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ON PROGRESSIVE WAVE SOLUTION FOR NON-PLANAR KDV

EQUATION IN A PLASMA WITH q-NONEXTENSIVE ELECTRONS

AND TWO OPPOSITELY CHARGED IONS

H. DEMIRAY1, E. R. EL-ZAHAR2, S. A. SHAN3, §

Abstract. In this paper, the ion-acoustic wave is investigated in a plasma with q-
nonextensive electrons and two oppositely charged ions with varying masses. These pa-
rameters are found to modify the linear dispersion relation and nonlinear solitary struc-
tures. The reductive perturbation method is employed to derive modified Korteweg-de
Vries (KdV) equation. To solve the obtained governing evolution equation, the exact
solution in the planar geometry is obtained and used to obtain an analytical approx-
imate progressive wave solution for the nonplanar evolution equation. The analytical
approximate solution so obtained is compared with the numerical solution of the same
nonplanar evolution equation and the results are presented in 2D and 3D figures. The
results revealed that both solutions are in good agreement. A parametric study is carried
out to investigate the effect of different physical parameters on the nonlinear evolution
solution behavior. The obtained solution allows us to study the impact of various plasma
parameters on the behavior of the nonplanar ion-acoustic solitons. The suitable applica-
tion of the present investigations can be found in laboratory plasmas, where oppositely
charged ions and nonthermal electrons dwell.

Keywords: Nonplanar solitons, Modified KdV, Cylindrical and spherical solitons, Elec-
tronegative plasmas , Analytical approximate solutions
AMS Subject Classification: 35Q53, 65Z05

1. Introduction

The plasmas holding negative ions as well as electrons and positive ions, are classified as
electronegative plasmas. Such plasmas have been investigated intensively, not only be-
cause of their many industrial applications but also owing to the reality that their basic
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properties differ predominantly from the usual electropositive plasmas. Spherically con-
vergent positive and negative ion-acoustic pulses are also investigated experimentally ][1].
Both experimental and theoretical explorations unveiled the reality that massive negative
ions addition modify the plasma characteristics and dynamics predominantly [2,3]. By
reasons of their vital roles in astrophysical scenarios, neutral beam sources [4], plasma
processing reactors [5], synthesis of nano-materials [6], processing/manufacturing of semi-
conductors[7], thorough investigations are necessary. The occurrence of negative ions in
Earth’s ionosphere [8] and cometary comae [9] are confirmed through experiments. These
negative ions are comparatively more useful than positive ions in silicon etching plasma de-
vices [10] when alternating irradiations of negative and positive ions are utilized. Recently,
the investigations related to the propagation characteristics of ion-acoustic waves (IAWs)
in nonplanar geometries have been also focused in Refs [11-15]. The evolution equation of
IAWs in nonplanar geometries (spherically and cylindrically symmetric) has been found by
Maxon and Viecelli [11]. They have found that the cylindrical solitons travel slower than
the spherical ones however faster than the one-dimensional solitons of the same amplitude.
Cylindrical and spherical soliton-like waves have been investigated experimentally [16-18].
The experimental verification of theoretically earlier proposed cylindrical and spherical
solitons in electronegative plasma by Das and Singh [19] was done by Williams et al [20].
The multiple scale expansion technique was used to derive and analyze the effect of the
nonthermal electrons on nonplanar IAWs in an unmagnetized plasma with warm adiabatic
ions [21]. Hershkowitz and Romesser [22] have shown experimentally that the cylindrical
soliton evolves from the compressive cylindrical pulses in a collisionless plasma and while
the converging soliton passes through the center the shape of the soliton is maintained.
The spherical symmetric solitons along with cylindrical solitons have been observed in
plasma as in Refs.[23,24]. The experimental data obtained from the spacecraft missions
communicate the existence of nonthermal/superthermal particles in the space plasma en-
vironments. Such species are interpreted through non-Maxwellian distributions that obey
power-law feature [25]. During the previous decades, it is proved that systems with long-
range interactions and long-time memory can not be fully explained with the conventional
Boltzmann-Gibbs (BG), and therefore a need was recognized to develop new statistics.
Consequently, non-extensive statistics was materialized for studying systems with long-
range interactions and long-time memory [26-28]. One of the possible one-dimensional
q-distribution function exhibiting electron nonextensive behavior is proposed as [29]
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The significance, application and development of such distribution function is given in
Ref.[30].

