
2u
∥∥∥2

+

√
dhn
2

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds,

∥∥∥∥∫ +∞

0

h(s)B
1
2 ηt(s)ds

∥∥∥∥2

=

∥∥∥∥∫
An

h(s)B
1
2 ηt(s)ds+

∫
Ac

n

h(s)B
1
2 ηt(s)ds

∥∥∥∥2

≤ 2

∥∥∥∥ ∫
An

h(s)B
1
2 ηt(s)ds

∥∥∥∥2

+ 2

∥∥∥∥∫
Ac

n

h(s)B
1
2 ηt(s)ds

∥∥∥∥2

≤ 2h0

∫
An

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds+ 2hn

∫
Ac

n

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

≤ −2nh0

∫ +∞

0

h′(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds+ 2hn

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds.

And for the last one, we have

−h0

〈
B

1
2u(t),

∫ +∞

0

h(s)B
1
2 ηt(s)ds

〉
= −h2

0

∥∥∥B 1
2u
∥∥∥2

+ h0

〈
B

1
2u(t),

∫ +∞

0

h(s)B
1
2u(t− s)ds

〉
= −h

2
0

2

∥∥∥B 1
2u
∥∥∥2

+
h0

2

∫ +∞

0

h(s)
∥∥∥B 1

2u(t− s)
∥∥∥2

ds

−h0

2

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds. (3.9)

Inserting these four inequalities in (3.8), we get (3.7). �

Lemma 3.3. Let U be solution of (2.1). Then the functional

I2(t) = 〈ut(t), u(t)〉, (3.10)

satisfies,

I ′2(t) = ‖ut‖2 −
∥∥∥A 1

2u
∥∥∥2

+
h0

2

∥∥∥B 1
2u
∥∥∥2

+
1

2

∫ +∞

0

h(s)
∥∥∥B 1

2u(t− s)
∥∥∥2

ds

−1

2

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds−
〈
Cz(1, t) + F (u), u

〉
. (3.11)
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Proof. Differentiating (3.10) with respect to t, we find

I ′2(t) = ‖ut‖2 + 〈utt(t), u(t)〉.

On the other hand, multiplying the first equation of (2.1) by u(t), we have

〈utt(t), u(t)〉+ 〈(A− h0B)u(t), u(t)〉+

〈∫ +∞

0

h(s)Bηt(s)ds, u(t)

〉
+〈Cz(1, t), u(t)〉 = 0,

By the definitions of A
1
2 and B

1
2 , we have

〈utt(t), u(t)〉+
∥∥∥A 1

2u
∥∥∥2

− h0

∥∥∥B 1
2u
∥∥∥2

+

〈∫ +∞

0

h(s)Bηt(s)ds, u(t)

〉
+〈Cz(1, t), u(t)〉 = 0.

Consequently,

I ′2(t) = ‖ut‖2−
∥∥∥A 1

2u
∥∥∥2

+h0

∥∥∥B 1
2u
∥∥∥2

−
〈∫ +∞

0

h(s)Bηt(s)ds, u(t)

〉
−〈Cz(1, t), u(t)〉,

By using the inequality (3.9), we get (3.11). �

Similarly to [15], we introduce the following functional.

Lemma 3.4. Let U be solution of (2.1). Then the functional

I3(t) = τe2τ

∫ 1

0

e−2τρ‖z(ρ, t)‖2ds, (3.12)

satisfies,

I ′3(t) ≤ −2τ

∫ 1

0

‖z(ρ, t)‖2ds+ e2τ‖ut‖2 − ‖z(1, t)‖2. (3.13)

Proof. By using the second equation of (2.1), we get

I ′3(t) = 2τe2τ

∫ 1

0

e−2τρ〈zt(ρ, t), z(ρ, t)〉dρ

= −2e2τ

∫ 1

0

e−2τρ〈zρ(ρ, t), z(ρ, t)〉dρ

= −2e2τ

∫ 1

0

e−2τρ ∂

∂ρ
‖z(ρ, t)‖2dρ.

