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NOVEL TECHNIQUE FOR DISJOINTED SUM OF PRODUCTS

YAVUZ CAN, §

Abstract. A classical problem of Boolean theory is to derive a disjointed Sum of Prod-
ucts. This work introduces a novel approach for converting Sum of Products into dis-
jointed Sum of Products which is based on a novel, generally valid, combining technique
of 'orthogonalizing difference-building 	'. Postulates and rules for this linking technique
are defined which have to be considered getting correct results. The benefit of the novel
approach is that the result contains fewer number of product terms which has significant
advantages for further calculations as the Boolean Differential Calculus.

Keywords: Sum of products, disjointed sum of products, minimization, disjointed exclusive-
or sum of products, combinational circuit.
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1. Introduction

The calculation of test patterns, which are used to detect feasible faults in combinational
circuits regarding the stuck − at fault model, are done by Boolean Differential Calculus
(BDC) [3–5, 18]. This procedure can easily be performed in the Quaternary-Vector-List
(QVL) arithmetic [10], which has benefits in terms of computation time and memory usage.
QVL is a kind of matrix representation of Boolean functions and also the extended form
of Ternary-Vector-List (TVL) [5, 6, 9, 12, 13, 15]. Faults caused by defective transistors
of a gate, broken or shorted wires between gates affects the output of a logic circuit. Each
changing behavior of the output can be described by the BDC. Firstly, the corresponding
Boolean expression of the combinational circuit is transformed (TRANS) in an equivalent
Sum of Products (SOP) in QVL-arithmetic as shown in Figure 1. Next this SOP is
orthogonalized (ORTH DF ). Thus, we get a disjointed Sum of Products (dSOP) which
is subsequently transformed into a disjointed Exclusive-Or Sum of Products (dESOP) [4,
6, 8, 14, 20]. Now, the BDC is performed at this dESOP. After another orthogonalization
step (ORTH AF ) of the result of BDC it is transformed into a dSOP. Finally, this dSOP
contains all possible test patterns. Additionally, the number of containing product terms
after each activity is given around the flow diagram in Figure 1. The number of the
product terms increases with each activity that effects the number of test patterns. The
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noval approach of orthogonalization reduces the number of product terms North which
consequently reduces the number of test patterns in the end of the calculation step.

Figure 1. Calculation steps for test patterns

2. Prelimenaries

A Boolean function is defined as the mapping f(x) : {0, 1}n → {0, 1}. There exists
four normal forms of Boolean functions [4, 19]: disjunctive normal form DNF, conjunctive
normal form CNF, antivalence normal form ANF and equivalence normal form ENF which
consist of either product terms

pi(x) =
n∧

i=1

= x1 ∧ .. ∧ xn with n ∈ N (1)

or clauses

ci(x) =
n∨

i=1

= x1 ∨ .. ∨ xn with n ∈ N (2)

(with n ≥ 1 as the lenght of the variables; dimension) in which variables are either negated
x̄i or not-negated xi. The aversion to them is their large number of literals. By using
the associated form of a normal form this aversion can be reduced to disjunctive form
DF, conjunctive form CF, antivalence form AF and equivalence form EF. The disjunctive
form DF [4, 19] is also considered as Sum of Products SOP (Eq. (3)) and the antivalence
form AF [4, 19] as an Exclusive-Or Sum of Products ESOP (Eq. (4)). With N > 1 as the
number of product terms [2, 17] it applies:

SOP (x) =
N∨
i=1

pi(x) (3)

ESOP (x) =
N⊕
i=1

pi(x) (4)

