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ON TWO IDENTITIES FOR I-FUNCTION

VILMA D’SOUZA1, SHANTHA KUMARI K.2, §

Abstract. In this research note, two interesting identities involving I-function of one
variable introduced by Rathie have been derived. These results enable us to split a
particular I-function into the sum of four I-functions. A few new as well as known
special cases of our main results have been obtained.
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1. Introduction

The I-function introduced by A.K.Rathie[3] is defined and represented by the following
Mellin Barnes type contour integral:

Im,np,q (z) ≡ Im,np,q

[
z

∣∣∣∣ (a1, e1, A1), . . . , (ap, ep, Ap))
(b1, f1, B1), . . . , (bq, fq, Bq)

]
=

1

2πi

∫
L
θ(s)zsds (1)

where

θ(s) =

∏m
j=1 ΓBj (bj − fjs)

∏n
j=1 ΓAj (1− aj + ejs)∏q

j=m+1 ΓBj (1− bj + fjs)
∏p
j=n+1 ΓAj (aj − ejs)

(2)

Also

(i) i =
√
−1;

(ii) z 6= 0;
(iii) m,n, p, q are integers satisfying 0 ≤ m ≤ q, 0 ≤ n ≤ p;
(iv) L is a suitable contour in the complex plane;
(v) an empty product is to be interpreted as unity;
(vi) ej , j = 1, . . . , p; fj , j = 1, . . . , q; Aj , j = 1, . . . , p; and Bj , j = 1, . . . , q are positive

numbers;
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(vii) aj , j = 1, . . . , p and bj , j = 1, . . . , q are complex numbers such that no singularity
of ΓBj (bj − fjs), j = 1, . . . ,m , coincides with any singularity of ΓAj (1− aj + ejs),
j = 1, . . . , n. In general these singularities are not poles.

(viii) The contour L goes from σ − i∞ to σ + i∞ (σ real) so that all the singularities
of ΓBj (bj − fjs), j = 1, . . . ,m, lie to the right of L, and all the singularities of
ΓAj (1− aj + ejs), j = 1, . . . , n, lie to the left of L.

In short, (1) will be denoted by

I m, n
p, q

[
z

∣∣∣∣ 1(aj , ej , Aj)p
1(bj , fj , Bj)q

]
The function defined by (1) is convergent if

∆ > 0, |arg(z)| < 1

2
∆π, (3)

where

∆ =
m∑
j=1

Bjfj −
q∑

j=m+1

Bjfj +
n∑
j=1

Ajej −
p∑

j=n+1

Ajej . (4)

When A1 = A2 = · · · = Ap = 1 = B1 = B2 = · · · = Bq, (1) reduces to the H-function
introduced by Fox[2] and studied by Braaksma[1].

2. Main Results

The identities for the I-function to be established in this note are the following.

Result 1.

(2πi) I m+1, n+1
p+2, q+2

[
z

∣∣∣∣ (β, δ, 1), 1(aj , ej , Aj)p, (α, λ, 1)
(β, δ, 1), 1(bj , fj , Bj)q, (α, λ, 1)

]
= eiπ(α+β) I m+1, n+1

p+1, q+1

[
ze−iπ(λ+δ)

∣∣∣∣ (2β, 2δ, 1), 1(aj , ej , Aj)p
(2β, 2δ, 1), 1(bj , fj , Bj)q

]
+ eiπ(α−β) I m+1, n+1

p+1, q+1

[
ze−iπ(λ−δ)

∣∣∣∣ (2β, 2δ, 1), 1(aj , ej , Aj)p
(2β, 2δ, 1), 1(bj , fj , Bj)q

]
− e−iπ(α−β) I m+1, n+1

p+1, q+1

[
zeiπ(λ−δ)

∣∣∣∣ (2β, 2δ, 1), 1(aj , ej , Aj)p
(2β, 2δ, 1), 1(bj , fj , Bj)q

]
− e−iπ(α+β) I m+1, n+1

p+1, q+1

[
zeiπ(λ+δ)

∣∣∣∣ (2β, 2δ, 1), 1(aj , ej , Aj)p
(2β, 2δ, 1), 1(bj , fj , Bj)q

]
(5)

Proof. In order to establish the identity (5), we proceed as follows.
Denoting the left-hand of (5) by S, expressing the I-function with the help of its definition
we have,

S = (2πi)
1

2πi

∫
L
θ(s) zs

Γ(β − δs) Γ(1− β + δs)

Γ(α− λs) Γ(1− α+ λs)
ds (6)

where θ(s) is given by (2).
Using the result

Γ(β − δs) Γ(1− β + δs) = 2π
Γ(2β − 2δs) Γ(1− 2β + 2δs)

Γ(12 + β − δs) Γ(12 − β + δs)
(7)

