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COMMON FIXED POINTS OF GERAGHTY-SUZUKI TYPE

CONTRACTION MAPS IN b-METRIC SPACES

G. V. R. BABU AND D. RATNA BABU

DEPARTMENT OF MATHEMATICS, ANDHRA UNIVERSITY,
VISAKHAPATNAM-530 003, INDIA

Abstract. In this paper, we prove the existence and uniqueness of common
fixed points for two pairs of selfmaps satisfying a Geraghty-Suzuki type con-

traction condition in which one pair is compatible, b-continous and the another
one is weakly compatible in complete b-metric spaces. Further, we prove the

same with different hypotheses on two pairs of selfmaps which satisfy b-(E.A)-

property. We draw some corollaries from our results and provide examples in
support of our results.

1. Introduction

The development of fixed point theory is based on the generalization of con-
traction conditions in one direction or/and generalization of ambient spaces of the
operator under consideration on the other. Banach contraction principle plays an
important role in solving nonlinear equations, and it is one of the most useful
results in fixed point theory. In the direction of generalization of contraction con-
ditions, in 1973, Geraghty [17] proved a fixed point theorem, generalizing Banach
contraction principle. In 1975, Dass and Gupta [14] extended contraction map to
contraction map with rational expression and proved the existence of fixed points
in complete metric spaces. In 2008, Suzuki [30] proved two fixed point theorems,
one of which is a new type of generalization of the Banach contraction principle
and does characterize the metric completeness.

The main idea of b-metric was initiated from the works of Bourbaki [10] and
Bakhtin [6]. The concept of b-metric space or metric type space was introduced by
Czerwik [12] as a generalization of metric space. Afterwards, many authors studied
fixed point theorems for single-valued and multi-valued mappings in b-metric spaces,
we refer [2, 3, 8, 9, 13, 22, 28, 29].

In 2002, Aamari and Moutawakil [1] introduced the notion of property (E.A).
Different authors applied this concept to prove the existence of common fixed points,
we refer [4, 5, 25, 26, 27].
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We denote N, the set of all natural numbers and R+ = [0,∞).

Definition 1.1. [12] Let X be a non-empty set. A function d : X ×X → R+ is
said to be a b-metric if the following conditions are satisfied: for any x, y, z ∈ X

(b1) 0 ≤ d(x, y) and d(x, y) = 0 if and only if x = y,
(b2) d(x, y) = d(y, x),
(b3) there exists s ≥ 1 such that d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space with coefficient s.

Every metric space is a b-metric space with s = 1. In general, every b-metric
space is not a metric space.

Definition 1.2. [9] Let (X, d) be a b-metric space and {xn} a sequence in X.

(i) A sequence {xn} in X is called b-convergent if there exists x ∈ X such that
d(xn, x)→ 0 as n→∞. In this case, we write lim

n→∞
xn = x.

(ii) A sequence {xn} in X is called b-Cauchy if d(xn, xm)→ 0 as n,m→∞.
(iii) A b-metric space (X, d) is said to be a complete b-metric space if every

b-Cauchy sequence in X is b-convergent.
(iv) A set B ⊂ X is said to be b-closed if for any sequence {xn} in B such that

{xn} is b-convergent to z ∈ X then z ∈ B.

In general, a b-metric is not necessarily continuous.

Example 1.1. [19] Let X = N ∪ {∞}. We define a mapping d : X ×X → R+ as
follows:

d(m,n) =


0 if m = n,

| 1m −
1
n | if one of m,n is even and the other is even or ∞,

5 if one of m,n is odd and the other is odd or ∞,
2 otherwise.

Then (X, d) is a b-metric space with coefficient s = 5
2 .

Definition 1.3. [9] Let (X, dX) and (Y, dY ) be two b-metric spaces. A function
f : X → Y is a b-continuous at a point x ∈ X, if it is b-sequentially continuous at
x. i.e., whenever {xn} is b-convergent to x, fxn is b-convergent to fx.

Definition 1.4. [20] A pair (A,B) of selfmaps on a metric space (X, d) is said to
be compatible if lim

n→∞
d(BAxn, ABxn) = 0 whenever {xn} is a sequence in X such

that lim
n→∞

Axn = lim
n→∞

Bxn = z for some z ∈ X.

Definition 1.5. [1] A pair (A,B) of selfmaps on a metric space (X, d) is said to be
satisfy (E.A)-property if there exists a sequence {xn} in X such that lim

n→∞
Axn =

lim
n→∞

Bxn = z for some z ∈ X.

Definition 1.6. [25] A pair (A,B) of selfmaps on a b-metric space (X, d) is
said to be satisfy b-(E.A)-property if there exists a sequence {xn} in X such that
lim
n→∞

Axn = lim
n→∞

Bxn = z for some z ∈ X.

Definition 1.7. [21] A pair (A,B) of selfmaps on a set X is said to be weakly
compatible if ABx = BAx whenever Ax = Bx for any x ∈ X.

In 1973, Geraghty [17] introduced a class of functions
S = {β : [0,∞)→ [0, 1)/ lim

n→∞
β(tn) = 1 =⇒ lim

n→∞
tn = 0}.
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Theorem 1.1. [17] Let (X, d) be a complete metric space. Let T : X → X be a
selfmap satisfying the following: there exists β ∈ S such that
d(Tx, Ty) ≤ β(d(x, y))d(x, y) for all x, y ∈ X. Then T has a unique fixed point.

We denote B = {α : [0,∞)→ [0, 1s )/ lim
n→∞

α(tn) = 1
s =⇒ lim

n→∞
tn = 0}.

In 2011, Dukic, Kadelburg and Radenović [15] extended Theorem 1.9 to the case
of b-metric spaces as follows.

Theorem 1.2. [15] Let (X, d) ba a complete b-metric space with coefficient s ≥ 1
and let T : X → X be a selfmap of X. Suppose that there exists α ∈ B such that
d(Tx, Ty) ≤ α(d(x, y))d(x, y) for all x, y ∈ X. Then T has a unique fixed point in
X.

The following lemmas are useful in proving our main results.

Lemma 1.3. [18] Let (X, d) be a b-metric space with coefficient s ≥ 1. Suppose
that {xn} is a sequence in X such that d(xn, xn+1) ≤ kd(xn−1, xn) for all n ∈ N,
where k ∈ [0, 1) is a constant. Then {xn} is a b-Cauchy sequence in X.

Lemma 1.4. [2] Let (X, d) be a b-metric space with coefficient s ≥ 1. Suppose
that {xn} and {yn} are b-convergent to x and y respectively, then we have

1
s2 d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have lim
n→∞

d(xn, yn) = 0. Moreover for each z ∈ X
we have

1
sd(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

In 2015, Latif, Parvaneh, Salimi and Al-Mazrooei [23] proved the existence and
uniqueness of fixed points of a single selfmap satisfying Suzuki type contraction
condition in b-metric spaces as follows.

Theorem 1.5. [23] Let (X, d) be a complete b-metric space (with parameter s > 1)
and let f : X → X,α : X ×X → [0,∞) satisfying
(a) α(x, y) ≥ 1 =⇒ α(fx, fy) ≥ 1,
(b) α(x, z) ≥ 1, α(z, y) ≥ 1 =⇒ α(x, y) ≥ 1, x, y, z ∈ X. Suppose that β ∈ B
such that 1

2sd(x, fx) ≤ d(x, y) =⇒ sα(x, y)d(fx, fy) ≤ β(M(x, y))M(x, y) for all
x, y ∈ X, where

M(x, y) = max{d(x, y), d(x,fx)d(x,fy)+d(y,fy)d(y,fx)
1+s[d(x,y)+d(fx,fy)] , d(x,fx)d(x,fy)+d(y,fy)d(y,fx)

1+d(x,fy)+d(y,fx) }.
Also, suppose that the following assertions hold:
(i) there exists x0 ∈ Xsuch that α(x0, fx0) ≥ 1;

(ii) for any sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ∈ N∪{0} such that
xn → x as n→∞, we have α(xn, x) ≥ 1 for all n ∈ N ∪ {0}.

Then, f has a fixed point.

The set {x0, fx0, f2x0, f3x0, . . .} is called an orbit of f at the point x0 and is
denoted by Of (x0) [7].

Definition 1.8. [11] A b-metric space X is said to be f -orbitally complete if every
Cauchy sequence in Of (x0) converges in X, where f is a selfmapping on X and
x0 ∈ X.

