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WAVELET PACKETS IN WEIGHTED SOBOLEV SPACE

RAJ KUMAR1, MANISH CHAUHAN2, §

Abstract. We perform some splitting tricks over wavelets to construct basic wavelet
packets in weighted Sobolev space. MRA based wavelet packet functions and their or-
thogonality at different levels in weighted Sobolev space are presented. Some examples
of wavelet packets in weighted Sobolev space are given.
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1. Introduction

There has been considerable focus upon wavelet packet analysis as an important gener-
alization of wavelet analysis. Wavelet packet functions consist of a rich family of building
block functions and are localised in time, but offer more flexibility than wavelets in rep-
resenting different kinds of signals. The power of wavelet packets lies in the fact that we
have much more freedom in selecting which basis functions are to be used to represent
the given function. Decomposition of wavelet components by orthogonal wavelet packets
were introduced by Coifman and Meyer [6] (see also [7], [20]). A detailed description
of wavelet packets of L2(R) with dilation 2 is illustrated in [12]. Some good generaliza-
tion of wavelet packets and efficient algorithms for finding best basis in wavelet packets
apply to wavelet frame packets are given in Chen [13]. The concept of wavelet packet
was subsequently generalized to R by taking tensor product version [6] and non-tensor
product version for dyadic dilation by Shen [17]. Other remarkable generalizations are
the biorthogonal wavelet packets [5], non-orthogonal version of wavelet packets [8], the
biorthogonal, orthogonal and wavelet frame packet on R for the dyadic dilation by Long
and Chen [14].

Wavelets and their properties in Sobolev space were explored by Bastin et al. [1, 3, 2],
Dayong and Dengfeng [9], Walter [18, 19] and Pathak [15]. The wavelet packets and their
orthogonal properties in Sobolev space Hs(R) were introduced by Pathak and Manish [16].
Han and Shen [11], Ehler [10] introduced a new concept to simplify the construction of
wavelet systems by constructing a pair of dual wavelet frames for a pair of Sobolev spaces.
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An efficient and comparatively low complexity method in the weighted Sobolev space for
the poor resolution text image enhancement has been presented in [4].

In this paper, we present wavelet packets as a generalisation of wavelets in weighted
Sobolev space W 1

2 (R) [4].

Organization of the paper. Section 2, perform some splitting tricks over wavelets to
construct basic wavelet packets in weighted Sobolev space. In section 3, MRA based
wavelet packet functions and their orthogonality at different levels are presented. Further,
Some examples of wavelet packets in weighted Sobolev space are given.

1.1. Preliminaries. Let us consider the weighted Sobolev space W 1
2 (R). The weighted

Sobolev space is defined with a scalar product of functions as follows:

〈f, g〉W := (1− β)

∫
R
f(x)g(x)dx+ β

∫
R
f
′
(x)g

′
(x)dx,

where 0 ≤ β ≤ 1 is weight. The norms of the function and scalar product in a spectral
domain are defined accordingly as follows:

‖f‖2W :=
1

2π

∫
R

(1− β + β|η|2)|f̂(η)|2dη,

where | · | denotes the Euclidean norm in R and the corresponding inner product is given
by

〈f, g〉W :=
1

2π

∫
R

(1− β + β|η|2)f̂(η)ĝ(η)dη.

The Fourier transform f̂ , for f ∈ L1(R) is define to be

f̂(η) :=

∫
R
e−ix.ηf(x)dx,

where x.η is the Euclidean inner product of two vectors x and η in R.

1.2. Multiresolution analysis in W 1
2 (R). The theory of multiresolution analysis in

Sobolev spaces was developed by Bastin and Laubin [3]. In the present work we extend
the theory over W 1

2 (R).

Definition 1.1. A multiresolution analysis of W 1
2 (R) is a sequence Vj , j ∈ Z, of closed

linear subspaces of W 1
2 (R) such that

(a) Vj ⊂ Vj+1,

(b)
⋃j=∞
j=−∞ Vj = W 1

2 (R),

(c)
⋂j=∞
j=−∞ Vj = {0}, and

(d) for every j, there is a function ϕ(j) such that the distributions 2j/2ϕ(j)(2jx−k), k ∈
Z, form an orthonormal basis for Vj .