The orthogonality is a special attribute of Boolean functions. A SOP or ESOP is orthogo-
nal if its product terms are disjointed to one another in pairs at least in one variable by xi
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and x̄i [5, 6, 11]. Consequently, these product terms have no common covering after their
logical conjunction, (pi(x)∧pj(x) = 0). The orthogonal representation of a disjointed Sum
of Products dSOP (x) [1] is equal to the orthogonal form of a disjointed Exclusive-Or Sum
of Products dESOP (x). It applies dSOP (x) = dESOP (x) [5, 6, 11, 14]. That means,
that dSOP is equivalent to dESOP containing the same product terms. This relationship
can be explained well with the following definition in [20], if both product terms pi(x) and
pj(x) are disjointed to each other:

pi(x) ∨ pj(x) = pi(x)⊕ pj(x)⊕ (pi(x) ∧ pj(x)︸ ︷︷ ︸
=0

) (5)

With this relation a SOP of two product terms can be transformed in an ESOP of these
both product terms. For the special case of orthogonality the conjunction of both products
terms results to 0. Thus, because of xi ⊕ 0 = xi, it follows:

pi(x) ∨ pj(x) = pi(x)⊕ pj(x)

In this case, the left side is equal to the right side. That means, that a dSOP is equivalent
to dESOP, dSOP (x) = dESOP (x).

N∨
i=1

pi(x) =

N⊕
i=1

pi(x)

Example 2.1. It is given a dSOP (x) = x̄2∨x1x2x3 and a dESOP (x) = x̄2⊕x1x2x3 which
are visualized in the following K-map and are characterized by non-overlapping cubes.

dSOP/dESOP x1

x2

x3

x4

1 1 0 0

1 1 1 0

1 1 1 0

1 1 0 0

Special calculations can be more easily solved in another form. For example, building the
complement of a SOP is a complex procedure. However, by orthogonalization of SOP the
dSOP is transformed in a dESOP at which the complement by linking with ⊕1 is subse-
quently determined, it follows dESOP . In a further step of orthogonalization of dESOP
the re-transforming back to dSOP is gained. Thus, the complement dSOP is calculated.
Since an orthogonal function can be transformed in another form, it simplifies the han-
dling for further calculations in applications of electrical engineering, e.g. calculation of
suitable test patterns for combinational circuits for verifying feasible logical faults which
can be mathematically determined by Boolean Differential Calculus (BDC) [3–5, 18].

3. Methodology of Orthogonalization

3.1. Orthogonalizing Difference-Building. Orthogonalizing difference-building 	 is
the composition of two calculation steps - the usual difference-building out of the set theory
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and the subsequent orthogonalization as shown in Figure 2. This method 	 is generally
valid and equivalent to the usual method of difference-building [6]. The orthogonalizing
difference-building pm(x)	ps(x) between a minuend product term pm(x) and a subtrahend
product term ps(x) corresponds to the removal of the intersection, which is formed of both
product terms, from the minuend product term pm(x), which means pm(x) − (pm(x) ∧
ps(x)). However, the result consists of several product terms which are pairwise disjointed
to each other. Equation (6) applies; with n, n′ ∈ N as the dimension or the number of
variables of pm(x) and ps(x). This equation specifies the order in which the variables of
the given product terms has to be linked.

pm(x)	 ps(x) =
n∧

m=1

xm 	
n′∧
s=1

xs :=
n∧

m=1

xm ∧
n′
j∨

s=1

x̄sj = (6)

=
(
x1 · . . . · xn−1xn

)
m
∧
(
x̄1j ∨ x1j x̄2j ∨ . . . ∨ x1j · . . . · x(n′−1)j x̄n′

j

)
s

In this case, the formula

n′
j∨

i=1

x̄i = x̄1j ∨ x1j x̄2j ∨ . . . ∨ x1jx2j · . . . · x̄n′
j

(7)

out of [11] is used to describe the orthogonalizing difference-building in a mathematically
easier way. The method of orthogonalizing difference-building 	 is demonstrated by the
following Example 3.1.

