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SCATTERING BY A MOVING PEC PLANE AND A DIELECTRIC

HALF-SPACE IN HERTZIAN ELECTRODYNAMICS

B. POLAT1 §

Abstract. For a demonstration of the predictions of Hertzian Electrodynamics in scat-
tering problems, a general formulation is provided which is followed by various appli-
cations of the presented methodology to 2-D canonical problems involving a Perfect
Electrical Conductor (PEC) plane and a dielectric half-space in uniform and harmonic
motions under plane wave incidence.
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Frame Indifference, Progressive Derivatives.
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1. Introduction

With the wide acceptance of Special and General Relativity Theories (SRT, GRT) as ex-
perimental facts in early 20th century, problems of electromagnetic wave propagation and
scattering for moving bodies have been handled and solved mostly in a relativistic frame
in literature till date. While it is impossible to provide an entire account of the immense
literature in this area, a considerable number of works with relevance to electromagnetics
engineering applications handled in this work can be reached at ([1],[2],[3],[4],[5],[6],[7],[8])
and the references cited therein.

In the present work we provide a demonstration of the predictions of Hertzian Elec-
trodynamics (HE) in scattering problems. It is structured as a sequel of [9] where we
reviewed and extended certain aspects of the mathematical foundations, axiomatic struc-
ture and principles of HE. In Section 2 a general formulation of the scattering problems
for material bodies with an arbitrary velocity is provided. Specifically, we consider the
scenario in Figure 1 where, according to an observer in Cartesian reference configura-

tion Ox1x2x3t, the incident electromagnetic wave with fields (E⃗inc(r⃗; t), H⃗inc(r⃗; t)) and

sources (ρTx(r⃗; t), J⃗Tx(r⃗; t)) generated by a stationary transmitter in an ambient medium
I is impinging on an object occupying a region D and in arbitrary relative motion with
instantaneous velocity v⃗(r⃗; t). This is followed in the subsequent sections by various ap-
plications of the presented methodology to 2-D canonical problems involving a Perfect
Electrical Conductor (PEC) plane and a dielectric half-space in uniform and harmonic
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Figure 1. An illustration of a scattering problem

motions and under plane wave incidence. Finally, we provide a theoretical comparison of
the results derived with HE and SRT for the special case of uniform motion. The reader
is assumed to be already familiar with the terminology, definitions, postulates, theorems,
etc. in [9] so that many of them shall not be repeated herein for practical reasons. In
particular we shall frequently use the terms “E-frame” and “L-frame” as abbreviations of
Eulerian and Lagrangian frames from fluid mechanics for denoting reference (spatial) and
current (material) configurations for brevity.

2. The General Formulation of a Scattering Problem

The frame indifferent structure of Hertzian field equations require that the field expres-
sions in E- frame in any scenario of moving bodies can be obtained via the maps of the
end results obtained in the corresponding Maxwells theory of stationary media (in other
words, in L- frame). Therefore we can solve a scattering problem from an isolated moving
body formally by “frame hopping”1 following the steps below:

I) Map the incoming field from E- to L-frame
II) Solve the scattered field from the associated boundary value problem in L-frame
III) Map the scattered field back from L- to E-frame
In constructing the boundary value problem in L-frame, the corresponding spatial/temporal

jump and edge conditions are obtained from the distributional investigation of the field
equations along with complementary conditions such as radiation condition, periodicity,
boundedness, etc.

2.1. The Incoming Wave. In E-frame the incident fields satisfy the Maxwell equations
of stationary media

curlE⃗inc(r⃗; t) +
∂

∂t
B⃗inc(r⃗; t) = 0⃗, curlH⃗inc(r⃗; t)−

∂

∂t
D⃗inc(r⃗; t) = J⃗Tx(r⃗; t) (2.1a,b)

divD⃗inc(r⃗; t) = ρTx(r⃗; t), divB⃗inc(r⃗; t) = 0 (2.1c,d)

Let us assume medium I simple and lossless with constitutive parameters (ε, µ). Then
the incident time domain (& phasor) fields in E-frame satisfy the stationary wave (&

1A methodology first employed by Van Bladel for relativistic scattering problems (cf.[1]).
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Helmholtz) equations(
lap− 1

c2
∂2

∂t2

)(
E⃗inc(r⃗; t)

H⃗inc(r⃗; t)

)
=

(
(1/ε) gradρTx(r⃗; t)

0⃗

)
(2.2a)

(
lap + k2

)( E⃗inc(r⃗)

H⃗inc(r⃗)

)
=

(
(1/ε) gradρTx(r⃗)

0⃗

)
(2.2b)

where c = 1
/√

µε is the phase velocity and k = ωinc/c = 2π/λ is the wave number with
angular frequency ωinc = 2πfinc and time dependence taken as exp(−iωinct). For an
observer in L-frame Ox′1x

′
2x

′
3t, which is not necessarily Cartesian, the object is stationary

and the surrounding medium I is in relative motion with an instantaneous velocity v⃗′(r⃗′; t).
Accordingly, in L-frame the incident fields satisfy the Hertzian field and wave equations

curl′E⃗′
inc(r⃗

′; t) +
♢′

♢′t
B⃗′

inc(r⃗
′; t) = 0⃗, curl′H⃗ ′

inc(r⃗
′; t)− ♢′

♢′t
D⃗′

inc(r⃗
′; t) = J⃗ ′

Tx(r⃗
′; t) (2.3a,b)

div′D⃗′
inc(r⃗

′; t) = ρ′Tx(r⃗
′; t), div′B⃗′

inc(r⃗
′; t) = 0 (2.3c,d)(

lap′ − 1

c2
♢′2

♢′t2

)(
E⃗′

inc(r⃗
′; t)

H⃗ ′
inc(r⃗

′; t)

)
=

(
(1/ε) grad′ρ′Tx(r⃗

′; t)

0⃗

)
. (2.4)

In (2.3) the comoving time derivative of a vector A⃗′
inc(r⃗

′; t) is given by

♢′

♢′t
A⃗′

inc =
∂

∂t
A⃗′

inc + v⃗′ · grad′A⃗′
inc − A⃗′

inc · grad′ v⃗′ + A⃗′
inc div

′ v⃗′. (2.5)

When the incident fields and sources in L-frame are monochromatic with an arbitrary time
dependence, say exp (−iω′

inct), then their phasors satisfy the reduced field equations (see
[9], Section 7)

curl′E⃗′
inc(r⃗

′)− iωincB⃗
′
inc(r⃗

′) = 0⃗, curl′H⃗ ′
inc(r⃗

′) + iωincD⃗
′
inc(r⃗

′) = J⃗ ′
Tx(r⃗

′) (2.6a,b)

div′D⃗′
inc(r⃗

′) = ρ′Tx(r⃗
′), div′B⃗′

inc(r⃗
′) = 0 (2.6c,d)

and the Helmholtz equations(
lap′ + k2

)( E⃗′
inc(r⃗

′)

H⃗ ′
inc(r⃗

′)

)
=

(
(1/ε) grad′ρ′Tx(r⃗

′)

0⃗

)
. (2.7)

2.2. The Scattered Wave. Let us express the total field in space in E- and L-frames
respectively as

(E⃗tot, H⃗tot) =

{
(E⃗inc, H⃗inc) + (E⃗sc, H⃗sc), in medium I

(E⃗d, H⃗d), in region D

and (E⃗′
tot, H⃗

′
tot) =

{
(E⃗′

inc, H⃗
′
inc) + (E⃗′

sc, H⃗
′
sc), in medium I

(E⃗′
d, H⃗

′
d), in region D

In L-frame of the scattered wave, i.e., with reference to the motion of region D, an L-
observer senses the entire space (constituting the ambient source free medium I and region
D) in motion with instantaneous velocity −ṽ′(r⃗′; t). Accordingly, the scattered fields in
medium I satisfy the Hertzian equations

curl′E⃗′
sc(r⃗

′; t) +
♢̄′

♢̄′t
B⃗′

sc(r⃗
′; t) = 0⃗, curl′H⃗ ′

sc(r⃗
′; t)− ♢̄′

♢̄′t
D⃗′

sc(r⃗
′; t) = 0⃗ (2.8a,b)

div′D⃗′
sc(r⃗

′; t) = 0, div′B⃗′
sc(r⃗

′; t) = 0 (2.8c,d)
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lap′ − 1

c2
♢̄′2

♢̄′t2

)(
E⃗′

sc(r⃗
′; t)