Proposition 1.2. If ϕ(j) ∈W 1
2 (R), s ∈ R and j is an integer, then distributions ϕ

(j)
j,k(x) =

2j/2ϕ(j)(2jx− k), k ∈ Z are orthonormal in W 1
2 (R) iff

∑
k∈Z

(
1− β + 22jβ|η + 2kπ|2

)
|ϕ̂(j)(η + 2kπ)|2 = 1 (1)
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almost everywhere. It follows that we have the bound∣∣∣ϕ̂(j)
(
2−jη

)∣∣∣ ≤ (1− β + β|η|2
)−1/2

.

Proof. See Ref. [[3],p.482-483]. �

Proposition 1.3. Let ϕ(j), j ∈ Z, be a sequence of elements of W 1
2 (R) such that, for

every j, the distributions ϕ
(j)
j,k(x) = 2j/2ϕ(j)(2jx− k), k ∈ Z, are orthonormal in W 1

2 (R).

If Pj is the orthogonal projection from W 1
2 (R) onto Vj := > ϕ

(j)
j,k : k ∈ Z <, then, for every

h ∈W 1
2 (R), we have

lim
j→+∞

(
‖Pjh‖2W −

1

2π

∫
R

(1− β + β|η|2)2|ĥ(η)|2|ϕ̂(j)(2−jη)|2dη
)

= 0.

Moreover, if there are A, α > 0 such that∫
R

(1− β + β|η|)α|ϕ̂(j)(η)|2dη ≤ A

for every j ≤ 0, then
⋂j=∞
j=−∞ Vj = {0}.

Proof. The proof is similar to proof of ref. [[3] Proposition 2.2, p.483-484]. �

1.3. Construction of wavelets in Sobolev space W 1
2 (R). The result of the previous

subsection are the key for the construction of the wavelets.

(1) By definition, Vj is the set of all f ∈W 1
2 (R) such that

f̂(η) = m
(
2−jη

)
ϕ̂(j)

(
2−jη

)
,

where m ∈ L2
loc(R) is 2π-periodic. This follows immediately from the fact that the

Fourier transform of 2j/2ϕ(j)(2jx− k) is 2−j/2e−i2
−jk.ηϕ̂(j)(2−jη).

(2) We have Vj ⊂ Vj+1 for every j ∈ Z iff there are 2π-periodic functionsm
(j)
0 ∈ L2

loc(R)
such that the following scale relation holds:

ϕ̂(j)(2η) = m
(j+1)
0 (η) ϕ̂(j+1) (η) .

Moreover, as ϕ(j) and ϕ(j+1) satisfy the hypothesis of Proposition 1.2, then these filters
satisfy following condition

|m(j)
0 (η)|2 + |m(j)

0 (η + π)|2 = 1.

Let Wj be the orthogonal complement of Vj in Vj+1, for fix j ∈ Z. We have the

distribution ψ
(j)
j,k(x) := 2j/2ψ(j)(2jx− k) ∈ Vj+1 if there is a 2π-periodic function m

(j+1)
1 ∈

L2
loc(R) such that

ψ̂(j)(2−jη) = m
(j+1)
1 (2−j−1η)ϕ̂(j+1)(2−j−1η).

The distributions ψ
(j)
j,k ∈Wj are orthonormal if

|m(j+1)
1 (η)|2 + |m(j+1)

1 (η + π)|2 = 1,

and they are orthogonal to Vj if

m
(j+1)
1 (η)m

(j+1)
0 (η) +m

(j+1)
1 (η + π)m

(j+1)
0 (η + π) = 0.

It follows that we can define ψ(j) by the expression
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ψ(j)(2η) = e−iηm
(j+1)
0 (η + π)N(η)ϕ̂(j+1)(η),

where N ∈ L2
loc(R) is π−periodic and has modulus 1.