Example 3.1. A subtrahend ps(x) = x2x3x4 is subtracted from a minuend pm(x) = x1
by the method of 	.

x1 	 x2x3x4 = x1x̄2 ∨ x1x2x̄3 ∨ x1x2x3x̄4

The following points explain the application of Eq. (6) by using that example:

• The first literal of the subtrahend, here x2, is taken complement and build the
intersection with the minuend, here x1. Consequently, the first term in the result
is x1x̄2.
• Then the second literal, here x3, is taken complement and build the intersection

with the minuend and the first literal x2 of the subtrahend. Therefore, the second
term is x1x2x̄3.
• Following the next literal, here x4, is taken complement and build the intersection

with the minuend and the first literal x2 and second literal x3 of the subtrahend.
Thus, the third term of the difference is x1x2x3x̄4.
• This process is continued until all literals of the subtrahend are singly comple-

mented and linked by building the intersection with the minuend in a separate
term.

Following rules that must be followed to get correct results for the application of 	:

1. If the subtrahend is already orthogonal to the minuend (ps(x) ⊥ pm(x)) the result
corresponds to the minuend :

pm(x)	 ps(x) = pm(x) |ps(x)⊥pm(x) (8)
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Figure 2. 	: Two procedures in one step

Example 3.2. A subtrahend ps(x) = x1x2 is subtracted from a minuend pm(x) =
x̄2x3 whereby there are already orthogonal.

x̄2x3 	 x1x2 = x̄1x̄2x3 ∨ x1x̄2x3 = x̄2x3 (x̄1 ∨ x1)︸ ︷︷ ︸
=1

= x̄2x3

2. The orthogonal difference between 0 and the subtrahend is the subtrahend itself:

0	 ps(x) = ps(x) (9)

Example 3.3. A subtrahend ps(x) = x1x2 is subtracted from 0.

0	 x1x2 = x1x2

3. The result between 1 and subtrahend is the complementary of the subtrahend
which results in a disjointed Sum of Products:

1	 ps(x) = dSOP (x) |
ps(x)

(10)

Example 3.4. A subtrahend ps(x) = x1x2 is subtracted from 1.

1	 x1x2 = x̄1 ∨ x1x̄2

4. Thereby, the symbol of subset ⊆ out of the set theory is transferred to the switching
algebra. The result between subtrahend and minuend is empty if the minuend
product term is already completely contained in the subtrahend product term
(pm(x) ⊆ ps(x)):

pm(x)	 ps(x) = 0 |pm(x)⊆ps(x) (11)
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Example 3.5. A subtrahend ps(x) = x1 is subtracted from a minuend pm(x) =
x1x̄2x3.

x1x̄2x3 	 x1 = 0

Two calculation procedures - difference-building and the subsequent orthogonalization -
can be performed in one step by the use of this new method 	 as shown in Figure 2.
The result out of 	 is orthogonal in contrast to the result out of the method difference-
building. However, both results are different in their representations but homogenous in
their covering of 1s. They only differ in their form of coverage, whereas the novel technique
constitutes the solution in already orthogonal form.

3.2. Distributivity of 	. The distributive property of an operation allows the exclusion
of the same term. That means, that a term can be factored out. In this case, it applies
the distributive law for 	 for left and right side.

p1(x) ·
(
p2(x)	 p3(x)

)
=
(
p1(x) · p2(x)

)
	
(
p1(x) · p3(x)

)
(12)

The validity of the distributive property is given by the following proof:

p1(x) ·
(
p2(x)− p2(x)p3(x)

)
= p1(x) · p2(x)− p1(x) · p2(x) · p3(x)

p1(x) ·
(
p2(x) ∧ (p2(x)p3(x))

)
= p1(x) · p2(x) ∧

(
p1(x) · p2(x) · p3(x)

)
p1(x) ·

(
p2(x) ∧ (p2(x) ∨ p3(x))

)
= p1(x) · p2(x) ∧

(
p1(x) ∨ p2(x) ∨ p3(x)

)
p1(x) ·

(
p2(x) · p3(x)

)
= p1(x) · p2(x) · p3(x)

p1(x) · p2(x) · p3(x) = p1(x) · p2(x) · p3(x)

Both sides are equivalent. This charasteristic of distributivity is demonstrated by the
following Example 3.6 whereby both sides result to the same term.