Definition 1.9. [24] Let X be any nonempty set and α : X ×X → R. A selfmap
f : X → X is said to have a property (H), if for any x, y ∈ X with x 6= y, there
exists z ∈ X such that α(x, z) ≥ 1, α(y, z) ≥ 1 and α(z, fz) ≥ 1.
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Definition 1.10. [24] Let (X, d) be a b-metric space with parameter s ≥ 1 and
α : X ×X → R. A selfmap f : X → X is called a generalized α-Suzuki-Geraghty
contraction if there exists a β ∈ B such that for any x, y ∈ X,
1
2sd(x, fx) ≤ sd(x, y) =⇒ d(fx, fy) ≤ β(M(x, y))M(x, y),
where
M(x, y) = max{d(x, y), d(x, fx), d(y, fy), d(f2x, fx), d(f2x, y), d(f

2x,fy)
s , d(f

2x,x)
2s ,

d(x,fy)+d(y,fx)
2s , d(x,fx)d(x,fy)+d(y,fy)d(y,fx)

1+s[d(x,y)+d(fx,fy)] , d(x,fx)d(x,fy)+d(y,fy)d(y,fx)
1+d(x,fy)+d(y,fx) }.

Theorem 1.6. [24] Let (X, d) be a complete b-metric space with parameter
s ≥ 1, α : X ×X → R and f : X → X. Assume that X is f -orbitally complete and
the following conditions hold:

(i) there exists x0 ∈ X such that α(x0, fx0) ≥ 1;
(ii) f is a generalized α− Suzuki−Geraghty contraction and a triangular

α-orbital admissible;
(iii) either f is continuous or for any sequence {xn} in X with

α(xn, xn+1) ≥ 1 such that xn → x as n→∞, we have α(xn, x) ≥ 1
for all n ∈ N ∪ {0}.

Then f has a fixed point z in X and {fnx0} converges to z. Moreover, f has a
unique fixed point if condition (i) is replaced with the property (H).

Throughout this paper we denote
F = {β : [0,∞)→ [0, 1s )/ lim sup

n→∞
β(tn) = 1

s =⇒ lim
n→∞

tn = 0}.

In 2019, Faraji, Savić and Radenović [16] proved the following theorem.

Theorem 1.7. [16] Let (X, d) be a complete b-metric space with parameter s ≥ 1.
Let T, S : X → X be selfmaps on X which satisfy: there exists β ∈ F such that

sd(Tx, Sy) ≤ β(M(x, y))M(x, y) for all x, y ∈ X,
where M(x, y) = max{d(x, y), d(x, Tx), d(y, Sy)}.
If either T or S is continuous, then T and S have a unique common fixed point.

Motivated by Theorem 1.5 and Theorem 1.6, in Section 2 of this paper, we prove
the existence and uniqueness of common fixed points for two pairs of selfmaps satis-
fying a Geraghty-Suzuki type contraction condition in which one pair is compatible,
b-continous and the another one is weakly compatible in complete b-metric spaces.
Further, we prove the same with different hypotheses on two pairs of selfmaps which
satisfy b-(E.A)-property. In Section 3, we draw some corollaries and examples in
support of our results.

2. Main Results

Let A,B, S and T be mappings from a b-metric space (X, d) into itself and
satisfying

A(X) ⊆ T (X) and B(X) ⊆ S(X). (2.1)

Now by (2.1), for any x0 ∈ X, there exists x1 ∈ X such that y0 = Ax0 = Tx1. In
the same way for this x1, we can choose a point x2 ∈ X such that y1 = Bx1 = Sx2
and so on. In general, we define

y2n = Ax2n = Tx2n+1 and y2n+1 = Bx2n+1 = Sx2n+2 for n = 0, 1, 2, . . . . (2.2)

Proposition 2.1. Let (X, d) be a b-metric space wuth coefficient s ≥ 1. Assume
that A,B, S and T are selfmappings of X which satisfy the following condition:
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there exists β ∈ F such that

1
2s min{d(Sx,Ax), d(Ty,By)} ≤ max{d(Sx, Ty), d(Ax,By)}

=⇒ s4d(Ax,By) ≤ β(M(x, y))M(x, y)
(2.3)

where
M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)

2s , d(Ty,Ax)
2s ,

d(Sx,Ax)d(Ty,By)
1+d(Sx,Ty)+d(Ax,By) ,

d(Sx,By)d(Ty,Ax)
1+s4[d(Sx,Ty)+d(Ax,By)]},

for all x, y ∈ X. Then we have the following:

(i) If A(X) ⊆ T (X) and the pair (B, T ) is weakly compatible and if z is a com-
mon fixed point of A and S then z is a common fixed point of A,B, S and T
and it is unique.

(ii) If B(X) ⊆ S(X) and the pair (A,S) is weakly compatible and if z is a com-
mon fixed point of B and T then z is a common fixed point of A,B, S and T
and it is unique.

Proof. First, we assume that (i) holds. Let z be a common fixed point of A and S.
Then Az = Sz = z. Since A(X) ⊆ T (X), there exists u ∈ X such that Tu = z.
Therefore Az = Sz = Tu = z.
We now prove that Az = Bu. Suppose that Az 6= Bu.
Since 1

2s min{d(Sz,Az), d(Tu,Bu)} ≤ max{d(Sz, Tu), d(Az,Bu)}.
From the inequality (2.3), we have

s4d(Az,Bu) ≤ β(M(z, u))M(z, u) (2.4)

where
M(z, u) = max{d(Sz, Tu), d(Sz,Az), d(Tu,Bu), d(Sz,Bu)

2s , d(Tu,Az)
2s ,

d(Sz,Az)d(Tu,Bu)
1+d(Sz,Tu)+d(Az,Bu) ,

d(Sz,Bu)d(Tu,Az)
1+s4[d(Sz,Tu)+d(Az,Bu)]}

= max{0, 0, d(Az,Bu), d(Az,Bu)
2s , 0, 0, 0} = d(Az,Bu).

From the inequality (2.4), we have

s4d(Az,Bu) ≤ β(d(z, u))d(z, u) ≤ d(Az,Bu)
s so that (s5 − 1)d(Az,Bu) ≤ 0.

Since (s5 − 1) ≥ 0, it follows that d(Az,Bu) = 0.
Hence Az = Bu. Therefore Az = Bu = Sz = Tu = z.
Since the pair (B, T ) is weakly compatible and Bu = Tu, we have BTu = TBu.
i.e., Bz = Tz.
Now we show that Bz = z.
If Bz 6= z, then we have
1
2s min{d(Sz,Az), d(Tz,Bz)} ≤ max{d(Sz, Tz), d(Az,Bz)}
From the inequality (2.3), we have

s4d(z,Bz) = s4d(Az,Bz) ≤ β(M(z, z))M(z, z) (2.5)

where
M(z, z) = max{d(Sz, Tz), d(Sz,Az), d(Tz,Bz), d(Sz,Bz)

2s , d(Tz,Az)
2s ,

d(Sz,Az)d(Tz,Bz)
1+d(Sz,Tz)+d(Az,Bz) ,

d(Sz,Bz)d(Tz,Az)
1+s4[d(Sz,Tz)+d(Az,Bz)]}

= max{d(z,Bz), 0, 0, d(z,Bz)
2s , d(z,Bz)

2s , 0, [d(z,Bz)]2

1+2s4[d(z,Bz)]} = d(z,Bz).

From the inequality (2.5), we have

s4d(z,Bz) ≤ β(M(z, z))M(z, z) = β(d(z,Bz))d(z,Bz) ≤ d(z,Bz)
s so that

(s5 − 1)d(z,Bz) ≤ 0.
Since (s5 − 1) ≥ 0, it follows that d(z,Bz) = 0.
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Hence Bz = z. Therefore Az = Bz = Sz = Tz = z.
Therefore z is a common fixed point of A,B, S and T .

In a similar way, under the assumption (ii), the conclusion of the proposition
follows.

Uniqueness follows from the inequality (2.3). �

Remark. Selfmaps A,B, S and T of a b-metric space X that satisfy (2.3) is said
to be Geraghty-Suzuki type contraction maps on X.

Proposition 2.2. Let A,B, S and T be selfmaps of a b-metric space (X, d) and
satisfy (2.1) and Geraghty-Suzuki type contraction maps. Then for any x0 ∈ X, the
sequence {yn} defined by (2.2) is b-Cauchy in X.

