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SIMULATION STUDIES FOR CREDIBILITY-BASED

MULTI-OBJECTIVE LINEAR PROGRAMMING PROBLEMS WITH

FUZZY PARAMETERS

HANDE GÜNAY AKDEMIR, §

Abstract. In this paper, hybrid credibility-based multi-objective linear programming
models are provided to optimize expected values of objective functions subject to fuzzy
chance-constraints. Triangular or non-linear fuzzy numbers are considered in problem
parameters like demands and costs. To handle the uncertainty, the constraints are sub-
stituted with credibilistic fuzzy chance-constraints and the objective functions with their
expected values. The credibilistic approach offers computational ease by the use of
techniques which are similar to the stochastic simulation and applicable to all types of
fuzzy numbers. The approach uses expected values and chance-constraints respectively
to handle uncertain objective functions and to control the confidence level of fulfilling
imprecise constraints. Numerical simulations are presented to compare the expected
objective function values.

Keywords: Multiple objective programming, fuzzy parameters, credibility measure, chance-
constraints, simulation.
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1. Introduction

In real life, there are cases in which decisions must be made on the basis of incomplete
and imprecise information. In some uncertainty situations when probability distributions
cannot be obtained due to lack of historical data, the most pessimistic, the most likely
and the most optimistic values can be provided from experts. In order to cope with
such decision-making problems under uncertainty, the fuzzy mathematical programming
approaches are employed, for a detailed review see [9]. The interest focuses on multi-
objective linear programming problems (MOLPPs) with fuzzy coefficients, such as fuzzy
unit profits or costs, customer demands, supply capacities, availabilities, unit usages of
resources, and processing, completion or travel times. Consider the following decision
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problem with K objectives:

min
(
f̃1(x), f̃2(x), . . . , f̃K(x)

)
s.t.

n∑
j=1

ãijxj ≤ b̃i, i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n,

(1)

where f̃k(x) =
n∑

j=1
c̃kjxj for k = 1, 2, . . . ,K, and ãij , b̃i, c̃kj are fuzzy numbers.

The model (1) involves fuzzy parameters but the decision variables are non-fuzzy or crisp
numbers. To handle the uncertainty, the constraints are substituted with credibilistic fuzzy
chance-constraints and the objective functions with their expected values. After convert-
ing this hybrid model into its crisp equivalent, it is transformed into a single-objective
programming problem employing compromise programming approach. In this approach,
for all conflicting objectives, single-objective programs are solved (by ignoring other ob-
jectives) to obtain ideal objective values and less desired ones. The author of this article
tries to find optimal compromise solutions, which are optimum at some degree for all ob-
jectives. It is assumed that any hierarchical priority levels among objectives do not exist.
Simulation of triangular and non-linear types of fuzzy numbers are, furthermore, studied
in this paper. To generate triangularly distributed fuzzy numbers, the MATLAB functions
”makedist” and ”random” are used. Possibility density functions (pdfs), cumulative dis-
tribution functions (cdfs), and inverse cdfs are employed for simulation of non-linear fuzzy
numbers. Again, MATLAB is utilized to generate samples and to find inverse functions
by using the function ”polyfit”. Also, the function ”linprog” is exploited in order to solve
decision problems.
Let us now review the relevant literature which consists of credibility-based multi-objective
models with fuzzy coefficients. Ahmadizar and Zeynivand [1] propose a fuzzy bi-objective
mixed integer linear programming formulation and a solution technique based on fuzzy
chance-constrained programming to a multi-echelon, multi-product, and multi-period sup-
ply chain planning problem. In [4], the authors attempt to solve large-scale multi-objective
supplier selection problem by using a hybrid method that combines data envelopment anal-
ysis and machine learning techniques. Refer to [10] and [15] for other applications to supply
chain planning. In [21], the authors explore the role of differential pricing with arbitrage
and ordering policies of manufacturers by examining fuzzy marketing and production and
utilizing a hybrid multi-objective credibility-based fuzzy optimization model. The authors
study fuzzy chance-constraint model to determine optimal decisions for an integrated lot-
sizing and price setting model for a manufacturer who faces demand from multiple market
segments in [22]. In [5], the authors propose entropy-cross entropy algorithm for multi-
objective portfolio optimization models with L-R fuzzy parameters. For an application
to multi-objective transportation modeling, the reader may refer to [7]. A bi-objective
programming model is developed with fuzzy inputs aiming to maximize agricultural yield
productivity and minimize irrigation water shortage in [8]. In [11], compensatory and
Pareto-optimal compromise solutions for the multi-objective software product selection
problem are obtained via hybrid interactive fuzzy-programming approach. Mohamadi et
al. [12] present a credibility-based fuzzy non-linear multi-objective mathematical pro-
gramming of disaster management problem under uncertainty. For health service network
design problem, by using possibilistic approaches, which consider convex combinations of
possibility and necessity measures, the authors aim to minimize both the total weighted
distance between patient zones and health facilities and the total establishment cost [13].
For other applications to network design, refer to [14] and [19]. In [20], the authors also