(6) can be written as

S =

∫
L
θ(s) zs

Γ(2β − 2δs) Γ(1− 2β + 2δs) Γ(12 + α− λs) Γ(12 − α+ λs)

Γ(12 + β − δs) Γ(12 − β − δs) Γ(2α− 2λs) Γ(1− 2α+ 2λs)
ds (8)
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Using the results

cosπz =
π

Γ
(
1
2 − z

)
Γ
(
1
2 + z

) =
eiπz + e−iπz

2
(9)

and

sinπz =
π

Γ(z)Γ(1− z)
=
eiπz − e−iπz

2i
(10)

and after some algebra, we have

S =
1

2πi

∫
L
θ(s) zs Γ(2β − 2δs) Γ(1− 2β + 2δs)

.
(
eiπ(α−λs) − e−iπ(α−λs)

) (
eiπ(β−δs) + e−iπ(β−δs)

)
ds

=
1

2πi

∫
L
θ(s) zs Γ(2β − 2δs) Γ(1− 2β + 2δs)

.
{
eiπ(α+β−λs−δs) + eiπ(α−β−λs+δs)

− e−iπ(α−β−λs+δs) − e−iπ(α+β−λs−δs)
}
ds (11)

Now, breaking in to four parts and after some simplification, using the definition of I-
function, we easily arrive at the right-hand side of (5).
This completes the proof of the identity (5). �

Result 2.

I m+1, n+1
p+2, q+2

[
z

∣∣∣∣ (β, δ, A), 1(aj , ej , Aj)p, (α, λ,A)
(β, δ, A), 1(bj , fj , Bj)q, (α, λ,A)

]
= I m+2, n+2

p+4, q+4

[
z

∣∣∣∣ (2β, 2δ, A),
(
1
2 + α, λ,A

)
, 1(aj , ej , Aj)p, (2α, 2λ,A),

(
1
2 + β, δ, A

)
(2β, 2δ, A),

(
1
2 + α, λ,A

)
, 1(bj , fj , Bj)q, (2α, 2λ,A),

(
1
2 + β, δ, A

) ]
(12)

Proof. In order to establish the identity (12), we proceed as follows.
Denoting the left-hand of (12) by S, expressing the I-function with the help of its definition
we have,

S =
1

2πi

∫
L
θ(s) zs

ΓA(β − δs) ΓA(1− β + δs)

ΓA(α− λs) ΓA(1− α+ λs)
ds (13)

Using the result (7) and after some algebra, we have

S =
1

2πi

∫
L

{
θ(s) zs

ΓA(1− 2β + 2δs) ΓA(2β − 2δs)

ΓA(12 + β − δs) ΓA(12 − β + δs)

×
ΓA(12 − α+ λs) ΓA(12 + α− λs)
ΓA(2α− 2λs) ΓA(1− 2α+ 2λs)

}
ds (14)

After some simplification, using the definition of I-function, we easily arrive at the right-
hand side of (12).
This completes the proof of the identity (12). �
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3. Special Cases

(a) In (5), if we take δ = 0, we get, after some simplification,

I m, np+1, q+1

[
z

∣∣∣∣ 1(aj , ej , Aj)p, (α, λ, 1)

1(bj , fj , Bj)q, (α, λ, 1)

]
=

1

2πi

{
eiπα I m, np, q

[
ze−iπλ

∣∣∣∣ 1(aj , ej , Aj)p
1(bj , fj , Bj)q

]
− e−iπα I m, np, q

[
zeiπλ

∣∣∣∣ 1(aj , ej , Aj)p
1(bj , fj , Bj)q

]}
(15)

Further in (15), if we take Aj = 1(j = 1, . . . , p) and Bj = 1(j = 1, . . . , q), it reduces
to the H-function identity obtained by Rathie[5].

(b) In (5), if we take λ = 0, we get, after some simplification,

I m+1, n+1
p+1, q+1

[
z

∣∣∣∣ (α, λ, 1), 1(aj , ej , Aj)p
(α, λ, 1), 1(bj , fj , Bj)q

]
= eiπα I m+1, n+1

p+1, q+1

[
ze−iπλ

∣∣∣∣ (2α, 2λ, 1), 1(aj , ej , Aj)p
(2α, 2λ, 1), 1(bj , fj , Bj)q

]
+ e−iπα I m+1, n+1

p+1, q+1

[
zeiπλ

∣∣∣∣ (2α, 2λ, 1), 1(aj , ej , Aj)p
(2α, 2λ, 1), 1(bj , fj , Bj)q

]
(16)

Further in (16), if we take Aj = 1(j = 1, . . . , p) and Bj = 1(j = 1, . . . , q), it reduces
to the H-function identity obtained recently by Rathie et al.[6].

(c) In (5), if we take Aj = 1(j = 1, . . . , p) and Bj = 1(j = 1, . . . , q), it reduces to the
H-function identity obtained recently by Rathie[4].