Proof. Let x0 ∈ X and let {yn} be defined by (2.2). Assume that yn = yn+1 for
some n.
Case (i): n even.
We write n = 2m for some m ∈ N. Suppose that d(yn+1, yn+2) > 0. Since
1
2s min{d(Sx2m+2, Ax2m+2), d(Tx2m+1, Bx2m+1)} ≤ max{d(Sx2m+2, Tx2m+1),

d(Ax2m+2, Bx2m+1)}
From the inequality (2.3), we have

s4d(yn+1, yn+2) = s4d(y2m+1, y2m+2)
= s4d(y2m+2, y2m+1)
= s4d(Ax2m+2, Bx2m+1)
≤ β(M(x2m+2, x2m+1))M(x2m+2, x2m+1)

(2.6)

where
M(x2m+2, x2m+1) = max{d(Sx2m+2, Tx2m+1), d(Sx2m+2, Ax2m+2),

d(Tx2m+1, Bx2m+1), d(Sx2m+2,Bx2m+1)
2s , d(Tx2m+1,Ax2m+2)

2s ,
d(Sx2m+2,Ax2m+2)d(Tx2m+1,Bx2m+1)

1+d(Sx2m+2,Tx2m+1)+d(Ax2m+2,Bx2m+1)
,

d(Sx2m+2,Bx2m+1)d(Tx2m+1,Ax2m+2)
1+s4[d(Sx2m+2,Tx2m+1)+d(Ax2m+2,Bx2m+1)]

}
= max{0, d(yn+1, yn+2), 0, 0, d(yn,yn+2)

2s , 0, 0} = d(yn+1, yn+2).
From the inequality (2.6), we have
s4d(yn+1, yn+2) ≤ β(M(x2m+2, x2m+1))M(x2m+1, x2m+1)

≤ β(d(yn+1, yn+2))d(yn+1, yn+2) ≤ d(yn+1,yn+2)
s

which implies that (s5 − 1)d(yn+1, yn+2) ≤ 0.
Since (s5 − 1) ≥ 0, we have d(yn+1, yn+2) ≤ 0.
Therefore yn+2 = yn+1 = yn.
In general, we have yn+k = yn for k = 0, 1, 2, . . . .
Case (ii): n odd.
We write n = 2m+ 1 for some m ∈ N.
Since
1
2s min{d(Sx2m+2, Ax2m+2), d(Tx2m+3, Bx2m+3)} ≤ max{d(Sx2m+2, Tx2m+3),

d(Ax2m+2, Bx2m+3)},
from the inequality (2.3), we have

s4d(yn+1, yn+2) = s4d(y2m+2, y2m+3) = d(Ax2m+2, Bx2m+3)
≤ β(M(x2m+2, x2m+3))M(x2m+2, x2m+3)

(2.7)
where
M(x2m+2, x2m+3) = max{d(Sx2m+2, Tx2m+3), d(Sx2m+2, Ax2m+2),
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d(Tx2m+3, Bx2m+3), d(Sx2m+2,Bx2m+3)
2s , d(Tx2m+3,Ax2m+2)

2s ,
d(Sx2m+2,Ax2m+2)d(Tx2m+3,Bx2m+3)

1+d(Sx2m+2,Tx2m+3)+d(Ax2m+2,Bx2m+3)
,

d(Sx2m+2,Bx2m+3)d(Tx2m+3,Ax2m+2)
1+s4[d(Sx2m+2,Tx2m+3)+d(Ax2m+2,Bx2m+3)]

}
= max{0, 0, d(yn+1, yn+2), d(yn,yn+2)

2s , 0, 0, 0} = d(yn+1, yn+2).
From the inequality (2.7), we have
s4d(yn+1, yn+2) ≤ β(M(x2m+2, x2m+3))M(x2m+2, x2m+3)

≤ β(d(yn+1, yn+2))d(yn+1, yn+2) ≤ d(yn+1,yn+2)
s

which implies that (s5 − 1)d(yn+1, yn+2) ≤ 0.
Since (s5 − 1) ≥ 0, we have d(yn+1, yn+2) ≤ 0.
Therefore yn+2 = yn+1 = yn.
In general, we have yn+k = yn for k = 0, 1, 2, . . . .
From Case (i) and Case (ii), we have yn+k = yn for all k = 0, 1, 2, . . . .
Hence {yn+k} is a constant sequence and hence {yn} is Cauchy.
Now we assume that yn−1 6= yn for all n ∈ N.
If n is odd, then n = 2m+ 1 for some m ∈ N.
Since
1
2s min{d(Sx2m+2, Ax2m+2), d(Tx2m+1, Bx2m+1)} ≤ max{d(Sx2m+2, Tx2m+1),

d(Ax2m+2, Bx2m+1)}.
From the inequality (2.3), we have

s4d(yn, yn+1) = s4d(y2m+1, y2m+2) = s4d(y2m+2, y2m+1)
= s4d(Ax2m+2, Bx2m+1) ≤ β(M(x2m+2, x2m+1))M(x2m+2, x2m+1)

(2.8)
where
M(x2m+2, x2m+1) = max{d(Sx2m+2, Tx2m+1), d(Sx2m+2, Ax2m+2),

d(Tx2m+1, Bx2m+1), d(Sx2m+2,Bx2m+1)
2s , d(Tx2m+1,Ax2m+2)

2s ,
d(Sx2m+2,Ax2m+2)d(Tx2m+1,Bx2m+1)

1+d(Sx2m+2,Tx2m+1)+d(Ax2m+2,Bx2m+1)
,

d(Sx2m+2,Bx2m+1)d(Tx2m+1,Ax2m+2)
1+s4[d(Sx2m+2,Tx2m+1)+d(Ax2m+2,Bx2m+1)]

}
≤ max{d(yn−1, yn), d(yn, yn+1), d(yn−1, yn), 0, d(yn,yn)+d(yn,yn+1)

2 ,
d(yn,yn+1)d(yn−1,yn)

1+d(yn−1,yn)+d(yn,yn+1)
, 0}

≤ max{d(yn−1, yn), d(yn, yn+1)}.
Suppose M(x2m+2, x2m+1) = d(yn, yn+1).
Then from the inequality (2.8), we have
s4d(yn, yn+1) ≤ β(M(x2m+2, x2m+1))M(x2m+2, x2m+1)

≤ β(d(yn, yn+1))d(yn, yn+1) ≤ d(yn,yn+1)
s

which implies that (s5 − 1)d(yn, yn+1) ≤ 0.
Since (s5 − 1) ≥ 0, we have d(yn, yn+1) ≤ 0.
Therefore M(x2m+2, x2m+1) = d(yn−1, yn).
From the inequality (2.8), we have

s4d(yn, yn+1) ≤ β(M(x2m+2, x2m+1))M(x2m+2, x2m+1)

≤ β(d(yn−1, yn))d(yn−1, yn) ≤ d(yn−1,yn)
s .

(2.9)

Also, it is easy to see that (2.9) is valid when n is even.
Hence we have d(yn, yn+1) ≤ 1

s5 d(yn−1, yn) for all n ∈ N.
From Lemma 1.3, we have the sequence {yn} is a b-Cauchy sequence in X. �

The following is the main result of this paper.
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Theorem 2.3. Let A,B, S and T be selfmaps on a complete b-metric space (X, d)
and satisfy (2.1) and Geraghty-Suzuki type contractive maps. If either

(i) the pair (A,S) compatible, A (or) S is b-continuous and the pair (B, T ) is
weakly compatible

or
(ii) the pair (B, T ) compatible, B (or) T is b-continuous and the pair (A,S) is

weakly compatible

then A,B, S and T have a unique common fixed point in X.

Proof. By Proposition 2.2, the sequence {yn} is b-Cauchy in X.
Since X is b-complete, there exists z ∈ X such that lim

n→∞
yn = z. Thus{

lim
n→∞

y2n = lim
n→∞

Ax2n = lim
n→∞

Tx2n+1 = z and

lim
n→∞

y2n+1 = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = z.
(2.10)

Assume that (i) holds.
Since S is b-continuous, it follows that lim

n→∞
SSx2n+2 = Sz, lim

n→∞
SAx2n = Sz.

By the b-triangle inequality, we have d(ASx2n, Sz) ≤ s[d(ASx2n, SAx2n)+d(SAx2n, Sz)].
Since the pair (A,S) is compatible, lim

n→∞
d(ASx2n, SAx2n) = 0.

Taking limit superior as n→∞, we have
lim sup
n→∞

d(ASx2n, Sz) ≤ s[lim sup
n→∞

d(ASx2n, SAx2n) + lim sup
n→∞

d(SAx2n, Sz)] = 0.

Therefore lim
n→∞

ASx2n = Sz.