H⃗ ′
sc(r⃗

′; t)

)
= 0⃗ (2.9)

where the accompanying comoving time derivative of a vector A⃗′
sc is defined as

♢̄′

♢̄′t
A⃗′

sc =
∂

∂t
A⃗′

sc − v⃗′ · grad′A⃗′
sc + A⃗′

sc · grad′ v⃗′ − A⃗′
sc div

′ v⃗′ (2.10)

When the scattered fields in L-frame are monochromatic with an arbitrary time depen-
dence, say exp (−iω′

sct), then their phasors satisfy the Hertzian equations

curlE⃗d(r⃗
′)− iωincB⃗d(r⃗) = 0⃗, curlH⃗d(r⃗) + iωincD⃗d(r⃗) = J⃗d(r⃗) (2.11a,b)

divD⃗d(r⃗) = ρd(r⃗), divB⃗d(r⃗) = 0 (2.11c,d)

and the Helmholtz equations(
lap + k2d

)( E⃗d(r⃗)

H⃗d(r⃗)

)
=

(
(1/εd) gradρd(r⃗)

0⃗

)
(2.12)

When the incident fields in L-frame are not monochromatic but possess arbitrary wave-
forms which can be expressed as a superposition of monochromatic components in terms
of a Fourier series or integral representation, then their each (discrete or continuous) com-
ponent satisfies (2.7) individually, while similar arguments also hold in (2.12), (2.16) and
(2.21).

It should be noticed that the wave numbers k, kd remain invariant in E- and L-frames.
Since the canonical examples in the present investigation are restricted to rigid bodies
with v⃗ = v⃗(t), one may set div′ v⃗′ = 0, divv⃗ = 0, gradv⃗ = ¯̄0, grad′v⃗′ = ¯̄0 in (2.10) and
(2.19).

2.3. Total Field inside the Moving Object. In L-frame of the fields (E⃗′
d, H⃗

′
d) and

sources (ρ′d, J⃗
′
d) inside the moving object, the region D is sensed as stationary since the

ambient medium I is observed as source-free. Therefore in region D the field equations of
stationary media

curl′E⃗′
d(r⃗

′; t) +
∂

∂t
B⃗′

d(r⃗
′; t) = 0⃗, curl′H⃗ ′

d(r⃗
′; t)− ∂

∂t
D⃗′

d(r⃗
′; t) = J⃗ ′

d(r⃗
′; t) (2.13a,b)

div′D⃗′
d(r⃗

′; t) = ρ′d(r⃗
′; t), div′B⃗′

d(r⃗
′; t) = 0 (2.13c,d)

are satisfied. When the region D simple with constitutive parameters (εd, µd, σd), (2.13)
yield the stationary wave equations(

lap′ − 1

c2d

∂2

∂t2
− σdµd

∂

∂t

)(
E⃗′

d(r⃗
′; t)

H⃗ ′
d(r⃗

′; t)

)
=

(
(1/εd) grad

′ρ′d(r⃗
′; t)

0⃗

)
, (2.14)

with cd = 1
/√

µdεd. When the transmitted fields in L-frame are monochromatic with an
arbitrary time dependence, say exp(−iω′

dt), then their phasors satisfy the reduced field
equations

curl′E⃗′
d(r⃗

′)− iωincB⃗
′
d(r⃗

′) = 0⃗, curl′H⃗ ′
d(r⃗

′) + iωincD⃗
′
d(r⃗

′) = J⃗ ′
d(r⃗

′) (2.15a,b)

div′D⃗′
d(r⃗

′) = ρ′d(r⃗
′), div′B⃗′

d(r⃗
′) = 0 (2.15c,d)

and the Helmholtz equations(
lap′ + k2d

)( E⃗′
d(r⃗

′)

H⃗ ′
d(r⃗

′)

)
=

(
(1/εd) grad

′ρ′d(r⃗
′)

0⃗

)
(2.16)
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with k2d = ω2
incεdµd+ iωincσdµd. For E-observer the field and wave equations (2.13), (2.14)

read

curlE⃗d(r⃗; t) +
♢
♢t

B⃗d(r⃗; t) = 0⃗, curlH⃗d(r⃗; t)−
♢
♢t

D⃗d(r⃗; t) = J⃗d(r⃗; t) (2.17a,b)

divD⃗d(r⃗; t) = ρd(r⃗; t), divB⃗d(r⃗; t) = 0 (2.17c,d)

(
lap− 1

c2d

♢2

♢t2
− σdµd

♢
♢t

)(
E⃗d(r⃗; t)

H⃗d(r⃗; t)

)
=

(
(1/εd) gradρd(r⃗; t)

0⃗

)
, (2.18)

where the accompanying comoving time derivative of a vector A⃗d is defined as

♢
♢t

A⃗d =
∂

∂t
A⃗d + v⃗ · gradA⃗d − A⃗d · gradv⃗ + A⃗d divv⃗. (2.19)

When the transmitted fields in E-frame are monochromatic with an arbitrary time depen-
dence, say exp(−iωtrt), then their phasors satisfy the reduced field equations

curlE⃗d(r⃗
′)− iωincB⃗d(r⃗) = 0⃗, curlH⃗d(r⃗) + iωincD⃗d(r⃗) = J⃗d(r⃗) (2.20a,b)

divD⃗d(r⃗) = ρd(r⃗), divB⃗d(r⃗) = 0 (2.20c,d)

and the Helmholtz equations

(
lap + k2d

)( E⃗d(r⃗)

H⃗d(r⃗)

)
=

(
(1/εd) gradρd(r⃗)

0⃗

)
. (2.21)

When the incident fields in L-frame are not monochromatic but possess arbitrary wave-
forms which can be expressed as a superposition of monochromatic components in terms
of a Fourier series or integral representation, then their each (discrete or continuous) com-
ponent satisfies (2.7) individually, while similar arguments also hold in (2.12), (2.16) and
(2.21).

It should be noticed that the wave numbers k, kd remain invariant in E- and L-frames.
Since the canonical examples in the present investigation are restricted to rigid bodies
with v⃗ = v⃗(t) , one may set div′ v⃗′= 0, divv⃗= 0, gradv⃗=¯̄0, grad′ v⃗′=¯̄0 in (2.10) and (2.19).

2.4. Boundary Relations on the Moving Object. In the context of the scattering
problems investigated in the subsequent sections we shall assume the enclosure S = ∂D of
the moving medium a simple interface, which might be a PEC or a dielectric interface sup-

porting surface charges and currents ρ′S(r⃗
′
S ; t), J⃗

′
S(r⃗

′
S ; t). In these cases the distributional

form of stationary field (Maxwell) equations in L- frame respectively read

n̂′ ×
[
E⃗′

inc(r⃗
′
S ; t) + E⃗′

sc(r⃗
′
S ; t)

]
= 0⃗ (2.22a)

n̂′ ×
[
H⃗ ′

inc(r⃗
′
S ; t) + H⃗ ′

sc(r⃗
′
S ; t)

]
= J⃗ ′

S(r⃗
′
S ; t) (2.22b)

n̂′ ·
[
D⃗′

inc(r⃗
′
S ; t) + D⃗′

sc(r⃗
′
S ; t)

]
= ρ′S(r⃗

′
S ; t) (2.22c)

n̂′ ·
[
B⃗′

inc(r⃗
′
S ; t) + B⃗′

sc(r⃗
′
S ; t)

]
= 0 (2.22d)
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and

n̂′ ×
[
E⃗′

inc(r⃗
′
S ; t) + E⃗′

sc(r⃗
′
S ; t)

]
= n̂′ × E⃗′

d(r⃗
′
S ; t) (2.23a)

n̂′ ×
[
H⃗ ′

inc(r⃗
′
S ; t) + H⃗ ′

sc(r⃗
′
S ; t)

]
= n̂′ × H⃗ ′

d(r⃗
′
S ; t) (2.23b)

n̂′ ·
[
D⃗′

inc(r⃗
′
S ; t) + D⃗′

sc(r⃗
′
S ; t)

]
= n̂′ · D⃗′

d(r⃗
′
S ; t) (2.23c)

n̂′ ·
[
B⃗′

inc(r⃗
′
S ; t) + B⃗′

sc(r⃗
′
S ; t)

]
= n̂′ · B⃗′

d(r⃗
′
S ; t) (2.23d)

Along with constitutive relations and radiation, edge, tip, periodicity, boundedness etc.
type complementary conditions, the associated boundary value problem can be solved

uniquely to yield the L-fields (E⃗′
sc, H⃗

′
sc) and (E⃗′

d, H⃗
′
d), whose maps also yield the E-fields

(E⃗sc, H⃗sc) and (E⃗d, H⃗d).