Example 3.6.

x1 · (x2x̄3 	 x̄1x2) = (x1 · x2x̄3)	 (x1 · x̄1x2)
x1 · (x1x2x̄3) = x1x2x̄3

x1x2x̄3 = x1x2x̄3

3.3. Orthogonalization of SOP. The orthogonalization of every SOP (x) consisting of
at least two product terms (N > 1) can be performed by Eq. (13) which is based on the
combination technique of 	 [6]. By the mathematical induction the general validity of
Eq.(13) is given in Proof 1.

dSOP (x) :=

N−1∨
k=0

( N⊙
i=k+1

pi(x)

)
= (13)

=
(
p1(x)	 p2(x)	 . . .	 pN (x)

)
∨ . . . ∨

(
pN−1(x)	 pN (x)

)
∨ pN (x)

Proof. 1

• ∀N ∈ N, N ≥ N0 applies A(N):

N−1∨
k=0

( N⊙
i=k+1

pi(x)

)
=
(
p1(x)	 p2(x)	 . . .	 pN (x)

)
∨ . . . ∨

(
pN−1(x)	 pN (x)

)
∨ pN (x)
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• if A(N0) ∧
(
∀N ∈ N, N ≥ N0 : A(N)→ A(N + 1)

)
⇒ ∀N ∈ N, N ≥ N0 : A(N)

Basis A(N0): N0 = 3

3−1∨
k=0

( 3⊙
i=k+1

pi(x)

)
=
(
p1(x)	 p2(x)	 p3(x)

)
∨
(
p2(x)	 p3(x)

)
∨ p3(x)

Inductive step A(N)→ A(N + 1): N → N + 1

(N+1)−1∨
k=0

( N+1⊙
i=k+1

pi(x)

)
=
(
p1(x)	 . . .	 pN (x)	 pN+1(x)

)
∨ . . . ∨

(
pN (x)	 pN+1(x)

)
∨ pN+1(x)

N∨
k=0

( N+1⊙
i=k+1

pi(x)

)
=
(
p1(x)	 . . .	 pN (x)	 pN+1(x)

)
∨ . . . ∨

(
pN (x)	 pN+1(x)

)
∨ pN+1(x)

N∨
k=0

( N⊙
i=k+1

pi(x)	 pN+1(x)

)
=
(
p1(x)	 . . .	 pN (x)	 pN+1(x)

)
∨ . . . ∨

(
pN (x)	 pN+1(x)

)
∨ pN+1(x)

• Analysis for N=2:

2∨
k=0

( 2⊙
i=k+1

pi(x)	 p3(x)

)
=
(
p1(x)	 p2(x)	 p3(x)

)
∨
(
p2(x)	 p3(x)

)
∨ p3(x)

�

The order of the calculation is important. That means, the first two product terms must
be calculated and then the third product term must be calculated with the result of them,
and so on. The result of dSOP (x) can diversify depending on the starting product term.
As a SOP has the characteristic of being commutative the order of their product terms
can be changed to get results with fewer number of disjointed product terms North. Result
with fewer number of North is often reached by ordering from higher number of variables to
fewer number of variables. Following Example 3.7 gives an overview about the procedure
orthogonalizing by Eq. (13) and afterwards Example 3.8 with an additional process of
sorting.

Example 3.7. Function SOP1(x) = x̄3∨x1x2∨x1x3 has to be orthogonalized by Eq. (13)
and the result is visualized in a K-map.

dSOP1(x) =
(
x̄3 	 x1x2 	 x1x3

)
∨
(
x1x2 	 x1x3

)
∨ x1x3 =

=
( (

x̄1x̄3 ∨ x1x̄2x̄3
)
	 x1x3︸ ︷︷ ︸

Eq. (8)

)
∨ x1x2x̄3 ∨ x1x3 = x̄1x̄3 ∨ x1x̄2x̄3 ∨ x1x2x̄3 ∨ x1x3

SOP1(x) x1

x2

x3

1 1 1 1

0 1 1 0

=⇒

dSOP1(x) x1

x2

x3

1 1 1 1

0 1 1 0

Function dSOP1(x) consists of four disjointed product terms (North = 4) and is the or-
thogonalized form of SOP1(x). Both are equivalent. They only differ in their form of
coverage which are illustrated in the K-map.
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Example 3.8. Now, the sorted form of dSOP1(x) here sortdSOP1(x) = x1x2 ∨ x1x3 ∨ x̄3
has to be orthogonalized by Eq. (13).