2. Some splitting tricks

We consider sequences {α(j)
k,ε : k ∈ Z}, ε ∈ {0, 1} in l2(Z), to define the functions

fε ∈W 1
2 (R), by

fε(x) = 21/2
∑
k∈Z

α
(j)
k,εϕ(2x− k), (2)

where {ϕk(·) := ϕ(· − k) : k ∈ Z} are orthonormal basis in W 1
2 (R). By taking Fourier

transform both side (2), we get

f̂ε(η) = m(j)
ε (2−1η)ϕ̂(2−1η),

where

m(j)
ε (η) =

∑
k∈Z

2−1/2α
(j)
k,εe
−iη.k, ε ∈ {0, 1}.

These function are 2π-periodic and are in L2(T) ; T = [−π, π] , since the sequence

{α(j)
k,ε}, ε ∈ {0, 1} are in l2(Z) . Next we define the matrix

M (j)(η) =

(
m

(j)
0 (η) m

(j)
0 (η + π)

m
(j)
1 (η) m

(j)
1 (η + π)

)
, η ∈ R.

Lemma 2.1. Let {ϕk : k ∈ Z} be an orthonormal system in W 1
2 (R). Also fε defined by

(2). Then {fε,k(x) = fε(x−k), 0 ≤ ε ≤ 1, k ∈ Z} is an orthonormal system if and only if∑
k∈Z

m
(j)

ε′
(η + kπ)m

(j)

ε′′
(η + kπ) = δε′ ,ε′′ , 0 ≤ ε′ , ε′′ ≤ 1. (3)

Moreover, {fε,k(x) = fε(x− k), 0 ≤ ε ≤ 1, k ∈ Z} is an orthonormal basis.

Proof. For 0 ≤ ε′ , ε′′ ≤ 1, k ∈ Z we have

〈fε′ ,k, fε′′ ,k〉W = 〈fε′ (·), fε′′ (· − k)〉W

=
1

2π

∫
R

(1− β + β|η|2)f̂ε′ ,0(η)f̂ε′′ ,k(η)dη

=
1

2π

∫
R

(1− β + β|η|2)f̂ε′ (η)f̂ε′′ (η)eik.ηdη

=
1

2π

∫
R

(1− β + β|η|2)m(j)

ε′
(2−1η)m

(j)

ε′′
(2−1η)|ϕ̂(2−1η)|2eik.ηdη

=
1

2π

∫
T

∑
k′∈Z

(1− β + β|η + 2k′π|2)m(j)

ε′
(2−1(η + 2k′π))

×m(j)

ε′′
(2−1(η + 2k′π))|ϕ̂(2−1(η + 2k′π))|2eik.ηdη

=
1

2π

∫
T

∑
k′∈Z

∑
µ∈2Z+1

(1− β + β|η + 2µπ + 22k′π|2)m(j)

ε′
(2−1η + µπ + 2k′π)
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×m(j)

ε′′
(2−1η + µπ + 2k′π)|ϕ̂(2−1(η + µπ + 2k′π))|2eik.ηdη

=
1

2π

∫
T

∑
µ∈2Z+1

m
(j)

ε′
(2−1η + µπ)m

(j)

ε′′
(2−1η + µπ)eik.ηdη.

Therefore

〈fε′ ,k, fε′′ ,k〉W = δε′ ,ε′′

⇔
∑

µ∈2Z+1

m
(j)

ε′
(2−1η + µπ)m

(j)

ε′′
(2−1η + µπ) = δε′ ,ε′′ for a.e. η ∈ R,

⇔
∑

µ∈2Z+1

m
(j)

ε′
(η + µπ)m

(j)

ε′′
(η + µπ) = δε′ ,ε′′ for a.e. η ∈ R.

We have proved the first part of lemma.
Now assume that {fε,k(x) = fε(x − k), 0 ≤ ε ≤ 1, k ∈ Z} is an orthonormal system.

We want to show that this is an orthonormal basis of W 1
2 (R). Let f ∈ W 1

2 (R) so there

exist {γ(j)
p,ε′

: p ∈ Z, 0 ≤ ε′ ≤ 1} ∈ l2(Z) such that

f(x) = 21/2
∑
k∈Z

γ
(j)

p,ε′
ϕ(2x− p).