Then, by integrating by parts and z(0, t) = ut(t), we get

I ′3(t) = −2τe2τ

∫ 1

0

e−2τρ‖z(ρ, t)‖2ds+ e2τ‖ut‖2 − ‖z(1, t)‖2,

which is (3.13) by using the fact that e−2τρ ≥ e−2τ , for any ρ ∈]0, 1[. �

Now, we consider two functionals J1 and J2 and we give their derivatives in the
following lemma.

Lemma 3.5. Let

J1(t) =

∫ t

0

(∫ +∞

t

h(π − s)dπ
) ∥∥∥B 1

2 ηt(s)
∥∥∥2

ds, ∀t ∈ R+, (3.14)
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and

J2(t) =

∫ t

0

(∫ +∞

t

h(π − s)dπ
) ∥∥∥A 1

2 ηt(s)
∥∥∥2

ds, ∀t ∈ R+. (3.15)

Then, for any λ1 ∈]0, 1[,

J ′1(t) ≤ h0

∥∥∥B 1
2u
∥∥∥2

− (1− λ1)ξ(t)J1(t)− λ1

∫ t

0

h(s)
∥∥∥B 1

2u(t− s)
∥∥∥2

ds

+λ1

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds, ∀t ∈ R+, (3.16)

and

J ′2(t) ≤ h0

∥∥∥A 1
2u
∥∥∥2

− (1− λ1)ξ(t)J2(t)− λ1

a

∫ t

0

h(s)
∥∥∥B 1

2u(t− s)
∥∥∥2

ds

+dλ1

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds, ∀t ∈ R+. (3.17)

Proof. The functional J1 is well-defined. Indeed, by using the fact that η ∈
L2
h(R+, D(B

1
2 )) and (3.3), we have

J1(t) ≤ 1

ξ(t)

∫ t

0

h(t− s)
∥∥∥B 1

2u(s)
∥∥∥2

ds ≤ 1

ξ(t)

∫ t

0

h(s)
∥∥∥B 1

2u(t− s)
∥∥∥2

ds < +∞.

By (3.1), we conclude that J2 also is well defined.
Then, differentiating J1 with respect to t and using the definition of u0 and (3.3),

we obtain

J ′1(t) =

(∫ +∞

t

h(π − s)dπ
)∥∥∥B 1

2u(t)
∥∥∥2

−
∫ t

0

h(t− s)
∥∥∥B 1

2u(s)
∥∥∥2

ds

= h0

∥∥∥B 1
2u
∥∥∥2

− (1− λ1)

∫ t

0

h(t− s)
∥∥∥B 1

2u(s)
∥∥∥2

ds

−λ1

∫ t

−∞
h(t− s)

∥∥∥B 1
2u(s)

∥∥∥2

ds+ λ1

∫ 0

−∞
h(t− s)

∥∥∥B 1
2u(s)

∥∥∥2

ds

≤ h0

∥∥∥B 1
2u
∥∥∥2

− (1− λ1)ξ(t)J1(t)− λ1

∫ +∞

0

h(s)
∥∥∥B 1

2u(t− s)
∥∥∥2

ds

+aλ1

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds,

which is exactly (3.16). A similar argument yields the relation (3.17). �

In this case, the Lyapunov functional L we will work with is

L(t) = E(t) + ε
(
N1I1(t) +N2I2(t) + I3(t)

)
+M1J1(t) + aM1J2(t), (3.18)

where ε,N1, N2,M1 > 0 are positive constants to be chosen later.

Now we are in position to state and prove the decay result of solution of problem
(2.1).