3. TE Plane Wave Scattering by a Moving PEC Plane

In this section we shall investigate the scattering of uniform homogeneous TE plane
waves by a PEC plane as depicted in Figure 2 for four different modes of motion of
practical interest. Common to all cases is the expression of the incident wave in half-space

Figure 2. An illustration of TE plane wave scattering by a moving PEC plane

x1 < 0 (medium I), which propagates along n̂inc = (cosα, sinα) direction in (x1, x2) plane
with fields represented by

E⃗inc(r⃗; t) = x̂3f(n̂inc · r⃗ − ct), H⃗inc(r⃗; t) = (1/Z) n̂inc × E⃗inc(r⃗; t) (3.1a,b)

with n̂inc · r⃗ = x1 cosα+x2 sinα, where α ∈ [0, π/2) is the incidence angle and Z =
√

µ/ε
stands for the characteristic impedance of lossless medium I. For the special case of a
monochromatic source the incident electrical field is assumed to have the general form

E⃗inc(r⃗; t) = x̂3g(kn̂inc · r⃗ − ωinct) (3.1c)

while (3.1b) still holds.
In the first two special cases below we carry out the investigation for general time

harmonic and monochromatic waves simultaneously.



B. POLAT: SCATTERING BY A MOVING PEC PLANE AND A DIELECTRIC HALF-SPACE ... 129

3.1. Case I: Uniform Motion Parallel to the Plane. For E-observer we assume the
PEC plane at x1 = 0 in uniform rectilinear motion with velocity v⃗ = Gx̂2, G = const. G
is assumed to take negative values for motion along −x̂2 direction.

For L-observer the PEC plane is stationary and it is half-space −x̂2 (medium I) moving
with linear velocity v⃗′ = −Gx̂′2. Incorporating the Galilean transformations x2 = x′2+Gt,
x1,3 = x′1,3; x̂i = x̂′i, i = 1, 2, 3, the incoming fields in L-frame read

E⃗′
inc(r⃗

′; t) = x̂′3f(n̂
′
inc · r⃗′ − c′inct) = x̂′3g(kn̂

′
inc · r⃗′ − ω′

inct),

H⃗ ′
inc(r⃗

′; t) = (1/Z) n̂′
inc × E⃗′

inc(r⃗
′; t) (3.2a,b)

with n̂′
inc · r⃗′ = x′1 cosα+ x′2 sinα and

c′inc = c−G sinα = c(1− β sinα), ω′
inc = ωinc(1− β sinα),

f ′
inc = finc(1− β sinα) (3.2c-e)

where β = G/c . While the wave number k remains invariant in E- and L-frames as
mentioned in Section 2, the phase velocity and the angular frequency of the incident wave
as observed in L- frame are scaled proportionally, obeying k = ωinc/c = ω′

inc/c
′
inc.

One observes

c′inc, ω
′
inc, f

′
inc > 0, i.e., 1− β sinα > 0 or β < 1/sinα (3.3)

as a kinematical upper limit on for the the incident wave to catch the moving plane. (3.3) is
satisfied for ∀α, β ≤ 1 & α ∈

[
0, sin−1 (1/β)

)
, β ≥ 1. Unless this condition is satisfied the

incident wave is observed to propagate away in L-frame in the direction (− cosα,− sinα).
Let the scattered2 field be given in the form

E⃗′
sc(r⃗

′; t) = x̂′3RTEf(n̂
′
sc · r⃗′ − c′sct) = x̂′3RTEg(kn̂

′
sc · r⃗′ − ω′

sct),

H⃗ ′
sc(r⃗

′; t) = (1/Z) n̂′
sc × E⃗′

sc(r⃗
′; t)

(3.4)

with n̂′
sc · r⃗′ = −x′1 cosαsc + x′2 sinαsc. The unknown quantities c′sc, αsc, RTE are solved

from the boundary value problem
(
lap′ − 1

c2
♢̄′2

♢̄′t2

)
E⃗′

sc (x
′
1, x

′
2; t) = 0⃗, in medium I

Boundary Condition : E⃗′
inc(0, x

′
2; t) + E⃗′

sc(0, x
′
2; t) = 0⃗, ∀x′2, t

Radiation Condition as x′1 → −∞
(3.5a-c)

The wave equation (3.5a) in medium I, namely,(
lap′ − 1

c2
♢̄′2

♢̄′t2

)
E⃗′

sc = x̂′3

(
lap′ − 1

c2

(
∂

∂t
+G

∂

∂x′2

)2
)
f(n̂′

sc · r⃗′ − c′sct)

= x̂′3

(
1− 1

c2
(
−c′sc +G sinαsc

)2)
f = 0⃗

requires

c′sc = c(1 + β sinαsc), ω
′
sc = ωinc(1 + β sinαsc), (3.6a,b)

while ω′
sc/c

′
sc = k. Boundary condition (3.5b) requires

f(x′2 sinα− c′inct) +RTEf(x
′
2 sinαsc − c′sct) = 0, ∀x′2, t (3.7)

from which one uniquely obtains

2We use the terminology “scattering” in the general sense, by which a merely reflection mechanism
should be understood in the cases scrutinized in Sections 3.1, 3.2, 4.1 and 4.2.
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I) phase invariance:

dx′2
/
dt = c′inc

/
sinα = c′sc

/
sinαsc (3.8a)

or

(1− β sinα)/sinα = (1 + β sinαsc)/sinαsc (3.8b)

which reads

sinαsc = sinα/(1− 2β sinα) (3.8c)

II)full reflection:

RTE = −1 (3.8d)

Substituting (3.8c) into (3.6) reads

c′sc = c′inc(1− 2β sinα), ω′
sc = ω′

inc(1− 2β sinα) (3.8e,f)

The maps of (E⃗′
sc, H⃗

′
sc) into E-frame read

E⃗sc(r⃗; t) = −x̂3f(n̂sc · r⃗ − csct) = −x̂3g(kn̂sc · r⃗ − ωsct),

H⃗sc(r⃗; t) = (1/Z) n̂sc × E⃗sc(r⃗; t)
(3.9)

with n̂sc · r⃗ = −x1 cosαsc + x2 sinαsc and

csc = c (1 + 2β sinαsc) = c/(1− 2β sinα)

ωsc = ωinc (1 + 2β sinαsc)= ωinc/(1− 2β sinα)
(3.10)

revealing a Doppler effect due to the component of the incident wave parallel to, i.e., in
the same direction with the motion of the boundary, while ωsc/csc = k.

It is seen that the realization of a scattering phenomenon requires

csc, ωsc, αsc > 0, i.e. 1− 2β sinα > 0, or β < 1/(2 sinα) (3.11)

which is satisfied for ∀α, β ≤ 1/2 & α ∈
[
0, sin−1 (1/2β)

)
, β ≥ 1/2. Depending on α and

β, there are two different scattering wave mechanisms observed:

Space wave mode :
0 ≤ sinαsc < 1, 1− 2β sinα > sinα,
i.e.∀α, β ≤ 0 & α ∈

[
0, sin−1 (1/(2β + 1))

)
, β ≥ 0

Evanescent wave modes :
sinαsc ≥ 1, 0 < 1− 2β sinα ≤ sinα,
i.e.α ∈

[
sin−1 (1/(2β + 1)) , π/2

)
,−1/2 < β ≤ 1/2

&α ∈
[
sin−1 (1/(2β + 1)) , sin−1 (1/(2β))

)
, β ≥ 1/2

while, in space wave mode, the parameters of the scattered wave are related to those of
the incident wave through the relations sinαsc ≤ sinα, αsc ≤ α < π/2, ωsc ≤ ωinc,csc ≤ c when 1− 2β sinα ≥ 1, i.e., β ≤ 0;

sinαsc ≥ sinα, α ≤ αsc < π/2, ωsc ≥ ωinc,csc ≥ c when sinα < 1− 2β sinα ≤ 1,
i.e., 0 ≤ β < (1/2) (1/sinα− 1)

The special case αsc = α only occurs for the stationary case β = 0. When we express the
frequency of the scattered wave as

fsc = finc +∆f (3.12a)

we get

∆f/finc = 2β sinα/(1− 2β sinα) (3.12b)

which indicates that ∆f is directly proportional with α and β parameters.
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Figure 3. An illustration of (3.12b) for α = π/4. Evanescent wave mode starts at
β = 0.207.