Assume that f ⊥ fε,k for all ε, k.
Claim f = 0, for all ε, k such that 0 ≤ ε ≤ 1, k ∈ Z, we have

0 = 〈fε,k, f〉W

= 〈fε,k, 21/2
∑
k∈Z

γ
(j)

p,ε′
ϕ(2x− p)〉W

=
2−1/2

2π

∫
R

(1− β + β|η|2)m(j)
ε (2−1η)|ϕ̂(j)(2−1η)|2e−i〈k,η〉

∑
p∈Z

γ
(j)

p,ε′
eip.2

−1ηdη

=
21/2

2π

∫
R

(1− β + β|2η|2)m(j)
ε (η)|ϕ̂(j)(η)|2e−i〈k,2η〉

∑
p∈Z

γ
(j)

p,ε′
eip.ηdη

=
21/2

2π

∫
T

∑
k′∈Z

(1− β + β|2(η + 2k′π)|2)m(j)
ε (η + 2k′π)

× |ϕ̂(j)(η + 2k′π)|2e−i〈k,2η〉
∑
p∈Z

γ
(j)

p,ε′
eip.ηdη

=
21/2

2π

∫
T

∑
p∈Z

m(j)
ε (η)γ

(j)

p,ε′
e−i〈k,2η〉eip.η

×

{∑
k′∈Z

(1− β + β|2(η + 2k′π)|2)|ϕ̂(j)(η + 2k′π)|2
}
dη

=
21/2

2π

∫
T

∑
p∈Z

m(j)
ε (η)γ

(j)

p,ε′
e−i〈k,2η〉eip.ηdη
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=
21/2

2π

∫
2−1T

∑
µ∈2Z+1

∑
p∈Z

m(j)
ε (η + µπ)γ

(j)

p,ε′
e−i〈k,2(η+µπ)〉eip.(η+µπ)dη

=
21/2

2π

∫
2−1T

 ∑
µ∈2Z+1

∑
p∈Z

m(j)
ε (η + µπ)γ

(j)

p,ε′
ei〈p,(η+µπ)〉

 e−ik.2ηdη.

Since
{

21/2

2π e
ik.2·
}

: k ∈ Z is an orthonormal basis for L2(2−1T), then the above equation

is given by ∑
µ∈2Z+1

∑
p∈Z

m(j)
ε (η + µπ)γ

(j)

p,ε′
eip.(η+µπ) = 0, a.e.

For 0 ≤ ε′ ≤ 1, define

B
(j)

ε′
(η) =

∑
p∈Z

γ
(j)

p,ε′
eip.η.

So we have ∑
µ∈2Z+1

B
(j)

ε′
(η + µπ)m(j)

ε (η + µπ) = 0. (4)

Equation (4) says that the vector{
B

(j)

ε′
(η + µπ) : 0 ≤ ε′ ≤ 1, µ ∈ 2Z + 1

}
is zero, because these are orthogonal to each member of{

m(j)
ε (η + µπ) : 0 ≤ ε′ ≤ 1, µ ∈ 2Z + 1

}
.

Therefore, f = 0. �

With the help of above splitting lemma we can define wavelet packets in W 1
2 (R).

Let p
(j)
0 = ϕ(j), p

(j)
1 = ψ(j). We define the basis Wavelet packets associated with scaling

function ϕ(j) recursively as follows:

p
(j)
2n (t) = 2

∑
k∈Z

α
(j+1)
k,0 p(j+1)

n (2t− k),

p
(j)
2n+1(t) = 2

∑
k∈Z

α
(j+1)
k,1 p(j+1)

n (2t− k). (5)

The Fourier transform equivalence of the of the scaling relation for the Wavelet packets
is given by

p̂
(j)
2n (η) = m

(j+1)
0 (η/2)p̂(j+1)

n (η/2),

p̂
(j)
2n+1(η) = m

(j+1)
1 (η/2)p̂(j+1)

n (η/2).

We consider

m
(j)
0 (η) =

∑
k∈Z

α
(j)
k,0e

iη.k,

m
(j)
1 (η) =

∑
k∈Z

α
(j)
k,1e

iη.k.