Theorem 3.6. Assume that (A1)-(A7) hold. For any initial datum U0 ∈ H.
Assume that h satisfies ∫ +∞

0

h(s)ds <
γ2

b
, (3.19)
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and there exists a positive constant δ0 independent of µ such that, if

|µ| < δ0, (3.20)

then, for any U0 ∈ H, there exist positive constants δ1 and δ2 such that

E(t) ≤ δ2e−δ1t
(

1 +

∫ t

0

eδ1s
∫ +∞

s

h(π)
∥∥∥B 1

2u0(π − s)
∥∥∥2

dπds

)
, ∀t ∈ R+, (3.21)

if limt→+∞ ξ(t) > 0, and

E(t) ≤ δ2e−δ1ξ̂(t)
(

1 +

∫ t

0

eδ1ξ̂(s)
∫ +∞

s

h(π)
∥∥∥B 1

2u0(π − s)
∥∥∥2

dπds

)
, ∀t ∈ R+,

(3.22)
if limt→+∞ ξ(t) = 0, where

ξ̂(s) =

∫ s

0

ξ(π)dπ, ∀t ∈ R+. (3.23)

Proof. In order to proof the decay estimates, we start by the derivative of the
function L. On the other hand, by using (A6) and (2.2), we have

−
〈
F (u),

∫ +∞

0

h(s)ηt(s)ds

〉
≤ 1

b
‖F (u)‖2 +

b

4

∥∥∥∥∫ +∞

0

h(s)ηt(s)ds

∥∥∥∥2

≤ γ2

b

∥∥∥A 1
2u
∥∥∥2

+
h0

4

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds,

Combining (3.5), (3.7), (3.11), (3.13), (3.16) and (3.17), we obtain

L′(t) ≤ −ε
[
(C1 −

|µ|
ε

)‖ut‖2 + C2

∥∥∥A 1
2u
∥∥∥2

+ C3h0

∥∥∥B 1
2u
∥∥∥2

− 2τ

∫ 1

0

‖z(ρ, t)‖2dρ

+

∫ +∞

0

h(s)

(
C4

∥∥∥B 1
2 ηt(s)

∥∥∥2

+ C5

∥∥∥B 1
2u(t− s)

∥∥∥2
)
ds− 2N2ψ(u)

]
+

√
dhn
2

εN1

∥∥∥A 1
2u
∥∥∥2

+

(
2hn +

√
dhn
2

)
εN1

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

+

(
1

2
− εC6

)∫ +∞

0

h′(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds− C7ξ(t)(J1(t) + J2(t))

+C8

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds− ε‖z(1, t)‖2

+ε

〈
Cz(1, t), N1

∫ +∞

0

h(s)ηt(s)ds−N2u

〉
, (3.24)

where

C1 = (h0 − ε1)N1 −N2 − e2τ , C2 = N2 − (ε2 +
γ2

b
)N1 −

ah0

ε
M1,

C3 =
h0

2
N1 −

N2

2
− M1

ε
, C4 =

h0

4
N1 +

N2

2
,

C5 =
2λ1

ε
M1 −

h0

2
N1 −

N2

2
, C6 =

(
2nh0 +

dnh0

4ε2
+
h(0)

4bε1

)
N1,

C7 = (1− λ1)M1 min{1, a}, C8 = M1λ1(1 + ad).

(3.25)
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At this point, we choose the different constants to obtain some results. First, we
select N2 = (1 + ah0)e2τ and we choose M1, N1 such that

εN2

2(1 + ah0)
< M1 <

e2τ

2ε
.

max

{
b

bh0 − 2γ2

(
2(1 + ah0)

M1

ε
−N2

)
,

1

h0
(N2 + e2τ )

}
< N1 <

1

h0

(
N2 +

2M1

ε

)
.