In this work, the reductive perturbation method [31] is utilized to get modified evolution
equation. To solve the obtained governing evolution equation, the exact solution in simple
plane geometry is obtained, afterwards which is utilized to derive an analytical approx-
imate progressive wave solution for the equation in nonplanar geometry. The analytical
approximate solution so obtained is compared with the numerical solution of the same
nonplanar evolution equation. With the aid of appropriate parameters, the results are
presented in 2D and 3D figures. These results revealed that both analytican and exact
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numerical solutions are very much similar same. One of the advantages of the present
analytical solution is that it allows readers to carry out parametric studies. A parametric
investigation is carried out to study different physical parameters impact on the behavior
of the analytical solution. Moreover, the impact of various plasma parameters on nonpla-
nar ion-acoustic solitons can also be elaborated. The suitable application of the present
investigations can be found in laboratory plasmas, where oppositely charged ions and
nonthermal electrons dwell.

2. Derivation of evolution equation

A homogeneous, unmagnetized and collisionless plasma having oppositely charged ions
with varying masses and q-nonextensive electrons is considered. The positive ions hav-
ing temperature Ti, while negative ions with temperature Tn are present in the plasma
system and at the same time the electrons Te (such as Te � Ti,n) are assumed obeying
q-nonextensive distribution. Normalized equations describing the plasma model under
consideration are written, in axially symmetric non-planar case, as
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where ni,n, vi,n and pi,n are the number densities, normalized fluid velocity in the radial
direction and pressures of positive and negative ions, respectively. For q-nonextensive
electrons, we can write the number density as

ne = [1 + (q − 1) Φ](q+1)/2(q−1) (7)

Assuming weak nonlinearity limit Φ � 1 and approximation (q − 1)Φ � 1, Taylor series
expansion of electron density Eq.(7), results in ne =

[
1 + α1Φ + α2Φ2

]
where α1 = (q +

1)/2, and α2 = (q + 1) (3− q)/4.
Poisson equation in rescaled form is as follows
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where p = 0, 1, 2 for planar, cylindrical and spherical geometries, respectively. Here Φ is the
electrostatic potential. The symbols mi and mn show the masses of positive and negative
ions respectively and α = mn/mi.Various ratios appear as: ν = nn0/ni0, µ = ne0/ni0, δ =
ni0/nn0, θi = Ti/Te and θn = Tn/Te. Formn > mi and ni0 ∼ nn0, the plasma quantities are
rescaled using t −→ Tωpn, ∇ −→ λD∇, nj −→ Nj/Nj0, vj −→ Vj/csn, Φ −→ eϕ/KBTe,

where KB is the Boltzmann constant and csn =
√
KBTe/mn is the speed of sound. Here
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√

4πnn0e2/mn is the ion plasma frequency and λD =
√
KBTe/4πnn0e2 is the Debye

length as a characteristic scaling length.
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2.1. Reductive perturbation analysis. In this sub-section we shall employ the reduc-
tive perturbation method to obtain the evolution equation for the plasma in nonplanar
geometry. The stretched variables in this technique are as follows [32, 33]

ξ = ε
1
2 (r − λt), τ = ε

3
2 t (9)

Here λ shows rescaled phase speed by csn and ε (0 < ε ≤ 1) is a negligibly small factor
that determines nonlinearity scale. The plasma parameters nj , vj and Φ can be expanded
in a power series of ε as follows,
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where j = i (for positive ions), n (for negative ions), and e (for electron). Employing Eq.
(9) and expansions Eq. (10) into the basic set of model equations (1)- (8). Afterwards,
comparing and setting the coefficients of like powers of ε equal to zero , one obtains a set
of differential equations. Simplification of the set of differential equations obtained in this
way, yields cylindrical (spherical) KdV equation as
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where the coefficients A and B are defined by
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Here, in order to save the space, we did not give the details of the derivation of equations
(11) and (12). For the details of the derivation, the reader are refereed to the reference [34].

In Eq.(11), the term p
2τΦ(1) arises when the plasma is contained in non-planar geometries.