(d) In (12), if we take δ = 0 we get

I m, np+1, q+1

[
z

∣∣∣∣ 1(aj , ej , Aj)p, (α, λ,A)

1(bj , fj , Bj)q, (α, λ,A)

]
=

1

(2π)A
I m+1, n+1
p+2, q+2

[
z

∣∣∣∣ (12 + α, λ,A
)
, 1(aj , ej , Aj)p, (2α, 2λ,A)(

1
2 + α, λ,A

)
, 1(bj , fj , Bj)q, (2α, 2λ,A),

]
(17)

In (17), if we take Aj = 1(j = 1, . . . , p) , Bj = 1(j = 1, . . . , q) and A = 1, it reduces
to the H-function identity obtained by Rathie[4].

(e) In (12), if we take λ = 0, we get

I m, np+1, q+1

[
z

∣∣∣∣ (β, δ, A), 1(aj , ej , Aj)p
(β, δ, A), 1(bj , fj , Bj)q

]
= (2π)A I m+1, n+1

p+2, q+2

[
z

∣∣∣∣ (2β, 2δ, A), 1(aj , ej , Aj)p,
(
1
2 + β, δ, A

)
(2β, 2δ, A), 1(bj , fj , Bj)q,

(
1
2 + β, δ, A

) ] (18)

In (18), if we take Aj = 1(j = 1, . . . , p) , Bj = 1(j = 1, . . . , q) and A = 1, it reduces
to the H-function identity obtained by Rathie[4].

(f) In (12), if we take Aj = 1(j = 1, . . . , p), Bj = 1(j = 1, . . . , q) and A = 1, it reduces to
the H-function identity obtained by Rathie[4].
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(g) In the LHS of (12), if we put A=1 and multiply by 2πi and equate with the LHS of
(5), we get an interesting result as below.

(2πi) Im+2, n+2
p+4, q+4

[
z

∣∣∣∣ (2β, 2δ, 1),
(
1
2 + α, λ, 1

)
, 1(aj , ej , Aj)p, (2α, 2λ, 1),

(
1
2 + β, δ, 1

)
(2β, 2δ, 1),

(
1
2 + α, λ, 1

)
, 1(bj , fj , Bj)q, (2α, 2λ, 1),

(
1
2 + β, δ, 1

) ]
= eiπ(α+β) I m+1, n+1

p+1, q+1

[
ze−iπ(λ+δ)

∣∣∣∣ (2β, 2δ, 1), 1(aj , ej , Aj)p
(2β, 2δ, 1), 1(bj , fj , Bj)q

]
+ eiπ(α−β) I m+1, n+1

p+1, q+1

[
ze−iπ(λ−δ)

∣∣∣∣ (2β, 2δ, 1), 1(aj , ej , Aj)p
(2β, 2δ, 1), 1(bj , fj , Bj)q

]
− e−iπ(α−β) I m+1, n+1

p+1, q+1

[
zeiπ(λ−δ)

∣∣∣∣ (2β, 2δ, 1), 1(aj , ej , Aj)p
(2β, 2δ, 1), 1(bj , fj , Bj)q

]
− e−iπ(α+β) I m+1, n+1

p+1, q+1

[
zeiπ(λ+δ)

∣∣∣∣ (2β, 2δ, 1), 1(aj , ej , Aj)p
(2β, 2δ, 1), 1(bj , fj , Bj)q

]
(19)

4. Another proof of (19)

Denoting the left-hand of (19) by S, expressing the I-function with the help of its
definition we have,

S = (2πi)
1

2πi

∫
L
θ(s) zs

Γ(1− 2β + 2δs) Γ(12 − α+ λs) Γ(2β − 2δs) Γ(12 + α− λs)
Γ(2α− 2λs) Γ(12 + β − δs)Γ(1− 2α+ 2λs) Γ(12 − β + δs)

ds

(20)
Using the results (7), (9), (10) and after some algebra, we have

S =
1

2πi

∫
L
θ(s) zs Γ(2β − 2δs) Γ(1− 2β + 2δs)

.
(
eiπ(α−λs) − e−iπ(α−λs)

) (
eiπ(β−δs) + e−iπ(β−δs)

)
ds

=
1

2πi

∫
L
{θ(s) zs Γ(2β − 2δs) Γ(1− 2β + 2δs)

.
{
eiπ(α+β−λs−δs) + eiπ(α−β−λs+δs)

− e−iπ(α−β−λs+δs) − e−iπ(α+β−λs−δs)
}
ds (21)

Now, breaking in to four parts and after some simplification, using the definition of I-
function, we easily arrive at the right-hand side of (19).

Since I-function is the most generalized function among the functions of one variable
studied so far, so by specializing the paramaters therein it reduces to H-function, G-
function, Generalized Hypergeometric function pFq and other elementary functions and
hence we can obtain corresponding results. However we do not mention here due to lack
of space.
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