When a monochromatic incidence is considered, in the evanescent wave mode we observe
scattered evanescent (surface) waves with a pattern

eik(−x1 cosαsc+x2 sinαsc) = ekx1

√
sin2αsc−1eikx2 sinαsc , x1 < 0

In the limiting case α = sin−1 (1/2β) the scattered evanescent wave totally vanishes. In
TM mode the angle and the frequency of the scattered wave are the same as in TE mode,
while the reflection coefficient is calculated as RTM = cosα/cosαsc , which provides{

RTM ≤ 1 when αsc ≤ α < π/2, i.e., β ≤ 0
RTM ≥ 1 when α ≤ αsc < π/2, i.e., 0 ≤ β ≤ (1/2) (1/sinα− 1)

in space wave mode. For both TE and TM modes, the parallel motion of the plane has
no influence on the scattered wave under normal incidence α = 0.

Figure 4. An illustration of scattering mechanism for opposite directions of uniform
motion parallel to the plane

3.2. Case II: Uniform Motion Perpendicular to the Plane. For E-observer we as-
sume the PEC plane at x1 = 0 in uniform rectilinear motion with velocity v⃗ = Gx̂1,
G = const., while for L-observer the PEC plane is stationary and it is half-space x′1 < 0
(medium I) moving with linear velocity v⃗′ = −Gx̂′1. Incorporating the Galilean transfor-
mations x1 = x′1 +Gt, x2,3 = x′2,3; x̂i = x̂′i, i = 1, 2, 3, the incoming fields in L-frame have
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the same form as (3.2a,b), while

c′inc = c−G cosα = c(1− β cosα), ω′
inc = ωinc(1− β cosα), f ′

inc = finc(1− β cosα)
(3.13a-c)

with the requirement

c′inc, ω
′
inc, f

′
inc > 0, i.e., 1− β cosα > 0, or β < 1/cosα (3.13d)

as a kinematical upper limit on β for the the incident wave to catch the moving plane.
(3.13d) is satisfied for ∀α, β ≤ 1 & α ∈

(
cos−1 (1/β) , π/2

)
, β ≥ 1. Unless this condition

is satisfied the incident wave is observed to propagate away in L-frame in the direction
(− cosα,− sinα). Similarly, the scattered fields in L-frame have the same form as (3.4),
while the unknown quantities c′sc, αsc, RTE are solved from the same boundary value
problem as (3.5).

The wave equation (3.5a), namely,(
lap′ − 1

c2
♢̄′2

♢̄′t2

)
E⃗′

sc = x̂′3

(
lap′ − 1

c2

(
∂

∂t
+G

∂

∂x′1

)2
)
f(n̂′

sc · r⃗′ − c′sct)

= x̂′3

(
1− 1

c2
(
−c′sc −G cosαsc

)2)
f = 0⃗

requires

c′sc = c(1− β cosαsc), ω
′
sc = ωinc(1− β cosαsc) (3.14a,b)

while ω′
sc/c

′
sc = k. From the boundary condition (3.5b) one uniquely obtains

I) phase invariance as in (3.8a), which reads

(1− β cosα)/sinα = (1− β cosαsc)/sinαsc (3.15)

II) full reflection as in (3.8d). (3.15) can be written equivalently as sinαsc − sinα =
β sin(αsc − α). Setting ξ = cosαsc ∈ (0, 1] and using basic trigonometric relations shapes
(3.15) into the quadratic equation(

1 + β2A
)
ξ2 − 2βAξ +A− 1 = 0 (3.16a)

with A = sin2α
/
(1− β cosα)2. In virtue of (3.3), the square-root of the discriminant of

(3.16a) reads
√
∆ = 2(cosα− β)/(1− β cosα) > 0 and one obtains the roots as

ξ1,2 =
[
βsin2α± (1− β cosα)(cosα− β)

]/(
1− 2β cosα+ β2

)
. (3.16b)

The only root that falls in the described range ξ ∈ (0, 1] is the one with upper plus sign,
which exactly reads

ξ = cosα, i.e. αsc = α. (3.16c)

Substituting (3.16c) into (3.14) reads

c′sc = c′inc, ω
′
sc = ω′

inc. (3.16d,e)

It is observed that in L-frame the wave is reflected with the same phase velocity and
frequency when the motion is perpendicular to the plane.

Finally, the maps of (E⃗′
sc, H⃗

′
sc) into E-frame read the same equations as (3.9), where

csc = c (1− 2β cosα) , ωsc = ωinc (1− 2β cosα) , ∆f/finc = −2β cosα (3.17a-c)

revealing a Doppler effect due to the component of the incident wave in the same direction
with the motion of the boundary, while ωsc/csc = k. (3.17c) indicates that ∆f is inversely
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proportional with α, while it is linearly proportional with −β. It is seen that the realization
of a scattering phenomenon requires

csc, ωsc > 0, i.e. 1− 2β cosα > 0, or β < 1/(2 cosα) (3.17d)

which is satisfied for ∀α,β ≤ 1/2 & α ∈
(
cos−1 (1/2β) , π/2

)
, β ≥ 1/2.

In TM mode, as in Section 3.1, the angle and frequency of the scattered wave is the
same as in TE mode, while one also observes full reflection since RTM = cosα/cosαsc = 1.

3.3. Case III: Harmonic Motion Parallel to the Plane. We consider the special
case of harmonic motion

v⃗(t) = G(t)x̂2, G(t) = G cos(ωt), G = const (3.18)

with coordinate transformations

x2 = x′2 + F (t), F (t) = (G/ω) sin(ωt), x1 = x′1, x3 = x′3, x̂i = x̂′i, i = 1, 2, 3 (3.19)

E⃗inc(r⃗; t) = x̂3 e
ikn̂inc·r⃗e−iωinct, H⃗inc(r⃗; t) = (1/Z) n̂inc × E⃗inc(r⃗; t) (3.20)

In virtue of the well known Bessel property

eiΩsin(ωt) =

∞∑
−∞

Jm(Ω)eimωt, (3.21)

the map of (3.20) into L-frame can be written as

E⃗′
inc(r⃗

′; t) =

∞∑
−∞

E⃗
′(m)
inc (r⃗′; t) =

∞∑
−∞

E⃗
′(m)
inc (r⃗′)e−iω

′(m)
inc t,

E⃗
′(m)
inc (r⃗′) = x̂′3Jm(Ω)eikn̂

′
inc·r⃗′ (3.22a)

H⃗ ′
inc(r⃗

′; t) =
∞∑
−∞

H⃗
′(m)
inc (r⃗′; t) =

∞∑
−∞

H⃗
′(m)
inc (r⃗′)e−iω

′(m)
inc t,

H⃗
′(m)
inc (r⃗′)t = (1/Z) n̂′

inc × E⃗
(m)
inc (r⃗

′) (3.22b)

with n̂′
inc · r⃗′ = x′1 cosα + x′2 sinα and Ω = (G/ω) k sinα. Based on the principle of

superposition for sources and fields, the incident wave (3.22) can be considered as an
infinite sum of hypothetical plane wave modes with amplitude Jm(Ω), angular frequency

ω
′(m)
inc = ωinc −mω, while for each mode the plane moves with a uniform velocity v⃗(m) =

G(m)x̂2 = cβ(m)x̂2. which is determined via (3.2d) by writing ω
′(m)
inc = ωinc − mω =