We now prove that Sz = z.
Suppose that Sz 6= z. Since
1
2s min{d(SSx2m+2, ASx2m+2), d(Tx2m+1, Bx2m+1)} ≤ max{d(SSx2m+2, Tx2m+1),

d(ASx2m+2, Bx2m+1)}
From the inequality (2.3), we have

s4d(ASx2n+2, Bx2n+1) ≤ β(M(Sx2n+2, x2n+1))M(Sx2n+2, x2n+1) (2.11)

where
M(Sx2n+2, x2n+1) = max{d(SSx2n+2, Tx2n+1), d(SSx2n+2, ASx2n+s),

d(Tx2n+1, Bx2n+1), d(SSx2n+2,Bx2n+1)
2s , d(Tx2n+1,ASx2n+2)

2s ,
d(SSx2n+2,ASx2n+2)d(Tx2n+1,Bx2n+1)

1+d(SSx2n+2,Tx2n+1)+d(ASx2n+2,Bx2n+1)
,

d(SSx2n+2,Bx2n+1)d(Tx2n+1,ASx2n+2)
1+s4[d(SSx2n+2,Tx2n+1)+d(ASx2n+2,Bx2n+1)]

}.
By taking limit superior as n → ∞ on M(Sx2n+2, x2n+1) and using Lemma 1.4,
we obtain
lim sup
n→∞

M(Sx2n+2, x2n+1) ≤ max{s2d(Sz, z), 0, 0, s
2d(Sz,z)

2s , s
2d(Sz,z)

2s , 0, s4[d(Sz,z)]2

1+2s4d(Sz,z)}

= s2d(Sz, z).
Therefore

1

s2
d(Sz, z) ≤ lim inf

n→∞
M(Sx2n+2, x2n+1) ≤ lim sup

n→∞
M(Sx2n+2, x2n+1) ≤ s2d(Sz, z).

(2.12)
Taking limit superior as n→∞ in the inequality (2.11) and using Lemma 1.4, we
get
s4 1

s2 d(Sz, z) ≤ s4 lim sup
n→∞

d(ASx2n+2, Bx2n+1)

= lim sup
n→∞

s4d(ASx2n+2, Bx2n+1)
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≤ lim sup
n→∞

[β(M(Sx2n+2, x2n+1))M(Sx2n+2, x2n+1)]

= lim sup
n→∞

β(M(Sx2n+2, x2n+1)) lim sup
n→∞

M(Sx2n+2, x2n+1)

≤ lim sup
n→∞

β(M(Sx2n+2, x2n+1))s2d(Sz, z).

Therefore
1
s ≤ 1 ≤ lim sup

n→∞
β(M(Sx2n+2, x2n+1)) ≤ 1

s which implies that

lim sup
n→∞

β(M(Sx2n+2, x2n+1)) = 1
s .

Since β ∈ F, it follows that lim
n→∞

M(Sx2n+2, x2n+1) = 0.

Therefore from the inequality (2.12), we have
1
s2 d(Sz, z) ≤ lim

n→∞
M(Sx2n+2, x2n+1) = 0 which implies that d(Sz, z) ≤ 0.

Therefore Sz = z.
We now show that Az = z. Suppose that Az 6= z.
Since
1
2s min{d(Sz,Az), d(Tx2m+1, Bx2m+1)} ≤ max{d(Sz, Tx2m+1), d(Az,Bx2m+1)}
From the inequality (2.3), we have

s4d(Az,Bx2n+1) ≤ β(M(z, x2n+1))M(z, x2n+1) (2.13)

where
M(z, x2n+1) = max{d(Sz, Tx2n+1), d(Sz,Az), d(Tx2n+1, Bx2n+1),

d(Sz,Bx2n+1)
2s , d(Tx2n+1,Az)

2s , d(Sz,Az)d(Tx2n+1,Bx2n+1)
1+d(Sz,Tx2n+1)+d(Az,Bx2n+1)

,
d(Sz,Bx2n+1)d(Tx2n+1,Az)

1+s4[d(Sz,Tx2n+1)+d(Az,Bx2n+1)]
}.

By taking limit superior as n→∞ on M(z, x2n+1) and using Lemma 1.4, we obtain

lim sup
n→∞

M(z, x2n+1) ≤ max{s2d(Az, z), 0, 0, s
2d(Az,z)

2s , s
2d(Az,z)

2s , 0, s4[d(Az,z)]2

1+2s4d(Az,z)}

= s2d(Az, z).
Therefore

1

s2
d(Az, z) ≤ lim inf

n→∞
M(z, x2n+1) ≤ lim sup

n→∞
M(z, x2n+1) ≤ s2d(Az, z). (2.14)

Taking limit superior as n→∞ in the inequality (2.13) and using Lemma 1.4, we
get
s4 1

s2 d(Az, z) ≤ s4 lim sup
n→∞

d(Az,Bx2n+1)

= lim sup
n→∞

s4d(Az,Bx2n+1)

≤ lim sup
n→∞

[β(M(z, x2n+1))M(z, x2n+1)]

= lim sup
n→∞

β(M(z, x2n+1)) lim sup
n→∞

M(z, x2n+1)

≤ lim sup
n→∞

β(M(z, x2n+1))s2d(Az, z).

Hence
1
s ≤ 1 ≤ lim sup

n→∞
β(M(z, x2n+1)) ≤ 1

s which implies that

lim sup
n→∞

β(M(z, x2n+1)) = 1
s .

Since β ∈ F, it follows that lim
n→∞

M(z, x2n+1) = 0.

Therefore from the inequality (2.14), we have
1
s2 d(Az, z) ≤ lim

n→∞
M(z, x2n+1) = 0 which implies that d(Az, z) ≤ 0.

Therefore Az = Sz = z. Hence z is a common fixed point of A and S.
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Now by Proposition 2.1, we have z is a unique common fixed point of A,B, S and T .
Assume that A is b-continuous, it follows that
lim

n→∞
AAx2n = Az, lim

n→∞
ASx2n+2 = Az.

By the b-triangle inequality, we have
d(SAx2n, Az) ≤ s[d(SAx2n, ASx2n) + d(ASx2n, Az)].
Since the pair (A,S) is compatible, lim

n→∞
d(ASx2n, SAx2n) = 0.

Taking limit superior as n→∞, we have
lim sup
n→∞

d(SAx2n, Az) ≤ s[lim sup
n→∞

d(SAx2n, ASx2n) + lim sup
n→∞

d(ASx2n, Az)] = 0.

Therefore lim
n→∞

SAx2n = Az.

Now we prove that Az = z. Suppose that Az 6= z.
Since
1
2s min{d(SAx2n, AAx2n), d(Tx2n+1, Bx2n+1)} ≤ max{d(SAx2n, Tx2n+1),

d(AAx2n, Bx2n+1)}
From the inequality (2.3), we have

s4d(ASx2n+2, Bx2n+1) ≤ β(M(Sx2n+2, x2n+1))M(Sx2n+2, x2n+1) (2.15)

where
M(Ax2n, x2n+1) = max{d(SAx2n, Tx2n+1), d(SAx2n, AAx2n), d(Tx2n+1, Bx2n+1),

d(SAx2n,Bx2n+1)
2s , d(Tx2n+1,AAx2n)

2s , d(SAx2n,AAx2n)d(Tx2n+1,Bx2n+1)
1+d(SAx2n,Tx2n+1)+d(AAx2n,Bx2n+1)

,
d(SAx2n,Bx2n+1)d(Tx2n+1,AAx2n)

1+s4[d(SAx2n,Tx2n+1)+d(AAx2n,Bx2n+1)]
}.

By taking limit superior as n → ∞ on M(Ax2n, x2n+1) and using Lemma 1.4, we
obtain
lim sup
n→∞

M(Ax2n, x2n+1) ≤ max{s2d(Az, z), 0, 0, s
2d(Az,z)

2s , s
2d(Az,z)

2s , 0, s4[d(Az,z)]2

1+2s2d(Az,z)}

= s2d(Az, z).
Therefore

1

s2
d(Az, z) ≤ lim inf

n→∞
M(Ax2n, x2n+1) ≤ lim sup

n→∞
M(Ax2n, x2n+1) ≤ s2d(Az, z).

(2.16)
Taking limit superior as n→∞ in the inequality (2.15) and using Lemma 1.4, we
get
s4 1

s2 d(Az, z) ≤ s4 lim sup
n→∞

d(AAx2n, Bx2n+1)

= lim sup
n→∞

s4d(AAx2n, Bx2n+1)

≤ lim sup
n→∞

[β(M(Ax2n, x2n+1))M(Ax2n, x2n+1)

= lim sup
n→∞

β(M(Ax2n, x2n+1)) lim sup
n→∞

M(Ax2n, x2n+1)

≤ lim sup
n→∞

β(M(Ax2n, x2n+1))s2d(Az, z).