These function are 2π-periodic and are in L2(T), since the sequence {α(j)
k,ε}, ε ∈ {0, 1} are

in l2(Z).
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Proposition 2.2. Let n be any non-negative integer. Then the Fourier transform of basis
wavelet packet defined by (5) is given by

p̂(j)n (η) =
∞∏
q=1

m(j+q)
εq (2−qη)(1− β + β|2jη|)−1/2.

Proof. The proof is similar to proof of ref. [[16] Proposition 2.2]. �

3. WAVELET PACKET FUNCTIONS GENERATED BY MRA IN THE
SOBOLEV SPACE W 1

2 (R)

Suppose that ϕ(j)(t) generates an orthonormal multiresolution analysis {Vj}j∈Z with

associated wavelet function ψ(j)(t) in W 1
2 (R). The wavelet packet functions are defined

by ϕ(j) = p
(j)
0 , p

(j)
1 = ψ(j) and for n = 1, 2, 3, . . . we define

p
(j)
2n (t) = 21/2

∑
k∈Z

α
(j+1)
k,0 p(j+1)

n (2t− k),

p
(j)
2n+1(t) = 21/2

∑
k∈Z

α
(j+1)
k,1 p(j+1)

n (2t− k).

Let p
(j)
n (t) be a wavelet function associated with scaling function ϕ(j)(t). Here n is a

non-negative integer. For integers j, we define

p
(j)
j,k,n(t) = 2j/2p(j)n (2jt− k), k ∈ Z. (6)

Theorem 3.1. If p
(j+1)
j,k,n (t) ∈ W 1

2 (R) and j, k are integers, then the distributions

{2(j+1)/2p
(j+1)
[n/2] (2(j+1)t− k)}, k ∈ Z, are orthonormal in W 1

2 (R) iff∑
r∈Z
|p̂(j+1)

[n/2] (η + 2πr)|
2
(1− β + 22(j+1)β|(η + 2πr)|2) = 1.

Proof. Since p
(j+1)
j,k,n (t) ∈W 1

2 (R), the series

M(η) =
∑
r∈Z
|p̂(j+1)

[n/2] (η + 2πr)|
2
(1− β + 22(j+1)β|(η + 2πr)|2)

converges almost everywhere, belongs to L1
loc(R) and 2π-periodic. Moreover, for every

l ∈ Z, we have∫
T
M(η)e−iη(k−l)dη

=
∑
r∈Z

∫
T
|p̂(j+1)

[n/2] (η + 2πr)|
2
(1− β + 22(j+1)β|(η + 2πr)|2)e−iη(k−l)dη

=

∫
R
|p̂(j+1)

[n/2] (ν)|
2
(1− β + 22(j+1)β|(ν)|2)e−iν(k−l)dν

= 2−(j+1)

∫
R
|p̂(j+1)

[n/2d]
(2−j−1u)|

2
(1− β + β|u|2)e−i2−j−1u(k−l)du

=

∫
R

(1− β + β|u|2)e−i2−j−1uk2−(j+1)/2p̂
(j+1)
[n/2] (2−j−1u)

× e−i2−j−1ul2−(j+1)/2p̂
(j+1)
[n/2] (2−j−1u)du
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=

∫
R

(1− β + β|u|2)2(j+1)/2F
[
p̂
(j+1)
[n/2] (2j+1t− k)

]
(u)F

[
p̂
(j+1)
[n/2] (2j+1t− l)

]
(u)du

= 2π〈2(j+1)/2p
(j+1)
[n/2] (2j+1t− k), 2(j+1)/2p

(j+1)
[n/2] (2j+1t− l)〉W .

Since {1/2πe−iη.(k−l)} : k, l ∈ Z is an orthonormal basis for L2(T), then

1

2π

∫
T
M(η)e−iη(k−l)dη = 〈2(j+1)/2p

(j+1)
[n/2] (2j+1t− k), 2(j+1)/2p

(j+1)
[n/2] (2j+1t− l)〉W = δk,l,

if M(η) = 1. �

Theorem 3.2. Let j and n be the integers with n ≥ 0 and k, l ∈ Z. Then

〈p(j)j,k,n(t), p
(j)
j,l,n(t)〉W = δk,l.