H.G.AKDEMIR: SIMULATION STUDIES FOR CMOLPP WITH FUZZY PARAMETERS 485

consider convex combinations of possibility and necessity measures for an allocation prob-
lem. The authors present a hybrid credibility-based fuzzy mathematical programming
model to cope with uncertainty in green logistics network design problem in [16] . Salehi
et al. [17] study a fuzzy multi-objective assembly line balancing problem which tries to
minimize the number of stations, purchasing costs, and worker’s wages. The authors inves-
tigate redundancy allocation problems under fuzziness in [18]. In [24], the authors consider
expected objectives and chance-constraints together with level-2 fuzzy parameters of their
multi-objective supply chain network design problem combining fuzzy simulation-based
genetic algorithm and goal programming approaches. For other applications to type 2
fuzzy numbers, refer to [23] and [25].
The rest of this paper is organized as follows. In the next section, some preliminary in-
formation on credibility theory is given. In Section 3, the model that is focused on is
briefly given. With an example from the literature, the expected objective function values
of the credibilistic model and the simulated ones are compared. Section 4 explains the
simulation process for non-linearly distributed parameters. Also, again with an example
from the literature, solution steps and error analysis are reported. The paper is concluded
with some remarks in Section 5.

2. Preliminaries

In this section, some basic definitions of credibility theory are given.

Definition 2.1. Let Θ be a nonempty set, and 2Θ be the power set of Θ. Each element
of 2Θ is called an event. Let ξ be a fuzzy variable with the membership function µ, and t
be a real number. The possibility, necessity and credibility of the fuzzy event {ξ ≥ t} can
be given as:

Pos{ξ ≥ t} = sup
u≥t

µ(u),

Nec{ξ ≥ t} = 1− sup
u<t

µ(u),

Cr{ξ ≥ t} = 1
2 [Pos{ξ ≥ t}+Nec{ξ ≥ t}],

respectively. Note that, in the case of equality type of fuzzy event, the possibility is related
to membership value.

Example 2.1. A triangular fuzzy variable ξ can be determined by a triplet (a, b, c) with
a < b < c. It is easy to obtain the credibility of the event {ξ ≥ t} as the following
non-increasing piecewise linear function:

Cr{ξ ≥ t} =


1, t < a
2b−a−t
2(b−a) , a ≤ t < b
c−t

2(c−b) , b ≤ t < c

0, t ≥ c

.

Example 2.2. A non-linear fuzzy variable ξ can be determined by (a, b, c, d) with a
membership function:

µ(x) =


1−

(
b−x
b−a

)2
, a ≤ x < b

1, b ≤ x < c

1−
(
x−c
d−c

)2
, c ≤ x < d

0, otherwise

.
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The credibility of the fuzzy event {ξ ≥ t} is as follows:

Cr{ξ ≥ t} =



1, t < a

1
2 + 1

2

(
b−t
b−a

)2
, a ≤ t < b

1
2 , b ≤ t < c

1
2 −

1
2

(
t−c
d−c

)2
, c ≤ t < d

0, t ≥ d

.

Definition 2.2. The expected value of the fuzzy variable ξ can be defined as:

E [ξ] =

∞∫
0

Cr{ξ ≥ t}dt−
0∫
−∞

Cr{ξ ≤ t}dt

provided that at least one of the above two integrals are finite. If ξ is a non-negative
fuzzy variable, the second integral equals to 0. It is a representative mean value as in
random variables.

Example 2.3. The expected value of a triangular variable (a, b, c) based on its credibility
measure is (a+ 2b+ c) /4, and the expected value of a non-linear variable (a, b, c, d) is
(2a+ b+ c+ 2d) /6.

3. Hybrid Model

Instead of the Model (1), the following multi-objective model with expected objectives
and chance-constraints based on the credibility measure is considered:

min
(
E
[
f̃1(x)

]
, E
[
f̃2(x)

]
, . . . , E

[
f̃K(x)

])
s.t. Cr

{
n∑

j=1
ãijxj ≤ b̃i

}
≥ αi, i = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n,

where αi ∈ [0.5, 1] for i = 1, 2, . . . ,m, are predetermined satisfactory levels for credibili-
ties to ensure that the constraints hold at some confidence levels. Note that ãi1, ãi2, . . . , ãin
and b̃i should be same type of fuzzy numbers for i = 1, 2, . . . ,m.