Thus
1
s ≤ 1 ≤ lim sup

n→∞
β(M(Ax2n, x2n+1)) ≤ 1

s which implies that

lim sup
n→∞

β(M(Ax2n, x2n+1)) = 1
s .

Since β ∈ F, it follows that lim
n→∞

M(Ax2n, x2n+1) = 0.

Therefore from the inequality (2.16), we have
1
s2 d(Az, z) ≤ lim

n→∞
M(Ax2n, x2n+1) = 0 which implies that d(Az, z) ≤ 0.

Therefore Az = z.
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Since A(X) ⊆ T (X), there exists u ∈ X such that z = Tu.
We now show that Bu = z. Suppose that Bu 6= z.
Since
1
2s min{d(Sx2n, Ax2n), d(Tu,Bu)} ≤ max{d(Sx2n, Tu), d(Ax2n, Bu)}
From the inequality (2.3), we have

s4d(Ax2n, Bu) ≤ β(M(x2n, u))M(x2n, u) (2.17)

where
M(x2n, u) = max{d(Sx2n, Tu), d(Sx2n, Ax2n), d(Tu,Bu), d(Sx2n,Bu)

2s , d(Tu,Ax2n)
2s ,

d(Sx2n,Ax2n)d(Tu,Bu)
1+d(Sx2n,Tu)+d(Ax2n,Bu) ,

d(Sx2n,Bu)d(Tu,Ax2n)
1+s4[d(Sx2n,Tu)+d(Ax2n,Bu)]}.

By taking limit superior as n→∞ on M(x2n, u) and using Lemma 1.4, we obtain

lim sup
n→∞

M(x2n, u) ≤ max{s2d(z,Bu), 0, 0, s
2d(z,Bu)

2s , s
2d(z,Bu)

2s , 0, s4[d(z,Bu)]2

1+2s2d(z,Bu)}

= s2d(Az, z).
Therefore

1

s2
d(z,Bu) ≤ lim inf

n→∞
M(x2n, u) ≤ lim sup

n→∞
M(x2n, u) ≤ s2d(z,Bu). (2.18)

Taking limit superior as n→∞ in the inequality (2.17) and using Lemma 1.4, we
get
s4 1

s2 d(z,Bu) ≤ s4 lim sup
n→∞

d(Ax2n, Bu)

= lim sup
n→∞

s4d(Ax2n, Bu)

≤ lim sup
n→∞

[β(M(x2n, u))M(x2n, u)

= lim sup
n→∞

β(M(x2n, u)) lim sup
n→∞

M(x2n, u)

≤ lim sup
n→∞

β(M(x2n, u))s2d(z,Bu).

Therefore
1
s ≤ 1 ≤ lim sup

n→∞
β(M(x2n, u)) ≤ 1

s which implies that lim sup
n→∞

β(M(x2n, u)) = 1
s .

Since β ∈ F, it follows that lim
n→∞

M(x2n, u) = 0.

Therefore from the inequality (2.18), we have
1
s2 d(z,Bu) ≤ lim

n→∞
M(x2n, u) = 0. implies that d(z,Bu) ≤ 0.

Therefore Bu = Tu = z. Since the pair (B, T ) is weakly compatible and Bu = Tu,
we have
BTu = TBu. i.e., Bz = Tz.
We now show that Bz = z. Suppose that Bz 6= z.
Since
1
2s min{d(Sx2n, Ax2n), d(Tz,Bz)} ≤ max{d(Sx2n, T z), d(Ax2n, Bz)}
From the inequality (2.3), we have

s4d(Ax2n, Bz) ≤ β(M(x2n, z))M(x2n, z) (2.19)

where
M(x2n, z) = max{d(Sx2n, T z), d(Sx2n, Ax2n), d(Tz,Bz), d(Sx2n,Bz)

2s , d(Tz,Ax2n)
2s ,

d(Sx2n,Ax2n)d(Tz,Bz)
1+d(Sx2n,Tz)+d(Ax2n,Bz) ,

d(Sx2n,Bz)d(Tz,Ax2n)
1+s4d(Sx2n,Tz)+d(Ax2n,Bz)}.

By taking limit superior as n→∞ on M(x2n, z) and using Lemma 1.4, we obtain

lim sup
n→∞

M(x2n, z) ≤ max{s2d(z,Bz), 0, 0, s
2d(z,Bz)

2s , s
2d(z,Bz)

2s , 0, s6[d(z,Bz)]2

1+2s2d(z,Bz)}
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= s2d(Az, z).
Therefore

1

s2
d(z,Bz) ≤ lim inf

n→∞
M(x2n, z) ≤ lim sup

n→∞
M(x2n, z) ≤ s2d(z,Bz). (2.20)

Taking limit superior as n→∞ in the inequality (2.19) and using Lemma 1.4, we
get
s4 1

s2 d(z,Bz) ≤ s4 lim sup
n→∞

d(Ax2n, Bz)

= lim sup
n→∞

s4d(Ax2n, Bz)

≤ lim sup
n→∞

[β(M(x2n, z))M(x2n, z)

= lim sup
n→∞

β(M(x2n, z)) lim sup
n→∞

M(x2n, z)

≤ lim sup
n→∞

β(M(x2n, z))s
2d(z,Bz).

Therefore
1
s ≤ 1 ≤ lim sup

n→∞
β(M(x2n, z)) ≤ 1

s which implies that lim sup
n→∞

β(M(x2n, z)) = 1
s .

Since β ∈ F, it follows that lim
n→∞

M(x2n, z) = 0.

Therefore from the inequality (2.20), we have
1
s2 d(z,Bz) ≤ lim

n→∞
M(x2n, z) = 0. implies that d(z,Bz) ≤ 0.

Hence Bz = z.
Therefore Bz = Tz = z.
Hence z is a common fixed point of A and S.
Now by Proposition 2.1, we have z is a unique common fixed point of A,B, S and T .

In a similar way, under the assumption (ii), the conclusion of the theorem holds.
�

Theorem 2.4. Let (X, d) be a b-metric space with coefficient s ≥ 1. Let A,B, S, T :
X → X be selfmaps of X and satisfy (2.1) and Geraghty-Suzuki type contractive
maps. Suppose that one of the pairs (A,S) and (B, T ) satisfies the b-(E.A)-property
and that one of the subspace A(X), B(X), S(X) and T (X) is b-closed in X. Then
the pairs (A,S) and (B, T ) have a point of coincidence in X. Moreover, if the pairs
(A,S) and (B, T ) are weakly compatible, then A,B, S and T have a unique common
fixed point in X.

Proof. We first assume that the pair (A,S) satisfies the b-(E.A)-property. So there
exists a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = q (2.21)

for some q ∈ X.
Since A(X) ⊆ T (X), there exists a sequence {yn} in X such that Axn = Tyn, and
hence

lim
n→∞

Tyn = q. (2.22)

Now we show that lim
n→∞

Byn = q.

Since 1
2s min{d(Sxn, Axn), d(Tyn, Byn)} ≤ max{d(Sxn, T yn), d(Axn, Byn)}.

From the inequality (2.3), we have

s4d(Axn, Byn) ≤ β(M(xn, yn))M(xn, yn) (2.23)
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where
M(xn, yn) = max{d(Sxn, T yn), d(Sxn, Axn), d(Tyn, Byn), d(Sxn,Byn)

2s , d(Tyn,Axn)
2s ,

d(Sxn,Axn)d(Tyn,Byn)
1+d(Sxn,Tyn)+d(Axn,Byn)

, d(Sxn,Byn)d(Tyn,Axn)
1+s4[d(Sxn,Tyn)+d(Axn,Byn)]

}.
By taking limit superior as n→∞ on M(xn, yn), and using (2.21) and (2.22), we
obtain lim sup

n→∞
M(xn, yn) = max{0, 0, lim sup

n→∞
d(Axn, Byn),

lim sup
n→∞

d(Axn,Byn)

2s , 0, 0, 0}

= lim sup
n→∞

d(Axn, Byn).

(2.24)
On taking limit superior as n→∞ in (2.23), and using (2.24), we get
s4 lim sup

n→∞
d(Axn, Byn) = lim sup

n→∞
[β(M(xn, yn))M(xn, yn)]

= lim sup
n→∞

β(M(xn, yn)) lim sup
n→∞

M(xn, yn)

= lim sup
n→∞

β(M(xn, yn)) lim sup
n→∞

d(Axn, Byn).

Therefore
1
s ≤ 1 ≤ lim sup

n→∞
β(M(xn, yn)) ≤ 1

s5 ≤
1
s which implies that

lim sup
n→∞

β(M(xn, yn)) = 1
s .