For p = 0, Eq.(11) is a KdV equation in a planar geometry. An instructive overview
of nonextensive statistics including various plasma scenarios and its applications can be
found in Refs.[35-38]. Here, the findings of our research work will be elaborated with
specific laboratory parameters that appear in Ref. [39].

3. Approximate solution of the modified KdV equation

Nonlinear partial differential equations governing the propagation of dust acoustic waves
in plasma can be solved using suitable methods directly or after suitable transformation
depending on the nature of the equation’s coefficients and the non-linearity; see for ex-
ample (tanh function method42,43, inverse scattering method [40], Jacobi elliptic function

expansion method [44,45], G
′
/G-expansion method [46-49], generalized expansion method

[50], weighted residual method [51-56], sine-cosine method [41]). In this section, an an-
alytical approximate solution in integral sense for the nonplanar KdV equation (11) is

presented using weighted residual method. For sufficiently large τ , the term Φ(1)/τ may
be negligibly small and the equation (11) reduces to the KdV equation in planar case
[11,30],
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∂φ0
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which has a steady state (solitary wave) solution given by

φ0(ξ, τ) = a0 sech2 η , η = ω0(ξ − u0τ) (14)
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12B
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3
,

where a0 is the wave amplitude, ω0 is the wave width and u0 is the constant velocity of
propagation. An approximate solution to Eq.(11) is proposed as:

Φ(1)(ξ, τ) = a(τ) sech2 η , η = ω(τ)(ξ − u(τ)) , (15)

with
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where the prime shows differentiation of the some quantity w.r.t τ . As a matter of fact,
the expressions (16) are formally the same with those of (14), except that in (16) a(τ) is
still undetermined.

When (15) along with (16) is substituted into the equation (11), it will not be satisfied
identically, i. e., there will a residue term R(η, τ), which reads
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In order to determine a(τ) we need an additional differential equation in terms of a(τ).
To obtain such an equation, we shall utilize the weighted residual method, as explained
in [55-57]. For that purpose, we multiply the equation (17) by a weighing function of the
form sech2η. Then integrating the result over η in the limits −∞ to ∞ and setting them
equal to zero, we obtain∫ ∞
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Carrying out the last integral in equation (18), one obtains
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Here sech2η is a square integrable function, thus from Eq. (20) we have
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Integrating Eq.(21) from τ∞ to τ , where τ∞ is the time at which the solution of Eq. (11)
can be approximated by the solution given in Eq. (14), along with Eq.(19) results in

a(τ) = a0(τ∞/τ)
2p
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Thus, the solution Φ(1) may be expressed by
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Φ(1) =
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The basic advantage of the analytical solution (22)-(23) is that a parametric study can
be carried out for solitons excited in nonplanar geometry. A parametric study is carried
out to investigate the effect of different physical parameters on the nonlinear evolution
solution behavior, and results in:

i. For p = 0 or τ = τ∞ the evolution solution in Eq. (23) reduces to the planar solution
in Eq. (14).

ii. Solution in Eq. (23) shows that the wave amplitude, wave width and wave veloc-
ity of the KdV equation in planar geometry (p = 0), cylindrical geometry (p = 1), and
spherical geometry (p = 2) are different from each others.

iii. As the value of the initial velocity u0 increases the initial amplitude a0 increases
and consequently the wave amplitude a(τ) while the wave width 1/ω(τ) decreases.

iv. For fixed values of the initial amplitude a0 the spherical solitary amplitude is taller

than the cylindrical as is evident from the amplitude component (τ∞/τ)
2p
3 .

v. As τ increases the solution amplitude component (τ∞/τ)
2p
3 decreases and consequen-

tially the wave amplitude a(τ) while the wave width 1/ω(τ) increases.

vi. According to the values of the plasma parameters the sign of the nonlinearity co-
efficient A can be changed and consequently the polarity of the wave amplitude a(τ) =(

3u0
A

) (
τ∞
τ

) 2p
3 . In other words, it leads to the formation of both rarefactive and compressive

solitons as shown in Figures 9 and 10.