ωinc(1 − β(m) sinα) to get β(m) = (mω/ωinc)/sinα. Then the scattered fields in L-frame

can be written directly by substituting ω
′(m)
inc , β(m) for ω′

inc, β in the available results in
Section 3.1 to get

E⃗′
sc(r⃗

′; t) =

∞∑
−∞

E⃗′(m)
sc (r⃗′; t) =

∞∑
−∞

E⃗′(m)
sc (r⃗′)e−iω

′(m)
sc t,

E⃗′(m)
sc (r⃗′) = −x̂′3Jm(Ω)R

(m)
TE eikn̂

′(m)
sc ·r⃗′ (3.23a)

H⃗ ′
sc(r⃗

′; t) =

∞∑
−∞

H⃗ ′(m)
sc (r⃗′; t) =

∞∑
−∞

H⃗ ′(m)
sc (r⃗′)e−iω

′(m)
sc t,

H⃗ ′(m)
sc (r⃗′) = (1/Z) n̂′(m)

sc × E⃗′(m)
sc (r⃗′) (3.23b)
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with n̂
′(m)
sc · r⃗′ = −x′1 cosα

(m)
sc + x′2 sinα

(m)
sc , R

(m)
TE = −1 and

sinα(m)
sc = sinα

/(
1− 2β(m) sinα

)
= sinα/(1− 2mω/ωinc) (3.24a)

ω′(m)
sc = ω

′(m)
inc

(
1− 2β(m) sinα

)
= ω

′(m)
inc (1− 2mω/ωinc) (3.24b)

while in E-frame one has

E⃗sc(r⃗; t) =

∞∑
−∞

E⃗(m)
sc (r⃗; t) =

∞∑
−∞

E⃗(m)
sc (r⃗)e−iω

(m)
sc t,

E⃗(m)
sc (r⃗) = −x̂3Jm(Ω)eikn̂

(m)
sc ·r⃗′ (3.25a)

H⃗sc(r⃗; t) =

∞∑
−∞

H⃗(m)
sc (r⃗; t) =

∞∑
−∞

H⃗(m)
sc (r⃗)e−iω

(m)
sc t,

H⃗(m)
sc (r⃗) = (1/Z) n̂(m)

sc × E⃗(m)
sc (r⃗) (3.25b)

with n̂
(m)
sc · r⃗ = −x1 cosα

(m)
sc + x2 sinα

(m)
sc and

ω(m)
sc = ωinc

/(
1− 2β(m) sinα

)
= ωinc/(1− 2mω/ωinc) (3.26)

In TM mode the angle and the frequency of the scattered wave modes are the same as in

TE mode, while the modal reflection coefficient is calculated as R
(m)
TM = cosα

/
cosα

(m)
sc .

For both TE and TM modes, the parallel harmonic motion of the plane has no influence
on the scattered wave under normal incidence α = 0. The special case ω = 0 coincides
with Case I.

Evanescent modes are observed for sinα > 1− 2mω/ωinc or m > (ωinc/2ω) (1− sinα),
while only space waves occur under normal incidence.

3.4. Case IV: Harmonic Motion Perpendicular to the Plane. In this example we
consider the special case of harmonic motion

v⃗(t) = G(t)x̂1, G(t) = G cos(ωt), G = const (3.27)

with coordinate transformations

x1 = x′1 + F (t), F (t) = (G/ω) sin(ωt), x2 = x′2, x3 = x′3, x̂i = x̂′i, i = 1, 2, 3 (3.28)

and under monochromatic TE plane wave incidence as in (3.20). In L-frame the incident

electrical field is expressed by E⃗′
inc(r⃗

′; t) = x̂′3 e
ikn̂′

inc·r⃗′eiΩsin(ωt)e−iωinct with n̂′
inc · r⃗′ =

x′1 cosα + x′2 sinα, while Ω = (G/ω) k cosα. The scattered electrical field satisfies the
boundary value problem
(
lap′ − 1

c2

(
∂
∂t +G(t) ∂

∂x′
1

)2)
E⃗′

sc (r⃗′; t) = 0⃗, or
(
lap′ + k2

)
E⃗′

sc(r⃗
′; t) = 0⃗, in medium I

Boundary Condition : E⃗′
inc(0, x

′
2; t) + E⃗′

sc(0, x
′
2; t) = 0⃗,∀x′2, t

Radiation Condition as x′1 → −∞
(3.29)

A solution in the form E⃗′
sc(r⃗

′; t) = x̂′3RTEe
ikn̂′

sc·r⃗′eiΩsin(ωt)e−iω′
sct with n̂′

sc · r⃗′ = −x′1 cosαsc

+ x′2 sinαsc directly requires RTE = −1, ω′
sc = ωinc, αsc = α, which reads

E⃗′
sc(r⃗

′; t) = −x̂′3 e
ikn̂′

sc·r⃗′eiΩsin(ωt)e−iωinct (3.30)

The same result can also be obtained by expanding the incident field in L-frame into

an infinite sum of hypothetical plane wave modes and substituting ω
′(m)
inc = ωinc − mω,
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β(m) = (mω/ωinc)/cosα for ω′
inc, β in the available results in Section 3.2. Then in E-frame

one has

E⃗sc(r⃗; t) = −x̂3 e
ikn̂sc·r⃗eiΩsin(2ωt)e−iωinct (3.31)

with n̂sc · r⃗ = −x1 cosα+x2 sinα. In virtue of (3.21), (3.31) can also be expressed in terms
of plane wave harmonics as

E⃗sc(r⃗; t) = −x̂3

∞∑
−∞

Jm(Ω)eikn̂sc·r⃗e−i(ωinc−2mω)t. (3.32)

In TM mode the angle and the frequency of the scattered wave modes are the same as in
TE mode, while the modal reflection coefficient is calculated as RTM = cosα/cosαsc = 1.
The special case coincides with Case II.

4. TM Plane Wave Scattering by a Moving Dielectric Half Space

In this section we shall investigate the scattering of uniform homogeneous TM plane
waves by a lossless dielectric half space for the same four modes of motion as in Section 3
in a similar fashion. Therefore the same quantities already described for the corresponding
problem in Section 3 will not be repeated.

We assume the incident wave propagates along n̂inc = (cosα, sinα) direction in (x1, x2)
plane in half-space x1 < 0 (medium I) with fields represented by

H⃗inc(r⃗; t) = x̂3f(n̂inc · r⃗ − ct), E⃗inc(r⃗; t) = ZH⃗inc(r⃗; t)× n̂inc. (4.1a,b)

For the special case of monochromatic source the incident magnetic field is assumed to
have the general form

H⃗inc(r⃗; t) = x̂3g(kn̂inc · r⃗ − ωinct). (4.1c)

Without losing generality, let us assume the half-space x1 > 0 (region D) lossless with

constitutive parameters (εd,µd), characteristic impedance Zd =
√

µd/εd, wave number
kd = ωinc

√
εdµd and refractivity defined by n =

√
εdµd

/√
εµ = c/cd = kd/k.

4.1. Case I: Uniform Motion Parallel to the Plane. For E-observer we assume the
dielectic half-space in uniform rectilinear motion with velocity v⃗ = Gx̂2, G = const. Based
on the same coordinate transformations as in Section 3.1 the incoming fields in L-frame
read

H⃗ ′
inc(r⃗

′; t) = x̂′3f(n̂
′
inc · r⃗′ − c′inct) = x̂′3g(kn̂

′
inc · r⃗′ − ω′

inct),

E⃗′
inc(r⃗

′; t) = ZH⃗ ′
inc(r⃗

′; t)× n̂′
inc

(4.2)

while (3.2c-e) still holds. Let the scattered field in medium I and the total field in region
D be given in the form

H⃗ ′
sc(r⃗

′; t) = x̂′3RTMf(n̂′
sc · r⃗′ − c′sct) = x̂′3RTMg(kn̂′

sc · r⃗′ − ω′
sct),

E⃗′
sc(r⃗

′; t) = ZH⃗ ′
sc(r⃗

′; t)× n̂′
sc

(4.3)

H⃗ ′
d(r⃗

′; t) = x̂′3TTMf(n̂′
d · r⃗′ − c′dt) = x̂′3TTMg(kdn̂

′
d · r⃗′ − ω′

dt),

E⃗′
d(r⃗

′; t) = ZdH⃗
′
d(r⃗

′; t)× n̂′
d

(4.4)