Since β ∈ F, we have lim
n→∞

M(xn, yn) = 0. i.e., lim sup
n→∞

d(Axn, Byn) = 0.

Therefore

lim
n→∞

d(Axn, Byn) = 0. (2.25)

By the b-triangular inequality, we have

d(q,Byn) ≤ s[d(q, Axn) + d(Axn, Byn)]. (2.26)

On taking limits as n→∞ in (2.26), and using (2.21) and (2.25), we get
lim

n→∞
d(q,Byn) ≤ s[ lim

n→∞
d(q, Axn) + lim

n→∞
d(Axn, Byn)] = 0.

Therefore lim
n→∞

d(q,Byn) = 0.

Case (i): Assume that T (X) is a b-closed subset of X.
In this case q ∈ T (X), we can choose r ∈ X such that Tr = q.
We now prove that Br = q. Suppose that d(Br, q) > 0.
Since 1

2s min{d(Sxn, Axn), d(Tr,Br)} ≤ max{d(Sxn, T r), d(Axn, Br)}
From the inequality (2.3), we have

s4d(Axn, Br) ≤ β(M(xn, r))M(xn, r) (2.27)

where
M(xn, r) = max{d(Sxn, T r), d(Sxn, Axn), d(Tr,Br), d(Sxn,Br)

2s , d(Tr,Axn)
2s ,

d(Sxn,Axn)d(Tr,Br)
1+d(Sxn,Tr)+d(Axn,Br) ,

d(Sxn,Br)d(Tr,Axn)
1+s4[d(Sxn,Tr)+d(Axn,Br)]}.

By taking limit superior as n → ∞ on M(xn, r), and using (2.21), (2.22) and
Lemma 1.4, we obtain

lim sup
n→∞

M(xn, r) ≤ max{0, 0, d(q,Br),
d(q,Br)

2
, 0, 0, 0} = d(q,Br). (2.28)

We have
d(Br, q) ≤ s[d(Br, Sxn) + d(Sxn, q)]

= 2s2[d(Br,Sxn)
2s ] + sd(Sxn, q) ≤ 2s2M(xn, r) + sd(Sxn, q).

On taking limit inferior as n→∞, we get
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Therefore 1
2s2 d(Br, q) ≤ lim inf

n→∞
M(xn, r).

Taking limit superior as n→∞ in (2.27) and using (2.28) and Lemma 1.4, we have

s4( 1
sd(q,Br)) ≤ s4 lim sup

n→∞
d(Axn, Br)

= lim sup
n→∞

[β(M(xn, r))M(xn, r)]

= lim sup
n→∞

β(M(xn, r)) lim sup
n→∞

M(xn, r)

≤ lim sup
n→∞

β(M(xn, r))d(q,Br).

Therefore
1
s ≤ lim sup

n→∞
β(M(xn, r)) ≤ 1

s which implies that lim sup
n→∞

β(M(xn, r)) = 1
s .

Since β ∈ F, we have lim
n→∞

M(xn, r) = 0.

Therefore 1
2s2 d(Br, q) ≤ lim

n→∞
M(xn, r) = 0.

Thus Br = q. Hence Br = Tr = q, so that q is a coincidence point of B and T .
Since B(X) ⊆ S(X), we have q ∈ S(X), there exists z ∈ X such that Sz = q = Br.
Now we show that Az = q. Suppose Az 6= q.
Since
1
2s min{d(Sz,Az), d(Tr,Br)} ≤ max{d(Sz, Tr), d(Az,Br)}
From the inequality (2.3), we have

s4d(Az, q) = s4d(Az,Br) ≤ β(M(z, r))M(z, r) (2.29)

where
M(z, r) = max{d(Sz, Tr), d(Sz,Az), d(Tr,Br), d(Sz,Br)

2s , d(Tr,Az)
2s ,

d(Sz,Az)d(Tr,Br)
1+d(Sz,Tr)+d(Az,Br) ,

d(Sz,Br)d(Tr,Az)
1+s4[d(Sz,Tr)+d(Az,Br)]}

= max{0, d(q, Az), 0, 0, d(q,Az)
2s , 0, 0} = d(q, Az).

From the inequality (2.29), we have
s4d(Az, q) ≤ β(d(Az, q)d(Az, q)) < d(Az, q),
a contradiction.
Therefore Az = Sz = q so that z is a coincidence point of A and S.
Since the pairs (A,S) and (B, T ) are weakly compatible, we have Aq = Sq and
Bq = Tq.
Therefore q is also a coincidence point of the pairs (A,S) and (B, T ).
We now show that q is a common fixed point of A,B, S and T .
Suppose Aq 6= q.
Since 1

2s min{d(Sq,Aq), d(Tr,Br)} ≤ max{d(Sq, Tr), d(Aq,Br)},
from the inequality (2.3), we have

s4d(Aq, q) = s4d(Aq,Br) ≤ β(M(q, r))M(q, r) (2.30)

where
M(q, r) = max{d(Sq, Tr), d(Sq,Aq), d(Tr,Br), d(Sq,Br)

2s , d(Tr,Aq)
2s ,

d(Sq,Aq)d(Tr,Br)
1+d(Sq,Tr)+d(Aq,Br) ,

d(Sq,Br)d(Tr,Aq)
1+s4[d(Sq,Tr)+d(Aq,Br)]}

= max{d(Aq, q), 0, 0, d(Aq,q)
2s , d(Aq,q)

2s , 0, 0} = d(Aq, q).
Now, from the inequality (2.30), we have
s4d(Aq, q) ≤ β(d(Aq, q)d(Aq, q)) < d(Aq, q),
a contradiction.
Therefore Aq = Sq = q so that q is a common fixed point of A and S.
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By Proposition 2.1, we get that q is a unique common fixed point of A,B, S and T .
Case (ii): Suppose A(X) is b-closed.
In this case, we have q ∈ A(X) and since A(X) ⊆ T (X), we choose r ∈ X such
that q = Tr.
The proof follows as in Case (i).
Case (iii): Suppose S(X) is b-closed.
We follow the argument similar as Case (i) and we get conclusion.
Case (iv): Suppose B(X) is b-closed. As in Case (ii), we get the conclusion.

For the case of (B, T ) satisfies the b-(E.A)-property, we follow the argument
similar to the case (A,S) satisfies the b-(E.A)-property. �

3. Corollaries and examples

In this section we draw some corollaries from our main results and provide ex-
amples in support of our results.

If we take A = B = f and S = T = g in Theorem 2.3 and Theorem 2.4, we get
Corollary 3.1 and Corollary 3.2, respectively.

Corollary 3.1. Let (X, d) be a b-metric space and f and g be selfmaps of X.
Assume that there exists β ∈ F such that

1
2s min{d(fx, gx), d(fy, gy)} ≤ max{d(gx, gy), d(fx, fy)}

=⇒ s4d(fx, fy) ≤ β(M(x, y))M(x, y)
(3.1)

where
M(x, y) = max{d(gx, gy), d(gx, fx), d(gy, fy), d(gx,fy)2s , d(gy,fx)2s , d(gx,fx)d(gy,fy)

1+d(gx,gy)+d(fx,fy) ,
d(gx,fy)d(gy,fx)

1+s4[d(gx,gy)+d(fx,fy)]},
for all x, y ∈ X. If f(X) ⊆ g(X), the pair (f, g) is compatible and f or g is
b-continuous then f and g have a unique common fixed point in X.

Corollary 3.2. Let (X, d) be a b-metric space with coefficient s ≥ 1. Let f, g : X →
X be selfmaps of X and satisfy f(X) ⊆ g(X) and the inequality (3.1). Suppose
that the pair (f, g) satisfies the b-(E.A)-property and that one of the subspace f(X)
and g(X) is b-closed in X. Then the pairs (f, g) have a point of coincidence in
X. Moreover, if the pair (f, g) is weakly compatible, then f and g have a unique
common fixed point in X.

The following is an example in support of Theorem 2.3.

Example 3.1. Let X = R+ and let d : X ×X → R+ defined by

d(x, y) =


0 if x = y,
4 if x, y ∈ [0, 1],

5 + 1
x+y if x, y ∈ (1,∞),

27
10 otherwise.

The b-metric conditions (b1) and (b2) are trivially hold for this example.
Let us now check (b3).
For this purpose we consider the following nontrivial case.
Let y ∈ [0, 1] and x, z ∈ (1,∞).
Then d(x, z) = 5 + 1

x+z , d(x, y) = 27
10 , d(y, z) = 27

10 .
We have
2 ≤ x+ z =⇒ 1

x+z ≤
1
2 so that 5 + 1

x+z ≤ 5 + 1
2 <

489
480 ( 27

5 ).