4. Numerical results and discussion

In order to test the effectiveness of the present analytical solution of equation Eq. (13), the
same evolution equation is solved numerically by the spectral numerical scheme discussed
and used in Refs.[55-57] with a 4th order Runge-Kutta time integrator with a time step
∆τ = 0.005 and a space step ∆ξ = 0.01 from τ∞ = -10 to τ = −2.5. In doing so the
planar solution is utilized as our initial solution. The results are illustrated in Figures
1-10. Figure 1 displays analytical and numerical solutions of nonplanar geometry (p = 1,
for cylindrical and p = 2, for spherical) in 3D, by giving variations in entropic index
(q = 0.6, 0.7, 0.8) with θi = 0.5 , θn = 0.1, α = 146/40 and µ = 0.7. Figure 2 shows the
same solutions at different values of time i.e., τ = −10,−7.5, −5, −2.5. Figure 3 shows
the amplitude of the solitons with time for different q = 0.6, 0.7, 0.8. By looking at this
figure, it can be concluded that the nonlinear solitary waves amplitude diminish with the
passage of time τ which is physically true because no plasma system is ideally dissipation
free. Furthermore, Figures (1) to (3) show that the amplitude of wave decreases faster
as one departs away from center of the sphere. Such decaying trend continues with the
passage of time as expected from Eq. (22), where the cylindrical (spherical) amplitude
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Figure 1. Numerical (orange colour) and analytical (blue colour) solutions of
the cylindrical (a) and the spherical (b) KdV equation for various values of the
entropic index q.

 
 

Figure 2. The numerical solution (dashed line) and the analytical solution (solid
line) of the cylindrical (a) and the spherical (b) KdV equation for various values
of the entropic index q and time τ .
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Figure 3. Variation of the cylindrical (a) and spherical (b) wave amplitude
against time for various values of the entropic index q.

 
 

Figure 4. 3D differences between analytical and numerical solutions for (a)
cylindrical and (b) spherical geometries for various values of the entropic index q.
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( a )                                                                                                                        ( b ) 
 

Figure 5. Time evolution of compressive IA solitons in (a) cylindrical geometry
and (b) spherical geometry for changing the values of µ = 0.6 (solid curves),
µ = 0.7 (tiny dashed curves) and µ = 0.8 (small dashed curves) with θi = 0.5,
θn = 0.1, α = 146/40 and q = 0.8.

 

        
 

( a )                                                                                                                        ( b ) 
 

Figure 6. Time evolution of compressive IA solitons in (a) cylindrical geometry
and (b) spherical geometry for different values of θi = 0.3 (solid curves), θi = 0.4
(tiny dashed curves) and θi = 0.5 (small dashed curves) with θn = 0.1, µ = 0.6,
α = 146/40 and q = 0.8.

 

            
 

( a )                                                                                                                        ( b ) 
 

Figure 7. Time evolution of compressive IA solitons in (a) cylindrical geometry
and (b) spherical geometry for α = 140/40 (solid curves), and α = 140/131 (small
dashed curves) with θi = 0.5, θn = 0.1, µ = 0.6 and q = 0.8.
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( a )                                                                                                                        ( b ) 
 

Figure 8. Time evolution of compressive and rarefactive IA solitons in (a) cylin-
drical geometry and (b) spherical geometry for varying the electron nonextensivity
parameter q = 0.2 (solid curves), q = 0.3 (tiny dashed curves) and q = 0.9 (small
dashed curves) with θi = 0.1, θn = 0.1, µ = 0.6 and α = 146/40.

 

                      
 

( a )                                                                                                                        ( b ) 
 

Figure 9. Time evolution of compressive and rarefactive IA solitons in (a) cylin-
drical geometry and (b) spherical geometry for varying the electron-to-positive ion
density ratio µ = 0.3 (solid curves), µ = 0.4 (tiny dashed curves) and µ = 0.7
(small dashed curves) with θi = 0.1, θn = 0.1, q = 0.7 and α = 146/40.

A > 0

A < 0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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0.4