136 TWMS J. APP. ENG. MATH. V.2, N.2, 2012

with n̂′
sc·r⃗′ = −x′1 cosαsc+x′2 sinαsc, n̂

′
d·r⃗′ = x′1 cosαd+x′2 sinαd. The unknown quantities

c′sc, αsc, c
′
d, αd, RTM , TTM are solved from the boundary value problem

(
lap′ − 1

c2
♢̄′2

♢̄′t2

)
H⃗ ′

sc (x
′
1, x

′
2; t) = 0⃗, in medium I(

lap′ − 1
c2d

∂2

∂t2

)
H⃗ ′

d (x
′
1, x

′
2; t) = 0⃗, in region D

H⃗ ′
inc(0, x

′
2; t) + H⃗ ′

sc(0, x
′
2; t) = H⃗ ′

d(0, x
′
23; t), ∀x′2, t

Z
[
H⃗ ′

inc(0, x
′
2; t)× n̂′

inc + H⃗ ′
sc(0, x

′
2; t)× n̂′

sc

]
= ZdH⃗

′
d(0, x

′
2; t)× n̂′

d,∀x′2, t
Radiation Conditions as x′1 → ±∞

(4.5a,e)

The wave equations (4.5a,b) require

c′sc = c(1 + β sinαsc), ω
′
sc = ωinc(1 + β sinαsc), c

′
d = cd, ω

′
d = ωinc (4.6)

while the boundary relations (4.5c,d) read

f(x′2 sinα− c′inct) +RTMf(x′2 sinαsc − c′sct) = TTMf(x′2 sinαd − c′dt) (4.7a)

Z
[
cosα f(x′2 sinα− c′inct)− cosαscRTMf(x′2 sinαsc − c′sct)

]
= cosαd ZdTTMf(x′2 sinαd − c′dt) (4.7b)

for ∀x′2, t, from which one uniquely obtains
I) phase invariance:

dx′2
/
dt = c′inc

/
sinα = c′sc

/
sinαsc = c′d

/
sinαd (4.8a)

or

(1− β sinα)/sinα = (1 + β sinαsc)/sinαsc = 1/(n sinαd) (4.8b)

which reads

sinαsc = sinα/(1− 2β sinα), sinαd = sinα/[n(1− β sinα)] (4.8c,d)

as well as

c′sc = c′inc(1− 2β sinα), ω′
sc = ω′

inc(1− 2β sinα) (4.8e,f)

II) the reflection and transmission coefficients:

RTM =
Z cosα− Zd cosαd

Z cosαsc + Zd cosαd
, TTM =

Z(cosα+ cosαsc)

Z cosαsc + Zd cosαd
(4.9a,b)

The maps of (E⃗′
sc, H⃗

′
sc) and (E⃗′

d, H⃗
′
d) into E-frame read

H⃗sc(r⃗; t) = x̂3RTMf(n̂sc · r⃗ − csct) = x̂3RTMg(kn̂sc · r⃗ − ωsct), E⃗sc(r⃗; t)

= ZH⃗sc(r⃗; t)× n̂sc

(4.10)

H⃗d(r⃗; t) = x̂3TTMf(n̂d · r⃗ − ctrt) = x̂3TTMg(kdn̂d · r⃗ − ωtrt), E⃗d(r⃗; t)

= ZdH⃗d(r⃗; t)× n̂d

(4.11)

with n̂sc · r⃗ = −x1 cosα+ x2 sinα, n̂d · r⃗ = x1 cosαd + x2 sinαd and

csc = c (1 + 2β sinαsc) = c/(1− 2β sinα),

E⃗d(r⃗; t) = ZdH⃗d(r⃗; t)× n̂d (4.12a,b)

∆f/finc = 2β sinα/(1− 2β sinα) (4.12c)



B. POLAT: SCATTERING BY A MOVING PEC PLANE AND A DIELECTRIC HALF-SPACE ... 137

ctr = cd +G sinαd = cd(1 + βn sinαd) = cd/(1− β sinα) (4.13a)

ωtr = ωinc + kG sinαd = ωinc(1 + βn sinαd) = ωinc/(1− β sinα) (4.13b)

while ωsc/csc = k, ωtr/ctr = kd. In (4.12) one observes the same Doppler effect as in
Section 3.1 for a PEC plane regardless of the constitutive parameters of the dielectric
half-space.

The Brewster angle αB for which one has zero reflection coefficient (RTM = 0) is
calculated from the equation

Z cosαB = Zd cosαd (4.14a)

which, upon substituting (4.8d), shapes into the transcendental equation

n2
(
Z2
d − Z2cos2αB

)
(1− β sinαB)

2 − Z2
dsin

2αB = 0. (4.14b)

A change of variables ξ = sinαB ∈ [0, 1) provides a compact closed form representation

(Zd/Z)2
[
n2(1− βξ)2 − ξ2

]
− n2(1− βξ)2

(
1− ξ2

)
= 0 (4.14c)

For ∀n, β there is always one and only one root of the quartic (fourth order) polynomial
(4.14c) that falls into the described range of ξ. For the special case µd = µ one has
Z/Zd = n and (4.14c) simplifies as

n2(1− βξ)2
[
1− n2(1− ξ2)

]
− ξ2 = 0. (4.14d)

While the roots of (4.14c,d) can always be obtained analytically through Cardanos formu-
las, under the asymptotic condition

n4β2ξ4 << 2 |β|n4ξ3, namely |β| ξ << 2, (roughly equivalent to |β| < 0.2), (4.14e)

(4.14d) can be approximated by the cubic polynomial

−2βn2ξ3 + (β2(1− n2) + n2 − 1
/
n2)ξ2 − 2β

(
1 + n2

)
ξ + 1− n2 = 0 (4.14f)

The limiting case β = 0 yields the classical result ξ = n
/√

n2 + 1. As depicted in Figure

5, one observes an opposite variation in Brewster angle with increasing values of β for
n < 1 and n > 1.

In TE mode the angle and the frequency of the scattered and transmitted waves are
the same as in TM mode, while the reflection and transmission coefficients are calculated
as

RTE =
(1/Z) cosα− (1/Zd) cosαd

(1/Z) cosαsc + (1/Zd) cosαd
, TTE =

(1/Z)(cosα+ cosαsc)

(1/Z) cosαsc + (1/Zd) cosαd
(4.15a,b)

In this case (4.14d) is replaced by

β2ξ4 − 2βξ3 + (n2 − 1)(β2ξ2 − 2βξ + 1) = 0

the roots of which do not permit the Brewster angle mechanism for any β value.
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Figure 5. A MATLABTM calculation of Brewster angle from (4.14d)

4.2. Case II: Uniform Motion Perpendicular to the Plane. In this case the incident
wave has the same expression as (4.2) along with (3.13). We may assume the scattered
field in medium I and the total field in region D in the form (4.4), where the unknown
quantities c′sc, αsc, c

′
d, αd, RTM , TTM are solved from the same boundary value problem

as (4.5) which reads

c′sc = c(1− β cosαsc), ω
′
sc = ωinc(1− β cosαsc), c

′
d = cd, ω

′
d = ωinc (4.16a-d)

αsc = α, sinαd = sinα/[n(1− β cosα)] (4.17a,b)

and the same RTM , TTM values as in (4.9) which read

RTM =
Z cosα− Zd cosαd

Z cosα+ Zd cosαd
, TTM =

2Z cosα

Z cosα+ Zd cosαd

. In E-frame the fields have the same expressions as (4.10) where

csc = c (1− 2β cosα) , ωsc = ωinc (1− 2β cosα) , ∆f/finc = −2β cosα (4.18a-c)

ctr = cd +G cosαd = cd(1 + βn cosαd), ωtr = ωinc + kG cosαd = ωinc(1 + βn cosαd)
(4.18d,e)

In (4.18a-c) one observes the same Doppler effect as in Section 3.2 for a PEC plane
regardless of the constitutive parameters of the dielectric half-space.