Therefore d(x, z) = 5 + 1
x+z <

489
480 ( 27

10 + 27
10 ) = s[d(x, y) + d(y, z)] where s = 489

480
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so that (b3) holds.
Thus d is a b-metric with s = 489

480 .
Clearly this d is complete so that (X, d) is a complete b-metric space.

Here we observe that when x = 101
100 , z = 102

100 ∈ (1,∞) and y ∈ [0, 1), we have

d(x, z) = 1115
203 �

27
5 = d(x, y) + d(y, z) so that d is not a metric.

We define A,B, S, T : X → X by

A(x) = 1 if x ∈ [0,∞), B(x) =

{
x2 + 2 if x ∈ [0, 1)
x2+1

2 if x ∈ [1,∞),

S(x) =

{
x+ 2 if x ∈ [0, 1)
x+1
2 if x ∈ [1,∞),

and T (x) =

{
3x2 + 4 if x ∈ [0, 1)
x(x+2)

3 if x ∈ [1,∞).
Clearly A(X) ⊆ T (X) and B(X) ⊆ S(X).
Here A is b-continuous.
We choose a sequence {xn} with {xn} = 1 + 1

2n , n ≥ 1, we have

ASxn = A(
1+ 1

2n+1

2 ) = 1 and SAxn = S1 = 1.
Therefore lim

n→∞
d(ASxn, SAxn) = 0 so that the pair (A,S) is compatible and clearly

the pair (B, T ) is weakly compatible.

We define β : [0,∞)→ [0, 1s ) by β(t) = 480
489e

−t
100 . Then we have β ∈ F.

Case (i): x, y ∈ [0, 1).
d(Ax,By) = 27

10 , d(Sx, Ty) = 5 + 1
x+y , d(Ty,By) = 5 + 1

x+y , d(Sx,Ax) = 27
10 ,

d(Ax, Ty) = 27
10 , d(Sx,By) = 5 + 1

x+y and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{5 + 1
x+y ,

27
10 , 5 + 1

x+y , (
240
489 )(5 + 1

x+y ), ( 240
489 )( 27

10 ),
( 27
10 )(5+

1
x+y )

1+5+ 1
x+y+ 27

10

,

(5+ 1
x+y )( 27

10 )

1+( 489
480 )

4(5+ 1
x+y+ 27

10 )
}

= 5 + 1
x+y .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{ 2710 , 5 + 1
x+y}

= ( 240
489 )( 27

10 )

≤ max{5 + 1
x+y ,

27
10}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (489
480 )4( 27

10 ) ≤ 480
489e

−(5+ 1
x+y

)

100 5 + 1
x+y = β(M(x, y))M(x, y).

Case (ii): x, y ∈ (1,∞).
d(Ax,By) = 27

10 , d(Sx, Ty) = 5 + 1
x+y , d(Ty,By) = 5 + 1

x+y , d(Sx,Ax) = 27
10 ,

d(Ax, Ty) = 27
10 , d(Sx,By) = 5 + 1

x+y and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{5 + 1
x+y ,

27
10 , 5 + 1

x+y , (
240
489 )(5 + 1

x+y ), ( 240
489 )( 27

10 ),
( 27
10 )(5+

1
x+y )

1+5+ 1
x+y+ 27

10

,

(5+ 1
x+y )( 27

10 )

1+( 489
480 )

4(5+ 1
x+y+ 27

10 )
}

= 5 + 1
x+y .

Since
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1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{ 2710 , 5 + 1
x+y}

= ( 240
489 )( 27

10 )

≤ max{5 + 1
x+y ,

27
10}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (489
480 )4( 27

10 ) ≤ 480
489e

−(5+ 1
x+y

)

100 5 + 1
x+y = β(M(x, y))M(x, y).

Case (iii): x ∈ [0, 1), y ∈ (1,∞).
d(Ax,By) = 27

10 , d(Sx, Ty) = 5 + 1
x+y , d(Ty,By) = 5 + 1

x+y , d(Sx,Ax) = 27
10 ,

d(Ax, Ty) = 27
10 , d(Sx,By) = 5 + 1

x+y and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{5 + 1
x+y ,

27
10 , 5 + 1

x+y , (
240
489 )(5 + 1

x+y ), ( 240
489 )( 27

10 ),
( 27
10 )(5+

1
x+y )

1+5+ 1
x+y+ 27

10

,

(5+ 1
x+y )( 27

10 )

1+( 489
480 )

4(5+ 1
x+y+ 27

10 )
}

= 5 + 1
x+y .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{ 2710 , 5 + 1
x+y}

= ( 240
489 )( 27

10 )

≤ max{5 + 1
x+y ,

27
10}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (489
480 )4( 27

10 ) ≤ 480
489e

−(5+ 1
x+y

)

100 (5 + 1
x+y ) = β(M(x, y))M(x, y).

Case (iv): x ∈ (1,∞), y ∈ [0, 1).
d(Ax,By) = 27

10 , d(Sx, Ty) = 5 + 1
x+y , d(Ty,By) = 5 + 1

x+y , d(Sx,Ax) = 27
10 ,

d(Ax, Ty) = 27
10 , d(Sx,By) = 5 + 1

x+y and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{5 + 1
x+y ,

27
10 , 5 + 1

x+y , (
240
489 )(5 + 1

x+y ), ( 240
489 )( 27

10 ),
( 27
10 )(5+

1
x+y )

1+5+ 1
x+y+ 27

10

,

(5+ 1
x+y )( 27

10 )

1+( 489
480 )

4(5+ 1
x+y+ 27

10 )
}

= 5 + 1
x+y .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{ 2710 , 5 + 1
x+y}

= ( 240
489 )( 27

10 )

≤ max{5 + 1
x+y ,

27
10}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (489
480 )4( 27

10 ) ≤ 480
489e

−(5+ 1
x+y

)

100 (5 + 1
x+y ) = β(M(x, y))M(x, y).

Case (v): x = 1, y ∈ [0, 1).
d(Ax,By) = 27

10 , d(Sx, Ty) = 27
10 , d(Ty,By) = 5 + 1

x+y , d(Sx,Ax) = 0,

d(Ax, Ty) = 27
10 , d(Sx,By) = 27

10 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
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d(Sx,Ax)d(Ty,By)
1+d(Sx,Ty)+d(Ax,By) ,

d(Sx,By)d(Ty,Ax)
1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{ 2710 , 0, 5 + 1
x+y , (

240
489 )( 27

10 ), ( 240
489 )( 27

10 ), 0,
( 27
10 )(

27
10 )

1+( 489
480 )

4(5+ 1
x+y+ 27

10 )
}

= 5 + 1
x+y .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{0, 5 + 1
x+y}

= 0 ≤ max{ 2710 ,
27
10}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (489
480 )4( 27

10 ) ≤ 480
489e

−(5+ 1
x+y

)

100 (5 + 1
x+y ) = β(M(x, y))M(x, y).

Case (vi): x = 1, y ∈ (1,∞).
d(Ax,By) = 27

10 , d(Sx, Ty) = 27
10 , d(Ty,By) = 5 + 1

x+y , d(Sx,Ax) = 0,

d(Ax, Ty) = 27
10 , d(Sx,By) = 27

10 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{ 2710 , 0, 5 + 1
x+y , (

240
489 )( 27

10 ), ( 240
489 )( 27

10 ), 0,
( 27
10 )(

27
10 )

1+( 489
480 )

4(5+ 1
x+y+ 27

10 )
}

= 5 + 1
x+y .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{0, 5 + 1
x+y}

= 0 ≤ max{ 2710 ,
27
10}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (489
480 )4( 27

10 ) ≤ 480
489e

−(5+ 1
x+y

)

100 (5 + 1
x+y ) = β(M(x, y))M(x, y).

Case (vii): x ∈ [0, 1), y = 1.
Here d(Ax,By) = 0. Clearly the inequality (2.3) holds in this case.
Case (viii): x ∈ [0, 1), y = 1.
Here d(Ax,By) = 0. In this case the inequality (2.3) holds clearly.
From all the above four cases, A,B, S and T are Geraghty-Suzuki type contraction
maps. Therefore A,B, S and T satisfy all the hypotheses of Theorem 2.3 and 1 is
the unique common fixed point of A,B, S and T .

The following is an example in support of Theorem 2.4.

Example 3.2. Let X = [0, 1] and let d : X ×X → R+ defined by

d(x, y) =


0 if x = y,
11
15 if x, y ∈ [0, 23 ),

23
25 + x+y

26 if x, y ∈ [ 23 , 1],
121
250 otherwise.