Note that M1 exists as a result of the selection of N2 for certain value of ε to be
choose later and the choice of M1 and N2 guarantees the existence of N1. Now, let
pick ε1, ε2 and λ1 such that

0 < ε1 < h0 −
N2 + e2τ

N1
,

ε2 =
h0

2
− γ2

b
+

1

2N1

(
N2 − 2(1 + ah0)

M1

ε

)
,

and
ε

4M1
(N2 + h0N1) ≤ λ1 < 1,

ε2 and λ1 exist by the previous selection of N1 and N2. Consequently, it result that
C1 > 0, C2 = −C3, C3 < 0 and C5 ≥ 0. Moreover, it’s clear that C4 > 0, so, we
have

−ε
[
C1‖ut‖2 + C2

(∥∥∥A 1
2u
∥∥∥2

− h0

∥∥∥B 1
2u
∥∥∥2
)
− 2N2ψ(u)

+

∫ +∞

0

h(s)

(
C4

∥∥∥B 1
2 ηt(s)

∥∥∥2

+ C5

∥∥∥B 1
2u(t− s)

∥∥∥2
)
ds

]
≤ −εC9

(
‖ut‖2 +

∥∥∥A 1
2u
∥∥∥2

− h0

∥∥∥B 1
2u
∥∥∥2

− 2ψ(u) +

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

)
where

C9 =
1

N2
min

{
C1, C2, C4

}
.

Observe that C9 is positive and independent on µ. Next, using Cauchy-Schwarz’s
and Young’s inequalities for estimate the last term in the right hand in (3.24).
Then, by (2.2) and (2.4), we get

ε

〈
Cz(1, t), N1

∫ +∞

0

h(s)ηt(s)ds−N2u

〉
≤ ε‖z(1, t)‖2 + ε|µ|C10

(∥∥∥A 1
2u
∥∥∥2

+

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

)
,

where

C10 =
1

2b
max{aN2

2 , h0N
2
1 }.
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Inserting the above inequality and (3.26) in (3.24), we obtain

L′(t) ≤ −εC11E(t) +

(
4hn +

√
dhn

2

)
εN1E(t)

+

(
1

2
− εC6

)∫ +∞

0

h′(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds− C7ξ(t)(J1(t) + J2(t))

+C8

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds, (3.26)

where

C11 = 2 min

{
C9 −

|µ|
ε
,

2

|µ|
, C9 − ε|µ|C10

}
.

Finally, we assume that |µ| satisfies (3.20) under the following choice of δ0

δ0 = min

{
C9

C6
,
C9

√
2√

C10

}
. (3.27)

Then, we can choose n big enough and we fix ε such that

|µ|
2C9

< ε ≤ 1

2C6
<

1

M
, (3.28)

where

M = N1 max

{
1,
h0

b

}
+N2 max

{
1,
a

b

}
+

2e2τ

|µ|
.

which imply that E is equivalent to E + ε(N1I1 + N2I2 + I3). Indeed, by using
Cauchy-Schwarz’s and Young’s inequalities, we have

|I1(t)| ≤ 1

2

(
‖ut‖2 +

h0

b

∫ +∞

0

h(s)
∥∥∥B 1

2 ηt(s)
∥∥∥2

ds

)
(3.29)

≤ max

{
1,
h0

b

}
E(t) (3.30)

and

|I2(t)| ≤ 1

2

(
‖ut‖2 +

a

b

∥∥∥A 1
2u
∥∥∥2
)
≤ max

{
1,
a

b

}
E(t). (3.31)

From (3.12), it follows

|I3(t)| = τe2τ

∫ 1

0

e−2τρ‖z(ρ, t)‖2ds ≤ τe2τ

∫ 1

0

e−2τρ‖z(ρ, t)‖2ds ≤ 2e2τ

|µ|
E(t)

(3.32)
Combining (3.4), (3.29), (3.31) and (3.32) and by using (3.28), we have

E ∼ E + ε(N1I1 +N2I2 + I3).

Moreover, the third term in the right hand of (3.26) is non-positive. Note that
δ0 is a positive constant independent of µ. Under the condition (3.20), we conclude
that C11 is a positive constant and by using the fact that limn→+∞ hn = 0, we get

C12 = εC11 +

(
4hn +

√
dhn

2

)
εN1 > 0.
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Consequently, we obtain, for all t ∈ R+,

L′(t) ≤ −C12E(t)− C7ξ(t)

(
J1(t) + J2(t)

)
+C8

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds. (3.33)

Let distinguish two cases corresponding to the limit of ξ at infinity.
I If limt→+∞ ξ(t) > 0, there exist t0 ≥ 0 and ξ0 > 0 such that ξ(t) ≥ ξ0, for all
t ≥ t0. Therefore, using (3.18), we find

L′(t) ≤ −δ1L(t) + C8

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds, ∀t ∈ R+, (3.34)

where

δ1 = min

{
C12

1 + εM
,
C7ξ0
M1

,
C7ξ0
aM1

}
.