Proof.

〈p(j)j,k,n(t), p
(j)
j,l,n(t)〉W

= 2j〈p(j)n (2jt− k), p(j)n (2jt− l)〉W

=
2−j

2π

∫
R
|p̂(j)n (2−jη)|2e−iη2−j(k−l)(1− β + β|η|2)dη

=
1

2π

∫
R
|p̂(j)n (u)|2e−iu(k−l)(1− β + β22j |u|2)du

=
1

2π

∫
R
|m(j+1)

ε1 (u/2)|2|p̂(j+1)
[n/2] (u/2)|

2
e−iu(k−l)(1− β + β22j |u|2)du

=
2

2π

∫
R
|m(j+1)

ε1 (ν)|2|p̂(j+1)
[n/2] (ν)|

2
e−i2ν(k−l)(1− β + β22(j+1)|ν|2)dν

=
1

π

∫
R
|m(j+1)

ε1 (ν)|2|p̂(j+1)
[n/2] (ν)|

2
e−i2ν(k−l)(1− β + β22(j+1)|ν|2)dν

=
1

π

∫
T
|m(j+1)

ε1 (ν)|2
∑
r∈Z
|p̂(j+1)

[n/2] (ν + 2πr)|
2
(1− β + β22(j+1)|ν + 2πr|2)e−i2ν(k−l)dν

=
1

π

∫
T
|m(j+1)

ε1 (ν)|2e−i2ν(k−l)dν

=
1

π

∫
[0,π)

(
|m(j+1)

ε1 (ν)|2 + |m(j+1)
ε1 (ν + π)|2

)
e−i2ν(k−l)dν

=
1

π

∫
[0,π)

e−i2ν(k−l)dν = δk,l.

Thus,

〈p(j)j,k,n(t), p
(j)
j,l,n(t)〉W = δk,l.

�

Theorem 3.3. For any n ∈ N we have

〈p(j)j,k,2n(t), p
(j)
j,l,2n+1(t)〉W = 0.

Proof. By using change of variable technique and (6), we have

〈p(j)j,k,2n(t), p
(j)
j,l,2n+1(t)〉W = 2j〈p(j)2n (2jt− k), p

(j)
2n+1(2

jt− k)〉W
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=
2−j)

2π

∫
R

(1− β + β|η|2)p̂(j)2n (2−jη)p̂
(j)
2n+1(2

−jη)e−iη2
−j(k−l)dη

=
1

2π

∫
R

(1− β + β22j |u|2)p̂(j)2n (u)p̂
(j)

2dn+1
(u)e−iu(k−l)du

=
1

2π

∫
R
m(j+1)
εi (u/2)m

(j+1)
εm (u/2)(1− β + β22j |u|2)sp̂(j+1)

[n/2] (u/2)p̂
(j+1)
[n/2] (u/2)e−iu(k−l)du

=
1

2π

∫
R
m

(j+1)
0 (ν)m

(j+1)
1 (ν)(1− β + β22(j+1)|ν|2)|p̂(j+1)

[n/2] (ν)|
2
e−i2ν(k−l)dν

=
1

π

∫
T
m

(j+1)
0 (ν)m

(j+1)
1 (ν)

∑
r∈Z
|p̂(j+1)

[n/2] (ν + 2πr)|
2
(1− β + β22(j+1)|ν + 2πr|2)e−i2ν(k−l)dν

=
1

π

∫
T
m

(j+1)
0 (ν)m

(j+1)
1 (ν)e−i2ν(k−l)dν

=
1

π

∫
T1

(
m

(j+1)
0 (ν)m

(j+1)
1 (ν) +m

(j+1)
0 (ν + π)m

(j+1)
1 (ν + π)

)
e−i2ν(k−l)dν

= 0.

�

With the help of orthogonal system in L2(R) of wavelet packets, we can achieve or-
thogonality of wavelet packets in W 1

2 (R) at jth in an alternative form by the theory of
convolution of Fourier transform.