Example 3.1. Consider the illustrative example of [3]. First, the constraints are re-
placed with fuzzy chance-constraints in order to handle uncertainty of the constraints.
For example, by assuming α = 0.7, while converting the first fuzzy chance-constraint:

Cr {(6, 12, 14)x1 + 17x2 ≤ 1400} ≥ 0.7 (2)

into its crisp equivalent 1400 − 17x2 = 12.8x1λ11 + 14x1λ12 + 1400λ13, the additional
constraints λ11 +λ12 +λ13 = 1 and λ11, λ12, λ13 ≥ 0 are obtained. Then, for the objective
functions, the triangular fuzzy coefficients are replaced with their expected values. After
following the same procedure for other constraints and all of the objectives, the resulted
crisp equivalent formulation is as follows:
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max z1 = 55x1 + 100x2 + 17.5x3

max z2 = 96x1 + 77.5x2 + 50x3

max z3 = 32.5x1 + 100x2 + 75x3

s.t.
3∑

j=1
λij = 1, i = 1, 2, 3, 4, 5, 6,

1400− 17x2 = 12.8x1λ11 + 14x1λ12 + 1400λ13,
1000− 3x1 − 9x2 = 8.8x3λ21 + 10x3λ22 + 1000λ23,
1750− 10x1 − 15x3 = 13.8x2λ31 + 15x2λ32 + 1750λ33,
1325− 16x3 = 6.8x1λ41 + 8x1λ42 + 1325λ43,
900− 7x3 = 14.8x2λ51 + 19x2λ52 + 900λ53,
1075− 9.5x1 − 4x3 = 10.3x2λ61 + 11.5x2λ62 + 1075λ63,
xj , λij ≥ 0, i = 1, 2, 3, 4, 5, 6, j = 1, 2, 3.

(3)

Now, single-objective programs subject to the constraints of the model (3) are solved one
by one to get the best max zk and the worst min zk values. In the compromise programming
formulation, the minimum satisfaction µ is tried to maximize as following:

max µ

s.t. µ ≤ zk−min zk
max zk−min zk

, k = 1, 2, 3,

0 ≤ µ ≤ 1,
constraints of (3),

(4)

where the optimal solutions are µ∗ = 0.756, x∗ = (50.656, 43.132, 37.377)T , z∗1 =
7753.393, z∗2 = 10074.553, z∗3 = 8762.838.

In the simulation phase, 1000 triangularly distributed samples are generated for the
fuzzy parameters. By using the solver ”linprog” in loops, 4000 linear programming prob-
lems (individual single objective problems and compromise problems (4)) are solved with
generated fuzzy numbers as parameters. Absolute relative errors between the expected
objective function values:

e1 =
|mean (z1)− 7753.393|

mean (z1)
= 0.0336, e2 = 0.0869, e3 = 0.0636.

4. Non-linear Distribution

Similar to trapezoidal distribution [6], the pdf of the non-linear fuzzy number (a, b, c, d)
is:

f(x) =



h

[
1−

(
b−x
b−a

)2
]
, a ≤ x < b

h, b ≤ x < c

h

[
1−

(
x−c
d−c

)2
]
, c ≤ x < d

0, otherwise

where h = 3
(c−b)+2(d−a) is the calibration parameter. Note that the sum of all possibilities

(total area under the curve) should be equal to 1.
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The cdf is as follows:

F (x) =
x∫
−∞

f(t)dt (5)

=



0, x < a
h(x−a)2(−x−2a+3b)

3(b−a)2
, a ≤ x < b

2h(b−a)
3 + h(x− b), b ≤ x < c

2h(b−a)
3 + h(c− b) + h(x−c)(2c2−6cd+2cx+3d2−x2)

3(d−c)2 , c ≤ x < d

1, x ≥ d

.

Example 4.1. Consider the fuzzy transportation problem with two objectives and non-
linear fuzzy parameters of [2]:

Suppose that α = 0.5. Although having non-linear credibilities, they are linearized with
the help of grid points. The crisp equivalent program is as follows:

minE [z1] = 8x11 + 40x13 + 12x22 + 52x23 + 28x24 + 56x31 + 17x33 + 20x34

minE [z2] = 23x11 + 7x12 + 12x14 + 13x21 + 35x22 + 48x32 + 11x33

s.t.
4∑

j=1
λij = 1, i = 1, 2, 3, 4, 5, 6, 7

x11 + x12 + x13 + x14 = 0λ11 + 28λ12 + 32λ13 + 36λ14,
x21 + x22 + x23 + x24 = 0λ21 + 48λ22 + 52λ23 + 56λ24,
x31 + x32 + x33 + x34 = 0λ31 + 32λ32 + 36λ33 + 40λ34,
x11 + x21 + x31 = 43λ41 + 46λ42 + 49λ43 + 146λ44,
x12 + x22 + x32 = 19λ51 + 22λ52 + 25λ53 + 146λ54,
x13 + x23 + x33 = 31λ61 + 34λ62 + 37λ63 + 146λ64,
x14 + x24 + x34 = 29λ71 + 30λ72 + 35λ73 + 146λ74,
x, λij ≥ 0, i = 1, 2, 3, 4, 5, 6, 7, j = 1, 2, 3, 4,