Then, integrating the differential inequality (3.34) over [t0, t], we obtain

L(t) ≤ e−δ1t
(
eδ1t0L(t0) + C7

∫ t

0

eδ1s
∫ +∞

s

h(π)
∥∥∥B 1

2u0(π − s)
∥∥∥2

dπds

)
, ∀t ∈ R+.

So, using (3.18) and (3.34), we get, for all t ≥ t0,

E(t) ≤ 1

1− εM
L(t)

≤ 1

1− εM
max

{
C7, e

δ1t0L(t0)

}
×

×
(

1 +

∫ t

0

eδ1s
∫ +∞

s

h(π)
∥∥∥B 1

2u0(π − s)
∥∥∥2

dπds

)
. (3.35)

For t ∈ [0, t0], we have

E(t) ≤ 1

1− εM
L(t)eδ1te−δ1t ≤ 1

1− εM
max
s∈[0,t0]

L(s)eδ1t0e−δ1t. (3.36)

Inequalities (3.35) and (3.36) gives (3.21) with

δ2 =
1

1− εM

{
C7, e

δ1t0 max
s∈[0,t0]

L(s)

}
.

I If limt→+∞ ξ(t) = 0, there exist t0 ≥ 0 such that ξ(t) ≤ C12, for all t ≥ t0.
Therefore, using (3.18), we obtain, for

δ1 = min

{
1

1 + εM
,
C7

M1
,
C7

aM1

}
,

L′(t) ≤ −δ1ξ(t)L(t) + C8

∫ +∞

t

h(s)
∥∥∥B 1

2u0(s− t)
∥∥∥2

ds, ∀t ∈ R+, (3.37)

By integrating the above differential inequality over [t0, t], we get, for all t ∈ R+,

L(t) ≤ e−δ1ξ̂(t)
(
eδ1ξ̂(t0)L(t0) + C7

∫ t

0

eδ1ξ̂(s)
∫ +∞

s

h(π)
∥∥∥B 1

2u0(π − s)
∥∥∥2

dπds

)
.
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Then, using (3.18) and (3.37), we get, for all t ≥ t0,

E(t) ≤ 1

1− εM
max

{
C7, e

δ1ξ̂(t0)L(t0)

}
×

×
(

1 +

∫ t

0

eδ1s
∫ +∞

s

h(π)
∥∥∥B 1

2u0(π − s)
∥∥∥2

dπds

)
. (3.38)

For t ∈ [0, t0], we have

E(t) ≤ 1

1− εM
L(t)eδ1ξ̂(t)e−δ1ξ̂(t) ≤ 1

1− εM
max
s∈[0,t0]

(
L(s)eδ1

ˆξ(s)

)
e−δ1ξ̂(t). (3.39)

Inequalities (3.38) and (3.39) gives (3.21) with

δ2 =
1

1− εM

{
C7, max

s∈[0,t0]

(
L(s)eδ1

ˆξ(s)

)}
.

Thus the proof of Theorem 3.6 is completed. �

4. Applications

We can seek our results in some problems. In this section, we consider only three
illustrative problems. In the whole section, Ω is a bounded and regular domain of
Rn, with n ≥ 1.

1-: Abstract linear problem utt(t) +Au(t)−
∫ +∞

0
h(s)Au(t− s)ds+ Cut(t− τ) = 0, t ∈ (0,+∞),

ut(t− τ) = f0(t− τ), t ∈ (0, τ),
u(−t) = u0(t), ut(0) = u1, t ≥ 0,

(4.1)
where the operators A and C are a self-adjoint linear positive operators satisfy the
assumptions (A1) and (A3), respectively. The memory kernel h satisfying (A2) and
(A7).