0.5
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0.7
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Figure 10. Contour plot for the non-linearity coefficient A against the electron
nonextensivity parameter q and the electron-to-positive ion density ratio µ for
θi = 0.1 [solid (red)], θi = 0.15 [dashed (green)], θi = 0.2 [dotted (blue)], θn = 0.1
and α = 146/40.
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component (τ∞/τ)
2p
3 decreases. Moreover, Figures (1) to (3) show that the spherical

solitary waves amplitude is greater and more significant than the cylindrical waves for
the same time. All these figures, indicate that both analytical and numerical solutions
are very much similar. Figure 4 shows the 3D relative differences between the analytical
and numerical solutions in the nonplanar geometry (p = 1, and p = 2) for varying q and
illustrates how much analytical solutions satisfy the equation Eq. (11) in integral form.
Figure 5 shows that the amplitude and the width of fast IA nonplanar hump solitons is
reduced for higher µ. This figure demonstrates the impact of µ on the nonplanar KdV
solitons. The decrease in the profile of the fast IA nonplanar compressive solitons is
obvious for enhanced µ. Figure 6 has been included in the illustrations to show the effect
of positive ion-to-electron temperature ratio (θi) on nonplanar solitons. The parameter
θi is found to impact the nonplanar solitons in a manner that amplitudes of the pulses
diminishes with higher θi. It is important to mention here that the temperature impacts
the Debye length directly. It means that whenever temperature is varied, Debye length
is also modified. This is the reason why amplitude and width of the nonplanar solitons
is reduced with enhanced positive ion-to-electron temperature ratio (θi). In order to
make a comparative analysis, Figure 7 shows solitons which has been formed considering
two different types of electronegative plasmas (i.e., Xe+-SF−6 and Ar+-SF−6 ), by varying
α (= 146/40, 146/131). This illustration exhibits that nonplanar solitons in Xe+-SF−6
plasma have higher amplitude and smaller width compared to those formed in case of
Ar+-SF−6 . As the plasma under investigation contains two massive ions with opposite
charges, both hump (compressive) and dip (rarefactive) solitons should be formed.
As the present experimental plasma contains both positive and negative ions, the electrons
follow q-nonextensive distribution. Therefore, both of compressive and rarefactive nonpla-
nar solitons can be sustained depending upon the choice of plasma parameters. Figures
8 and 9 show that each of the variation in nonextensivity (determinable through q) and
the electron-to-positive ion density ratio parameter µ affects significantly the formation
of hump and dip solitons. The nonlinearity coefficient A of Kortewede de Vries is a very
crucial factor that can be utilized to determine the nature of the solitary waves. Whenever
this coefficient is positive i.e., A > 0 it means compressive solitons exist, whereas A < 0
means the rarefactive solitons will be formed. Figure 10 has been included to point out
that both hump and dip solitons can be formed in electronegative plasmas but formation
of such structures is highly crucial to the choice of plasma parameters.
It has been noted that variation in parameter q, plays a crucial role in deciding amplitude
and widths of the solitons (either compressive and rarefactive solitons). Also such solitons

are highly influenced by parameters like α µ θi and θnṪhe significant conclusions of the
present studies are:

• IA solitons (fast mode) sustained in spherical geometry (p = 2) are higher as
compared to those formed in cylindrical geometry (p = 1).
• the spherical solitons move faster than those formed in cylindrical geometry. In

other words, the nonplanar solitary waves are modified largely as compared to
those of the solitary waves propagating in planar geometry.

5. Conclusions

We have derived the nonplanar evolution equation for ion acoustic IA waves in an elec-
tronegative plasma along with nonextensive q-distributed electrons using a multiple scale
expansion method. The exact solution of this evolution equation in the planar geometry
is obtained and it has been used to obtain an analytical approximate progressive wave
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solution for the nonplanar evolution equation. To check the accuracy of the obtained
analytical approximate solution, the illustrations are compared with the numerical spec-
tral solution of the same nonplanar evolution equation. Applying suitable relevant plasma
parameters the results are prepared/presented in the form of 2D and 3D figures. These fig-
ures indicate suitability of the applied technique and approximate analytical solutions for
the progressive wave. A parametric study can be performed using this technique/solution
which has no CPU time-consuming or round off error. A parametric study is presented
to investigate influence of different plasma parameters on the nonlinear evolution solution
behavior. A parametric study is presented to investigate the effect of different physical
parameters on the nonlinear evolution solution behavior. Debye length is modified owing
to the variations in important plasma parameters and, hence consequent modifications
occur in the amplitude and width of the solitons.
Such electronegative plasmas like (H+, O−2 ) and (H+, H−) exist in D and F regions of the
Earth’s ionosphere [8,59,60]. Present studies can be helpful in understanding plasma waves
that can be sustained both in space [59], and laboratory experiments holding different
polarity ions (varying in masses) and electrons [60,61].
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