The Brewster angle αB is calculated from the same equation as (4.14a), which, upon
substituting (4.17b), shapes into the transcendental equation

n2
(
Z2
d − Z2cos2αB

)
(1− β cosαB)

2 − Z2
dsin

2αB = 0. (4.19a)

A change of variables ξ = cosαB ∈ (0, 1] provides a compact closed form representation

(Zd/Z)2
[
n2(1− βξ)2 − (1− ξ2)

]
− n2ξ2(1− βξ)2 = 0. (4.19b)

For ∀n, β there is always one and only one root of the fourth order polynomial (4.19b)
that falls into the described range of ξ. For the special case µd = µ one has Z/Zd = n and
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(4.19b) simplifies as

n2(1− βξ)2
(
1− n2ξ2

)
− (1− ξ2) = 0. (4.19c)

While the roots of (4.19b,c) can always be obtained analytically through Cardanos for-
mulas, under the asymptotic condition (4.14e), (4.19c) can be approximated by the cubic
polynomial

2βn4ξ3 + (−n4 + n2β2 + 1)ξ2 − 2βnξ + n2 − 1 = 0. (4.19d)

The limiting case β = 0 yields the classical result ξ = 1
/√

n2 + 1. Again, as depicted in

Figure 6, an opposite variation in Brewster angle is observed with increasing values of β
for n < 1 and n > 1.

Figure 6. A MATLABTM calculation of Brewster angle from (4.14c)

The angle of total reflection αTR is observed for RTM = 1 and αd = π/2 and calculated
from the relation sinαTR = n(1− β cosαTR). Taking the square of each side and setting
ξ = cosαTR reads the quadratic equation(

1 + n2β2
)
ξ2 − 2βn2ξ + n2 − 1 = 0. (4.20a)

The nonnegative discriminant requirement brings the physical restriction

n ≤ 1
/√

1− β2 ≡ γ ≤ 1 (4.20b)

on refractrive index and a lower limit on β as −1 < β < min (1, 1/(2 cosα)). The positive
roots of (4.20a) yields the angle of total reflection uniquely as

cosαTR =

[
βn2 +

√
1− n2

/
γ2
]/(

1 + n2β2
)
. (4.20c)

From Figure 7 it is observed that is inversely proportional with varying in the interval

αTR ∈
(
0, cos−1

(
1−n2

1+n2

))
.

In TE mode the angle and the frequency of the scattered and transmitted waves are
the same as in TM mode, while the reflection and transmission coefficients are calculated
as

RTE =
(1/Z) cosα− (1/Zd) cosαd

(1/Z) cosα+ (1/Zd) cosαd
, TTE =

(2/Z) cosα

(1/Z) cosα+ (1/Zd) cosαd
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Figure 7. A MATLABTM calculation of total reflection angle from (4.20a) for n = 0.5.

In this case (4.19c) is replaced by

β2ξ4 − 2βξ3 + (1− n2β2)ξ2 + 2βn2ξ + 1− n2 = 0

the roots of which do not permit the Brewster angle mechanism for any β value.

4.3. Case III: Harmonic Motion Parallel to the Plane. In this case we consider the
velocity field and coordinate transformations given in (3.18) and (3.19). Then the fields
of the incident TM plane wave are written as

H⃗ ′
inc(r⃗

′; t) =

∞∑
−∞

H⃗
′(m)
inc (r⃗′; t) =

∞∑
−∞

H⃗
′(m)
inc (r⃗′)e−iω

′(m)
inc t, H⃗

′(m)
inc (r⃗′) = x̂′3Jm(Ω)eikn̂

′
inc·r⃗′

(4.21)

E⃗′
inc(r⃗

′; t) =

∞∑
−∞

E⃗
′(m)
inc (r⃗′; t) =

∞∑
−∞

E⃗
′(m)
inc (r⃗′)e−iω

′(m)
inc t, E⃗

′(m)
inc (r⃗′) = ZH⃗

′(m)
inc (r⃗′)×n̂′

inc (4.22)

with n̂′
inc · r⃗′ = x′1 cosα + x′2 sinα, Ω = (G/ω) k sinα and ω

′(m)
inc = ωinc −mω. Then it is

satisfactory that one substitutes ω
′(m)
inc = ωinc −mω, β(m) = (mω/ωinc)/sinα for ω′

inc, β
in the available results in Section 4.1 to get

H⃗ ′
sc(r⃗

′; t) =
∞∑
−∞

H⃗ ′(m)
sc (r⃗′; t) =

∞∑
−∞

H⃗ ′(m)
sc (r⃗′)e−iω

′(m)
sc t, H⃗ ′(m)

sc (r⃗′) = x̂′3Jm(Ω)R
(m)
TMeikn̂

′(m)
sc ·r⃗′

(4.23)

E⃗′
sc(r⃗

′; t) =
∞∑
−∞

E⃗′(m)
sc (r⃗′; t) =

∞∑
−∞

E⃗′(m)
sc (r⃗′)e−iω

′(m)
sc t, E⃗′(m)

sc (r⃗′) = ZH⃗ ′(m)
sc (r⃗′)×n̂′(m)

sc (4.24)

with

n̂′(m)
sc · r⃗′ = −x′1 cosα

(m)
sc + x′2 sinα

(m)
sc , n̂

′(m)
d · r⃗′ = x′1 cosα

(m)
d + x′2 sinα

(m)
d (4.25)

sinα(m)
sc = sinα/(1− 2mω/ωinc), sinα

(m)
d = sinα/[n(1−mω/ωinc)] (4.26)

ω′(m)
sc = ω

′(m)
inc (1− 2mω/ωinc) , ω

′(m)
d = ωinc (4.27)

R
(m)
TM =

Z cosα− Zd cosα
(m)
d

Z cosα
(m)
sc + Zd cosα

(m)
d

, T
(m)
TM =

Z(cosα+ cosα
(m)
sc )

Z cosα
(m)
sc + Zd cosα

(m)
d

, (4.28)
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while in E-frame one has

H⃗sc(r⃗; t) =
∞∑
−∞

H⃗(m)
sc (r⃗; t) =

∞∑
−∞

H⃗(m)
sc (r⃗)e−iω

(m)
sc t, H⃗(m)

sc (r⃗) = x̂3Jm(Ω)R
(m)
TMeikn̂

(m)
sc ·r⃗

(4.29)

E⃗sc(r⃗; t) =

∞∑
−∞

E⃗(m)
sc (r⃗; t) =

∞∑
−∞

E⃗(m)
sc (r⃗)e−iω

(m)
sc t, E⃗(m)

sc (r⃗) = ZH⃗(m)
sc (r⃗)× n̂(m)

sc (4.30)

H⃗d(r⃗; t) =
∞∑
−∞

H⃗
(m)
d (r⃗; t) =

∞∑
−∞

H⃗
(m)
d (r⃗)e−iω

(m)
tr t, H⃗

(m)
d (r⃗) = x̂3Jm(Ω)T

(m)
TM eikdn̂

(m)
d ·r⃗

(4.31)

E⃗d(r⃗; t) =

∞∑
−∞

E⃗
(m)
d (r⃗; t) =

∞∑
−∞

E⃗
(m)
d (r⃗)e−iω

(m)
tr t, E⃗

(m)
d (r⃗) = ZdH⃗

(m)
d (r⃗)× n̂

(m)
d (4.32)

with

n̂(m)
sc · r⃗ = −x1 cosα

(m)
sc + x2 sinα

(m)
sc , n̂

(m)
d · r⃗ = x1 cosα

(m)
d + x2 sinα

(m)
d (4.33)

ω(m)
sc = ωinc/(1− 2mω/ωinc), ω

(m)
tr = ωinc/(1−mω/ωinc). (4.34)

In TE mode the angle and the frequency of the scattered and transmitted wave modes
are the same as in TM mode, while the modal reflection and transmission coefficients are
calculated as

R
(m)
TE =

(1/Z) cosα− (1/Zd) cosα
(m)
d

(1/Z) cosα
(m)
sc + (1/Zd) cosα

(m)
d

, T
(m)
TE =

(1/Z)(cosα+ cosα
(m)
sc )

(1/Z) cosα
(m)
sc + (1/Zd) cosα

(m)
d

.

(4.35)
For both modes, the parallel harmonic motion of the plane has no influence on the scattered
wave under normal incidence α = 0. The special case ω = 0 coincides with Case I.