sortdSOP1(x) =
(
x1x2 	 x1x3 	 x̄3

)
∨
(
x1x3 	 x̄3︸ ︷︷ ︸

Eq. (8)

)
∨ x̄3 =

=
(
x1x2x̄3 	 x̄3︸ ︷︷ ︸
=0 Eq. (11)

)
∨ x1x3 ∨ x̄3 = x1x3 ∨ x̄3

SOP1(x) x1

x2

x3

1 1 1 1

0 1 1 0

=⇒

sortdSOP1(x) x1

x2

x3

1 1 1 1

0 1 1 0

Function sortdSOP1(x) is another equivalent orthogonal form of SOP1(x) which consists
of two disjointed product terms (North = 2) that is also illustrated in a K-map. 1s are
covered by two cubes. By sorting a minimized dSOP can be reached. The results are
homogenous. They only differ in their form of coverage. The additional step of sorting
brings the benefit of reducing the number of product terms North in the result.

4. Comparisons and Measurements

4.1. Comparison of North of dSOP before and after sorting. However, to make a
statement about a optimized form, the optimum minimization would have to be defined,
which has not yet been clarified. Table 1 illustrates the percentage reduction of terms by
the use of subsequent procedure of sorting. North and sortNorth in respect to N and xn -
as the length of the given tuple (dimension) - are compared. It applies sortNorth(N, xn) <
North(N, xn). That means, that the procedure of sorting brings a benefit for gaining
minimized dSOP. Firstly, a list of ten non-orthogonal SOPs in respect to N = {5, 10, 15}
and dimension xn = {5, 6, .., 49, 50} is created. Consequently, per each N has produced
450 different non-orthogonal SOPs. Subsequently, each SOP was orthogonalized according
to the novel approach before and after sorting. The resulting number of product terms
North in dSOP and sortNorth in sortdSOP in respect to N and xn were determined as
shown in Figure 3. Out of these values an average value was calculated for each dimension
xn. Thereby, the results of the quotients of the average number of disjointed product
terms were obtained. Furthermore, quotients of North and sortNorth in percentage value
were gained as shown in Table 1. These values give the information about the percentage
deviation of North to sortNorth. However, in rare cases negative values occur because of the
better result due to North in comparison to sortNorth. In those cases, the number of terms
are fewer in unsorted cases. Finally, a total average percentage value per each N was
determined out of these average values. Consequently, an additional procedure of sorting
leads to dSOP with fewer number of product terms. Minimization of approximately 17%
till 28% are obtained in comparison to a dSOP which was not sorted before.

4.2. Comparison of other methods in North. In Figure 4 the number of product terms
in the result of dSOP is shown in comparison to the methods dSOPm2 out of [16] and
dSOPm1 out of [4]. In this case, the average number of product terms North in respect to
N and xn in dSOP is compared. The average value is formed of 100 calculated tasks for
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Figure 3. Average number of North and sortNorth in respect to N={5, 10, 15}

Percentage Value [%]

xn
North

sortNorth
(5) North

sortNorth
(10) North

sortNorth
(15)

5 0.0 8.6 -
6 23.6 29.0 -
7 28.8 11.8 24.6
8 30.2 27.0 28.7
9 73.3 52.0 32.8
10 6.1 24.6 29.6
...

...
...

...
28 13.6 10.5 40.9
29 2.7 58.6 22.3
30 38.6 25.8 50.6
31 17.8 8.5 18.0
...

...
...