The conditions (b1) and (b2) are trivially hold.
We now verify condition (b3) for nontrivial case.
Let y ∈ [0, 23 ) and x, z ∈ [ 23 , 1].

Then d(x, z) = 23
25 + x+z

26 , d(x, y) = 121
250 , d(y, z) = 121

250 .
We have
x+ z ≤ 2 =⇒ x+z

26 ≤
1
13 so that 23

25 + x+z
26 ≤

23
25 + 1

13 <
51
49 ( 121

125 ).

Therefore d(x, z) = 23
25 + x+z

26 < 51
49 ( 121

250 + 121
250 ) = s[d(x, y) + d(y, z)] where s = 51

49 .

The other cases also trivially hold with s = 51
49 so that (b3) holds and d is a b-metric.

Clearly this metric d is complete so that (X, d) is a complete b-metric space.
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Here we observe that when x = 9
10 , z = 1 ∈ [ 23 , 1] and y ∈ [0, 23 ), we have

d(x, z) = 1291
1300 �

121
125 = d(x, y) + d(y, z) so that d is not a metric.

We define A,B, S, T : X → X by

A(x) = 2
3 if x ∈ [0, 1], B(x) =

{
1
3 if x ∈ [0, 23 )

1− x
2 if x ∈ [ 23 , 1],

S(x) =

{
x if x ∈ [0, 23 )

4
3 − x if x ∈ [ 23 , 1],

and T (x) =

{
1
4 if x ∈ [0, 23 )

4
3 − x if x ∈ [ 23 , 1].

Clearly A(X) ⊆ T (X) and B(X) ⊆ S(X). A(X) = { 23} is b-closed.

We choose a sequence {xn} with {xn} = 2
3 + 1

2n , n ≥ 2 with

lim
n→∞

Axn = lim
n→∞

Sxn = 2
3 , hence the pair (A,S) satisfies the b-(E.A)-property.

Clearly the pairs (A,S) and (B, T ) are weakly compatible.

We define β : [0,∞)→ [0, 1s ) by β(t) = 49
51e

−t
100 .

Then we have β ∈ F.
Case (i): x, y ∈ [0, 23 ).

d(Ax,By) = 121
250 , d(Sx, Ty) = 11

15 , d(Ty,By) = 11
15 , d(Sx,Ax) = 121

250 ,

d(Ax, Ty) = 121
250 , d(Sx,By) = 11

15 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{ 1115 ,
121
250 ,

11
15 , (

49
102 )( 11

15 ), ( 49
102 )( 121

250 ),
( 121
250 )(

11
15 )

1+ 11
15+

121
250

,
( 11
15 )(

121
250 )

1+( 51
49 )

4( 11
15+

121
250 )
} = 11

15 .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 49

102 min{ 121250 ,
11
15}

= ( 49
102 )( 121

250 )

≤ max{ 1115 ,
121
250}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (51
49 )4( 121

250 ) ≤ 49
51e

−( 11
15

)

100
11
15 = β(M(x, y))M(x, y).

Case (ii): x, y ∈ ( 2
3 , 1].

d(Ax,By) = 121
250 , d(Sx, Ty) = 11

15 , d(Ty,By) = 11
15 , d(Sx,Ax) = 121

250 ,

d(Ax, Ty) = 121
250 , d(Sx,By) = 11

15 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{ 1115 ,
121
250 ,

11
15 , (

49
102 )( 11

15 ), ( 49
102 )( 121

250 ),
( 121
250 )(

11
15 )

1+ 11
15+

121
250

,
( 11
15 )(

121
250 )

1+( 51
49 )

4( 11
15+

121
250 )
} = 11

15 .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 49

102 min{ 121250 ,
11
15}

= ( 49
102 )( 121

250 )

≤ max{ 1115 ,
121
250}

= max{d(Sx, Ty), d(Ax,By)}.

Now we consider s4d(Ax,By) = (51
49 )4( 121

250 ) ≤ 49
51e

−( 11
15

)

100
11
15 = β(M(x, y))M(x, y).

Case (iii): x ∈ [0, 23 ), y ∈ ( 2
3 , 1].

d(Ax,By) = 121
250 , d(Sx, Ty) = 11

15 , d(Ty,By) = 11
15 , d(Sx,Ax) = 121

250 ,

d(Ax, Ty) = 121
250 , d(Sx,By) = 11

15 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}
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= max{ 1115 ,
121
250 ,

11
15 , (

49
102 )( 11

15 ), ( 49
102 )( 121

250 ),
( 121
250 )(

11
15 )

1+ 11
15+

121
250

,
( 11
15 )(

121
250 )

(1+( 51
49 )

4 11
15+

121
250 )
} = 11

15 .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 49

102 min{ 121250 ,
11
15}

= ( 49
102 )( 121

250 )

≤ max{ 1115 ,
121
250}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (51
49 )4( 121

250 ) ≤ 49
51e

−( 11
15

)

100
11
15 = β(M(x, y))M(x, y).

Case (iv): x ∈ ( 2
3 , 1], y ∈ [0, 23 ).

d(Ax,By) = 121
250 , d(Sx, Ty) = 11

15 , d(Ty,By) = 11
15 , d(Sx,Ax) = 121

250 ,

d(Ax, Ty) = 121
250 , d(Sx,By) = 11

15 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{ 1115 ,
121
250 ,

11
15 , (

49
102 )( 11

15 ), ( 49
102 )( 121

250 ),
( 121
250 )(

11
15 )

1+ 11
15+

121
250

,
( 11
15 )(

121
250 )

1+( 51
49 )

4( 11
15+

121
250 )
}

= 11
15 .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 49

102 min{ 121250 ,
11
15}

= ( 49
102 )( 121

250 )

≤ max{ 1115 ,
121
250}

= max{d(Sx, Ty), d(Ax,By)}.

Now we consider s4d(Ax,By) = (51
49 )4( 121

250 ) ≤ 49
51e

−( 11
15

)

100
11
15 = β(M(x, y))M(x, y).

Case (v): x = 2
3 , y ∈ [0, 23 ).

d(Ax,By) = 121
250 , d(Sx, Ty) = 121

250 , d(Ty,By) = 11
15 , d(Sx,Ax) = 0,

d(Ax, Ty) = 121
250 , d(Sx,By) = 121

250 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{ 121250 , 0,
11
15 , (

49
102 )( 121

250 ), ( 49
102 )( 121

250 ), 0,
( 121
250 )(

121
250 )

(1+( 51
49 )

4 11
15+

121
250 )
} = 11

15 .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{0, 1115}
= 0 ≤ max{ 121250 ,

121
250}

= max{d(Sx, Ty), d(Ax,By)}.
Now we consider

s4d(Ax,By) = (51
49 )4( 121

250 ) ≤ 49
51e

−( 11
15

)

100
11
15 = β(M(x, y))M(x, y).

Case (vi): x = 2
3 , y ∈ ( 2

3 , 1].

d(Ax,By) = 121
250 , d(Sx, Ty) = 121

250 , d(Ty,By) = 11
15 , d(Sx,Ax) = 0,

d(Ax, Ty) = 121
250 , d(Sx,By) = 121

250 and

M(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By)
2s , d(Ty,Ax)

2s ,
d(Sx,Ax)d(Ty,By)

1+d(Sx,Ty)+d(Ax,By) ,
d(Sx,By)d(Ty,Ax)

1+s4[d(Sx,Ty)+d(Ax,By)]}

= max{ 121250 , 0,
11
15 , (

49
102 )( 121

250 ), ( 49
102 )( 121

250 ), 0,
( 121
250 )(

121
250 )

1+( 51
49 )

4( 11
15+

121
250 )
} = 11

15 .

Since
1
2s min{d(Sx,Ax), d(Ty,By)} = 240

489 min{0, 1115}
= 0 ≤ max{ 121250 ,

121
250}

= max{d(Sx, Ty), d(Ax,By)}.
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Now we consider

s4d(Ax,By) = (51
49 )4( 121

250 ) ≤ 49
51e

−( 11
15

)

100
11
15 = β(M(x, y))M(x, y).

Case (vii): x ∈ [0, 23 ), y = 2
3 .

Here d(Ax,By) = 0. Clearly the inequality (2.3) holds in this case.
Case (viii): x ∈ [0, 23 ), y = 2

3 .
Here d(Ax,By) = 0. In this case the inequality (2.3) holds clearly.
From all the above four cases, A,B, S and T are Geraghty-Suzuki type contraction
maps. Therefore A,B, S and T satisfy all the hypotheses of Theorem 2.4 and 2

3 is
the unique common fixed point of A,B, S and T .
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