2-: Let us consider the semilinear problem
utt(t) +Au(t) +

∫ +∞
0

h(s)∆u(t− s)ds+ b(x)ut(t− τ)
= F (u(t)), t ∈ (0,+∞),

u(x, t) = 0, x ∈ ∂Ω,
u(x,−t) = u0(x, t), ut(x, 0) = u1(x), x ∈ Ω, t ≥ 0,
ut(t− τ) = f0(t− τ) t ∈ (0, τ),

(4.2)

with initial data (u0, u1, f0) ∈ [H2(Ω) ∈ ∩H1
0 (Ω)]×H1

0 (Ω)×H1(0, τ ;L2(Ω)). The
constant β > 0 satisfies a suitable restriction to be specified below. The memory
kernel h satisfying (A2) and (A7) and b ∈ L∞(Ω) is a function such that

b(x) ≥ 0 a. e. in Ω.

The source term F be globally Lipschitz continuous functional such that F (0) = 0
and satisfies (3.2).Our results hold with H = L2(Ω) and the operators A, B are
given by

A : D(A) −→ H : u 7→ −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
, B : D(B) −→ H : u 7→ −∆u,
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where D(A) = D(B)) = H2(Ω) ∩H1
0 (Ω). aij ∈ C1(Ω), is symmetric and

∃a0 > 0,

n∑
i,j=1

aij(x)ζjζi ≥ a0|ζ|2, x ∈ Ω, ζ = (ζ1, · · · , ζn) ∈ Rn.

The operators A and B are a linear, self-adjoint and positive operators in H such

that D(A
1
2 ) = H1

0 (Ω) with
∥∥∥A 1

2u
∥∥∥ = (a(u, u))1/2 and

∥∥∥B 1
2u
∥∥∥ = ‖∇u‖2, where

a(u, u) =

n∑
i,j=1

∫
Ω

aij(x)
∂u

∂xi

∂u

∂xj
dx.

Moreover, by using Poincare’s inequality and the Sobolev’s embedding theorem, we
get (A1) and (A5). Then, the assumption (A3) holds with Cu(x, t) = b(x)u(x, t).

3-: Coupled systems

wtt(t)− α∆w(t) +

∫ +∞

0

h(s)div(a1(x)∇w(t− s))ds

+µwt(t− τ) + dv(t) = f1(w(t)), t ∈ (0,+∞),

vtt(t)− β∆v(t) +

∫ +∞

0

h(s)div(a2(x)∇v(t− s))ds

+µvt(t− τ) + dw(t) = f2(v(t)), t ∈ (0,+∞),
w(x, t) = v(x, t) = 0, x ∈ ∂Ω,
w(x,−t) = w0(x, t), v(x,−t) = v0(x, t), x ∈ Ω, t ≥ 0,
wt(x, 0) = w1(x), vt(x, 0) = v1(x), x ∈ Ω, t ≥ 0,
wt(t− τ) = f0(t− τ), vt(t− τ) = f0(t− τ), t ∈ (0, τ),

(4.3)

where α and β are positive constants, a1, a2 ∈ C1(Ω), a1(x), a2(x) > 0 with
The memory kernel h satisfying (A2) and (A7). The above system is equivalent to
(1.1) where u = (w, v), f0 = (l0,m0) and H = (L2(Ω))2 with

〈(w1, v1), (w2, v2)〉 =

∫
Ω

w1w2 + v1v2dx.

We take D(A) = D(B)) = (H2(Ω) ∩H1
0 (Ω))2 and the operators A, B are given

by

Au = −(α∆w, β∆v) + d(v, w),

Bu = −(div(a1(x)∇w), div(a2(x)∇w)).

The function F2(u(t)) = (f1(w(t)), f2(v(t))) satisfies (A6).
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