...
45 -1.6 9.4 -2.8
46 -5.4 6.5 13.1
47 14.8 0.6 38.4
48 8.8 20.2 16.4
49 1.2 -13.1 18.6
50 -2.5 30.6 8.8

average 17.3 21.7 27.6

Table 1. Percentage value of North
sortNorth

each dimension. These charts illustrate that the novel method dSOP c1 offers better results
than the two other methods dSOPm2 and dSOPm1. The number of product terms North

in the orthogonalized SOP by the method dSOP c1 is fewer than by the methods dSOPm2
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and dSOPm1. It applies NdSOP c1

orth < NdSOPm1,m2

orth . The corresponding average values are
partially shown in Table 2. The number of product terms is reduced approximately by

a factor of 2 by SOP c1: NdSOP c1

orth ≈ NdSOPm1

orth
1.87 and NdSOP c1

orth ≈ NdSOPm2

orth
2.34 . This attribute

is important because a further calculation of dSOP needs fewer operations and is carried
out more quickly. That means, the respective computation time is reduced. In this case, a
further calculation of a dSOP such as the Boolean Differential Calculus BDC is performed
with a fewer number of product terms and thus reduces the number of further operations.
By the use of this new method with additional procedure of sorting the size of the set of
test patterns will be get smaller. This reduction after ORTH DF leads to the operation
of BDC at fewer number product terms which consequently will also minimized its results.
By a further orthogonalization ORTH AF of a reduced result of BDC will acquired to a
smaller number of terms in dSOP which provides a set of test patterns that enable a fully
verification of a combinational circuit in respect to the stuck−at fault model in the final.

Figure 4. Average number of North with input size N=10

5. Conclusion

This work shew a novel approach for building a disjointed Sum of Products of a given
Sum of Product which is based on the combining technique of 'orthogonalizing difference-
building 	'. This linking technique replaces two calculation steps - building the difference
and the subsequent orthogonalization - by one step. Additionally, postulates regarding to
distributivity and axioms for 	 are defined which have to be considered getting correct
results. Furthermore, every Sum of Products can easily be orthogonalized mathematically
by a corresponding equation which bases on 	. By this orthogonalization it will be reached
disjointed Sum of Products in a simpler way. The general validity was also proven by the
mathematical induction. An additional step of sorting before the step of orthogonalization
achieves a reduction of approximately 17% till 28% of the number of product terms in the
disjointed Sum of Products. This feature was illustrated by a measurement whereby
the orthogonalization took place before and after sorting. Furthermore, the corresponding
Algorithm dSOP c1 was compared with two other algorithms dSOPm2 [16] and dSOPm1 [4]
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xn dSOPm2 dSOPm1 dSOP c1 dSOPm2

dSOP c1
dSOPm1

dSOP c1

1 1.99 1.72 1.00 1.99 1.72
2 3.62 2.86 1.06 3.42 2.70
3 5.66 4.57 1.78 3.18 2.57
4 8.67 7.19 2.84 3.05 2.53
5 12.36 10.27 4.03 3.07 2.55
...

...
...

...
...

...
24 186.81 153.97 76.37 2.45 2.02
25 163.02 148.84 69.95 2.33 2.13
26 175.69 150.73 76.41 2.30 1.97
27 184.53 151.81 86.20 2.14 1.76
...

...
...

...
...

...
46 333.92 205.03 190.46 1.75 1.08
47 349.92 205.40 199.80 1.75 1.03
48 393.22 224.77 206.27 1.91 1.09
49 371.80 191.73 198.06 1.88 0.97
50 365.35 199.73 222.69 1.64 0.90

average factor 2.34 1.87
Table 2. Average value of North in respect to N = 10

in their number of product terms in the obtained dSOP. dSOP c1 determines fewer number
of product terms in disjointed Sum of Product in contrast to the methods dSOPm2 and
dSOPm1. This reduction is about 50% by dSOP c1. In the case of dimension xn higher
50, this reduction is theoretically to be expected. Consequently, a further calculation
of a dSOP such as the Boolean Differential Calculus is performed with fewer number of
product terms and thus reduces operation steps. Therefore, at the end of the calculation
procedure minimizing of the set of test patterns is expected.
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