(6)

where 146 is the maximum possible value of total demand. The resulted compromise
program for the model (6) is as follows:

max µ
s.t. z1 = 8x11 + 40x13 + 12x22 + 52x23 + 28x24 + 56x31 + 17x33 + 20x34,

z2 = 23x11 + 7x12 + 12x14 + 13x21 + 35x22 + 48x32 + 11x33,
µ ≤ 4580−z1

4580−563 ,

µ ≤ 1834−z2
1834−172 ,

µ ∈ [0, 1] ,
constraints of (6),

where µ∗ = 0.669, z∗1 = 1892.424, z∗2 = 722.038.
To generate non-linear parameters, the inverses of piecewise cubic functions (5) are

found by using ”polyfit” function of MATLAB. By using the inverse cdfs, non-linearly
distributed 5000 fuzzy samples are simulated. The algorithm for Example 4.1 is as follows:

Step 1: Set t = 1, k = 1.

Step 2: Repeat while t ≤ 5000, generate fuzzy parameters c̃1
ij , c̃

2
ij , ãi, b̃j ,

assign c1
ij(t), c

2
ij(t), ai(t), bj(t), respectively.
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If
3∑

i=1
ai(t) <

4∑
j=1

bj(t) go to Step 3. Otherwise, solve

min
3∑

i=1

4∑
j=1

c1
ij(t)xij

s.t.
4∑

j=1
xij ≤ ai(t), i = 1, 2, 3,

3∑
i=1
xij ≥ bj(t), j = 1, 2, 3, 4

xij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4,

(7)

and assign
(
x1
ij

)
=
(
x∗ij

)
. Solve

min
3∑

i=1

4∑
j=1

c2
ij(t)xij

s.t. constraints of (7),

and assign
(
x2
ij

)
=
(
x∗ij

)
. Set

zmin
1 (or zmax

1 ) = min ( max )

{
3∑

i=1

4∑
j=1

c1
ij(t)x

1
ij ,

3∑
i=1

4∑
j=1

c1
ij(t)x

2
ij ,

}
,

zmin
2 (or zmax

2 ) = min ( max )

{
3∑

i=1

4∑
j=1

c2
ij(t)x

1
ij ,

3∑
i=1

4∑
j=1

c2
ij(t)x

2
ij ,

}
.

Solve the compromise program:

max µ

s.t. z1 =
3∑

i=1

4∑
j=1

c1
ij(t)xij

z2 =
3∑

i=1

4∑
j=1

c2
ij(t)xij

µ ≤ zmax
1 −z1

zmax
1 −zmin

1
,

µ ≤ zmax
2 −z2

zmax
2 −zmin

2
,

µ ∈ [0, 1] ,
constraints of (7),

and set
(
x3
ij

)
=
(
x∗ij

)
. Store f1(k) =

3∑
i=1

4∑
j=1

c1
ij(t)x

3
ij , f2(k) =

3∑
i=1

4∑
j=1

c2
ij(t)x

3
ij and

m(k) = µ∗. k := k + 1.
Step 3: t := t+ 1 and go to Step 2.
Step 4: Return mean (f1) , mean (f2) and mean (m).

An if-then rule is written, because in a transportation setting if the total supply is
less than the total demand, an infeasibility occurs. To avoid such cases, remember that
α = 0.5. Absolute relative errors between the expected objective function values:

e1 = 0.0094, e2 = 0.0195,mean (µ∗) = 0.6715.
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5. Conclusions

In this study, optimal decisions for hybrid models combining fuzzy chance-constraints
and expected values of objective functions are discussed. The approach uses expected
values and chance-constraints respectively to handle uncertain objective functions and to
control the confidence level of fulfilling imprecise constraints. In case there are conflicting
objectives and uncertainty, the credibilistic approach offers computational ease. With a
little effort, error analysis can be provided by the use of techniques which are similar to
the stochastic simulation and applicable to all types of fuzzy numbers. Also, the method
can be adapted to the other interactive fuzzy multi-objective solution techniques including
goal programming.
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