4.4. Case IV: Harmonic Motion Perpendicular to the Plane. In this case we con-
sider the velocity field and coordinate transformations given in (3.27) and (3.28). The fields
of the incident TM plane wave are given as (4.21) and (4.22), while Ω = (G/ω) k cosα.

Then it is satisfactory that one substitutes β(m) = (mω/ωinc)/cosα for β in the available
results in Section 4.2 to get the same scattered and transmitted fields as in (4.23), (4.24),
(4.27)-(4.30) where

α(m)
sc = α, sinα

(m)
d = sinα/ [n(1−mω/ωinc)] (4.36)

n̂′(m)
sc · r⃗′ = −x′1 cosα

(m)
sc + x′2 sinα

(m)
sc = −x′1 cosα+ x′2 sinα,

n̂
′(m)
d · r⃗′ = x′1 cosα

(m)
d + x′2 sinα

(m)
d

(4.37)

ω′(m)
sc = ωinc −mω,ω

′(m)
d = ωinc (4.38)

R
(m)
TM =

Z cosα− Zd cosα
(m)
d

Z cosα+ Zd cosα
(m)
d

, T
(m)
TM =

2Z cosα

Z cosα+ Zd cosα
(m)
d

(4.39)

n̂(m)
sc · r⃗ = −x1 cosα+ x2 sinα, n̂

(m)
d · r⃗ = x1 cosα

(m)
d + x2 sinα

(m)
d (4.40)

ω(m)
sc = ωinc − 2mω,ω

(m)
tr = ωinc(1 + β(m)n cosα

(m)
d ). (4.41)

Evanescent transmitted modes with pattern eikdn̂
(m)
d ·r⃗ = e−kdx1

√
sin2 α

(m)
d −1eikdx2 sinα

(m)
d ,

x1 > 0 are observed for sinα
(m)
d > 1, i.e., m > (ωinc/ω) [1− (sinα) /n].
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In TE mode the angle and the frequency of the scattered and transmitted wave modes
are the same as in TM mode, while the modal reflection and transmission coefficients are
calculated as

R
(m)
TE =

(1/Z) cosα− (1/Zd) cosα
(m)
d

(1/Z) cosα+ (1/Zd) cosα
(m)
d

, T
(m)
TE =

(1/Z)(cosα+ cosα
(m)
sc )

(1/Z) cosα+ (1/Zd) cosα
(m)
d

. (4.42)

The special case ω = 0 coincides with Case II.

5. A Comparison with Same Results Derived with Special Relativity
Theory

In Table 1 we provide a theoretical comparison of the results derived with HE and
SRT3 for the special cases of plane wave scattering by a PEC plane and a dielectric half
space in uniform motion as in Sections 3.1, 3.2, 4.1 and 4.2. In these cases the Euclidean
transformations of HE for rigid bodies reduce to the Galilean transformations

x′ = x−Gt, t′ = t (5.1a)

while SRT assumes the standard Lorentz transformations

x′ = γ (x−Gt) , t′ = γ (t− βx/c) (5.1b)

with γ = 1
/√

1− β2. Here the axes x′,x signify x′2,x2 and x′1,x1 when the motion is

parallel and perpendicular to the plane, respectively. A first order approximation in β
reads first order Lorentz transformations

x′ = x−Gt, t′ = t− βx/c, (5.1c)

which also indicates that a first or higher order departure in should be expected between
the physical quantities to be calculated with HE and SRT.

The different nature of frame indifferent and form invariant formulations reveals itself
dramatically in both cases of the motion parallel and perpendicular to the plane:

When the PEC plane (or dielectric half-space) moves parallel to its own plane, SRT
predicts that the reflected wave is not affected by motion with αsc = α, ωsc = ωinc,
while HE indicates an increase/decrease in αsc, ωsc values w.r.t. α, ωinc with the same
scaling factor 1/(1− 2β sinα), which yields a first order departure in β between the results
calculated by these two methods. On the other hand, in both theories the transmission
angle αd4 is predicted to differ from its value at rest.

When the PEC plane (or dielectric half-space) moves perpendicular to its own plane,
HE predicts that αsc = α, i.e., the angle of reflection is unaffected from motion, while
SRT indicates an aberration αsc ̸= α, which yields a first order departure in β between
the results calculated by these two methods. On the other hand, both methods predict
a Doppler shift ωsc ̸= ωinc, while the departure inbetween the corresponding results is of
order β2.

3Plane wave scattering by a PEC plane and a dielectric half space in uniform motion constitute the most
basic canonical problems in the context of electrodynamics of moving bodies and it has been investigated
intensely in literature by SRT as initiated in the original paper of Einstein [10]. The results given in Table
1 are adopted from ( [11], Section 7.5) and [2].
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6. Concluding Remarks

With the scope of reviving interest in HE, the present work is planned to be extended to
demonstrate the predictions of HE for a broad set of canonical problems with important
applications. (cf.[12]). Of primary interest are

i.the study of Doppler spectrum of moving sources;
ii.3-D radiation and scattering problems of practical interest for various combinations

of different types of sources, propagation media, scattering objects with/without edges,
and modes of Euclidean motion;

iii.the predictions of HE for various rotating electrical devices as well as for interferom-
etry and GPS experiments, etc.;

iv.the investigation of progressive derivatives, the field equations and solutions to bound-
ary value problems of practical interest for bodies in non-Euclidean motion, especially
involving radial expansion/contraction mechanisms with nonsolenoidal and irrotational
velocity fields.
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Table 1. A comparison of the results derived with HE and SRT.

Canonical
Problem

Solution by HE Solution by SRT

Section
3.1

RTE/TM = ∓1
sinαsc
sinα = ωsc

ωinc
= 1

1−2β sinα

RTE/TM = ∓1,αsc = α, ωsc = ωinc

No Doppler shift

(sinαsc/ sinα)HE − (sinαsc/ sinα)SRT = (ωsc/ωinc)HE − (ωsc/ωinc)SRT
=2β sinα+ higher order terms in β

Section
3.2

RTE/TM = ∓1 (α = 0)
αsc = α, ωsc

ωinc
= 1− 2β cosα

RTE/TM = ∓(1− β)2
/
(1− β2) (α = 0)

ωsc
ωinc

= 1−2β cosα+β2

1−β2

cosαsc =
(1+β2) cosα−2β
1−2β cosα+β2

(cosαsc − cosα)HE − (cosαsc − cosα)SRT = −2β sin2 α+ h.o.t.
(ωsc/ωinc)HE − (ωsc/ωinc)SRT = −2β2 + h.o.t(
RTE/TM

)
HE

−
(
RTE/TM

)
SRT

= ∓2β + h.o.t. (α = 0)

Section
4.1

sinαsc
sinα = ωsc

ωinc
= 1

1−2β sinα
ωtr
ωinc

= 1
1−β sinα ,

sinαd
sinα = 1

n(1−β sinα)

αsc = α, ωsc = ωtr = ωinc
sinαd
sinα = 1√

γ2(n2−1)(1−β sinα)2+1

No Doppler shift

(sinαsc/ sinα)HE − (sinαsc/ sinα)SRT = (ωsc/ωinc)HE − (ωsc/ωinc)SRT
= 2β sinα+ h.o.t.

(sinαd/ sinα)HE − (sinαd/ sinα)SRT = n−3β sinα+ h.o.t.
(ωtr/ωinc)HE − (ωtr/ωinc)SRT = β sinα+ h.o.t.

Section
4.2

αsc = α
sinαd
sinα = 1

n(1−β cosα)

ωsc/ωinc = 1− 2β cosα

ωtr/ωinc = 1

+βn

√
1− sin2α

[n2(1−β cosα)2]

cosαsc =
(1+β2) cosα−2β
1−2β cosα+β2

sinαd
sinα =


sin2α

+γ2

 β(1− β cosα)
× [β(1− β cosα)
+2q] + q2




−1/2

ωsc
ωinc

= 1−2β cosα+β2

1−β2 , ωtr
ωinc

= 1−β cosα+βq
1−β2

q =

{
[γ2(n2−1)(1−β cosα)2−sin2α]

γ2

+(1− β cosα)2

}1/2

(cosαsc − cosα)HE − (cosαsc − cosα)SRT = −2β sin2 α+ h.o.t.
(ωsc/ωinc)HE − (ωsc/ωinc)SRT = −2β2 + h.o.t
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