Theorem 3.4. Let σ = F−1
[
(1− β + β|η|2)−1/2

]
and p

(j)
j,k,n(t) = 2j/2p

(j)
n (2jt− k). Then

2π〈σ ∗ p(j)j,k,n, σ ∗ p
(j)
j,l,n〉W = δk,l,

if

〈p(j)j,k,n, p
(j)
j,l,n〉2 = δk,l,

where 〈·〉2 is inner product in L2(R).

Proof. Using the convolution theorem for Fourier transform, we have

〈σ ∗ p(j)j,k,n,σ ∗ p
(j)
j,l,n〉W

=
1

2π

∫
R

(1− β + β|η|2)F(σ ∗ p(j)j,k,n)F(σ ∗ p(j)j,l,n)dη.

Let us choose F(σ)(η) = (1− β + β|η|2)−1/2, then the above expression becomes

〈σ ∗ p(j)j,k,n,σ ∗ p
(j)
j,l,n〉W =

1

2π

∫
R
F(p

(j)
j,k,n)F(p

(j)
j,l,n)dη.

By Plancherel’s equation, we get

2π〈σ ∗ p(j)j,k,n, σ ∗ p
(j)
j,l,n〉W =

∫
R
p
(j)
j,k,np

(j)
j,l,ndη

= 〈p(j)j,k,n, p
(j)
j,l,n〉2

= δk,l.

�
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Now we give an example of wavelet packet by considering the usual spline functions of
order m

g = χ[0,1] ∗ . . . ∗ χ[0,1],

then the Fourier of g is

ĝ(η) = e−i(m+1)η/2

(
sin(η/2)

η/2

)m+1

.

For every j ∈ Z, let us define

p̂
(j)
0 (η) = ϕ̂(j)(η) :=

ĝ(η)√
ω
(j)
g (η)

,

where

ω(j)
g (η) =

∞∑
k=−∞

(
1− β + 22jβ|η + 2kπ|2

)
|ĝ(η + 2kπ)|2.

It is easy to see that ϕ(j) ∈W 1
2 (R). By using scaling relation

ϕ̂(j)(2η) = m
(j+1)
0 (η)ϕ̂(j+1)(η)

we get

m
(j+1)
0 (η) = e−i(m+1)η/2 cosm+1

(η
2

)√√√√ω
(j+1)
g (η)

ω
(j)
g (2η)

. (7)

Let p
(j)
1 = ψ(j) be wavelet function corresponding to scaling function ϕ(j), then the distri-

butions 2j/2ψ(j)(2jx− k), j, k ∈ Z, where

p̂
(j)
1 (2η) = ψ̂(j)(2η) = e−iηm

(j+1)
0 (η + π)ϕ̂(j+1)(η),

with

m
(j)
1 (η) = e−iηm

(j+1)
0 (η + π)

= −e−iηe−i(m+1)(η+π)/2 sinm+1
(η

2

)√√√√ω
(j+1)
g (η + π)

ω
(j)
g (2η)

(8)

are orthonormal basis for W 1
2 (R). Define functions p

(j)
n , n ≥ 0, as follows:

p̂
(j)
2n (2η) = m

(j+1)
0 (η)p̂(j+1)

n (η),

and

p̂
(j)
2n+1(2η) = m

(j+1)
1 (η)p̂(j+1)

n (η),

where m
(j+1)
0 , m

(j+1)
1 as given in (7) and (8).

From theorem 3.4, we define wavelet packet in convolution form as

(σ ∗ p(j)j,l,n)(t) =

∫
R
σ(x− t)2(j+1)/2

∑
k∈Z

α
(j+1)
k,ε p

(j+1)
[n/2] (2(j+1)t− k)dx, (9)

where (j) denotes the jth level and if n is even then ε = 0 or if n is odd then ε = 1. In
figure 1,2, we consider Haar scaling function ϕ(x) = χ[0,1] in (9).
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Figure 1. Wavelet packets in W 1
2 (R) for a) n = 5, j = −3 and b) n =

4, j = 2.
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Figure 2. Wavelet packets in W 1
2 (R) for c) n = 6, j = −7 and b) n =

4, j = 2.
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