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RUNS BASED ON DISCRETE ORDER STATISTICS

A. STEPANOV1 §

Abstract. In the present paper, we study runs based on discrete order statistics. Limit
results for the total number of such runs and the length of the longest run are derived.
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1. Introduction

Runs are commonly used in different applications including reliability, quality control
and molecular biology. They are intensively discussed in the statistical literature. For a
thorough review on runs we refer to Balakrishnan and Koutras (2002), Fu and Lou (2003),
and the references therein.

At the first stage of the research on runs, most studies were conducted for runs obtained
from the sequences of integer-valued random variables. Attention has been turned later
towards runs based on the sequences of continuous random variables. Among some recent
publications in that direction we mention the papers of Eryilmaz (2005, 2007, 2008),
Eryilmaz and Fu (2008), Fan et al. (2008), Eryilmaz and Stepanov (2008), and Stepanov
(2011a, 2011b), where runs based on spacings and ratios of order statistics of continuous
random variables have been investigated.

In the present work, we study runs based on order statistics obtained from discrete
distributions. The problem discussed in our paper is new.

Let in the following, X1, . . . , Xn be independent and identically distributed random
variables taking the positive integers and having a distribution F (n) = P{X ≤ n}. Let

−∞ = X0,n < X1,n ≤ . . . ≤ Xn,n < Xn+1,n = ∞
be the order statistics obtained from this sample. We say that the sequence of order
statistics Xi,n, . . . , Xj,n forms a run of the length j − i− 1 (j ≥ i + 3, i ≥ 0, j ≤ n + 1) if

Xi,n < Xi+1,n = Xi+2,n = . . . = Xj−1,n < Xj,n.

If j = i+1, i.e. we have two order statistics Xi,n < Xi+1,n, we say that the order statistics
Xi,n, Xi+1,n form a run of the length 1; if j = i + 2 and Xi,n < Xi+1,n < Xi+2,n, we say
that Xi,n, Xi+1,n, Xi+2,n form two runs, where each of these runs has the length 1.

Let us define auxiliary variables ξi,n by

ξ1,n = 1, ξn+1,n = 1,
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ξi,n =
{

1, if Xi−1,n < Xi,n i = 2, . . . , n,
0, otherwise.

In terms of these variables, if

ξi+1,n = 1, ξi+2,n = . . . = ξj−1,n = 0, ξj,n = 1,

then we have a run of the length j − i− 1. We also define a variable Rn = 1, 2, . . . , n by

Rn =
n∑

l=1

ξl,n.

We refer to Rn as to the total number of runs based on the order statistics X1,n, . . . , Xn,n.
In the case of a single run, when ξi = 0 (2 ≤ i ≤ n), we have Rn = 1. Observe that
the total number of runs indicates how many ’strong‘ (different) order statistics are in a
discrete sample. For the length of the longest run we will use the following designation
Ln (1 ≤ Ln ≤ n).

The above notions are illustrated by the following example.

Example 1.1. Let us consider a sequence of integer order statistics:

2, 2, 2︸ ︷︷ ︸, 4︸︷︷︸, 5︸︷︷︸, 8, 8, 8, 8︸ ︷︷ ︸, 9, 9, 9︸ ︷︷ ︸, 10, 10︸ ︷︷ ︸, 14, 14, 14, 14, 14, 14︸ ︷︷ ︸ .

We have seven run groups, and R20 = 7, L20 = 6.

The rest of this paper is organized as follows. In Section 2, we present distributional
and limit results for Rn and Ln. In Subsection 2.1, we discuss these distributional and
limit results in the finite case. In Subsection 2.2, we analyze the asymptotic behavior of
runs based on discrete order statistics when the support is unbounded. In particular, we
will show that for any unbounded support

Rn →∞ a.s.,
Rn

n
→p 0,

Rn∑∞
i=1(1− (1− pi)n)

→p 1 and
Ln

n
→p pM ,

where pM = max{p1, p2, . . .}.

2. Results

Let pi = P{X = i} and N (1 ≤ N ≤ ∞) be the smallest number such that pi = 0 (i >
N).

2.1. Finite case. In this subsection we assume that N < ∞. The probability mass
function of ξi,n and the expected value of Rn can be written as

P{ξi,n = 1} =
N−1∑

j=1

P{j = Xi−1,n < Xi,n} =

n!
(n− i + 1)!

N−1∑

j=1

(1− F (j))n−i+1
i−1∑

l=1

pl
jF

i−l−1(j − 1)
l!(i− l − 1)!

=

n!
(n− i + 1)!(i− 1)!

N−1∑

j=1

(1− F (j))n−i+1[F i−1(j)− F i−1(j − 1)]
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and

ERn = N − Fn(N − 1)−
N−1∑

j=1

(1− pj)n. (1)

It follows from (1) that ERn → N as n →∞. Generally speaking, in the finite case we have
a Bernoulli scheme, where Rn → N a.s. and Ln/n → pM a.s. for pM = max{p1, . . . , pN}.

2.2. Infinite case. Let N = ∞. The probability mass function of ξi,n and the joint mass
function of ξi,n, ξk,n are given here by

P{ξi,n = 1} =
n!

(n− i + 1)!(i− 1)

∞∑

j=1

(1− F (j))n−i+1[F i−1(j)− F i−1(j − 1)] (2)

and
P{ξi,n = 1, ξk,n = 1} = (2 ≤ i < k ≤ n)

∞∑

j=1

∞∑

t=j+1

P{Xi−1,n = j,Xk−1,n = t} =
n!

(n− k + 1)!

∞∑

j=1

i−1∑

l=1

pl
jF

i−l−1(j − 1)
l!(i− l − 1)!

∞∑

t=j+1

(1− F (j))n−k+1
k−i∑

m=1

pm
t [F (t− 1)− F (j)]k−i−m

m!(k − i−m)!
=

n!
(n− k + 1)!

∞∑

j=1

F i−1(j)− F i−1(j − 1)
(i− 1)!

∞∑

t=j+1

(1− F (j))n−k+1 [F (t)− F (j)]k−i − [F (t− 1)− F (j)]k−i

(k − i)!
. (3)

The conditional mass function of Rn+1 given {Rn = k} can be written as:

P{Rn+1 = k + 1|Rn = k} = P{Xn+1 6= Xi} = (i = 1, . . . , n)

∞∑

j=1

pj(1− pj)n.

Then

E{Rn+1|Rn = k} = k +
∞∑

j=1

pj(1− pj)n.

From the properties of the conditional expectation, one can obtain

ERn =
∞∑

j=1

[1− (1− pj)n] = En. (4)

It should be mentioned that (4) can be derived directly from (2). It follows from (4) that
ERn →∞.

Let us consider other properties of Rn. It is easily seen that Rn+1 ≥ Rn a.s. This
observation leads us to the following limit result.

Theorem 2.1. For any discrete F such that N = ∞, we have

Rn →∞ a.s.



188 TWMS J. APP. ENG. MATH. V.1, N.2, 2011

Proof. Since Rn is monotone, it converges almost surely either to a finite limit or to
infinity. Thus, it is sufficient to show that Rn converges in probability to infinity.

The event {Rn = k} means that the variables X1, . . . , Xn take exactly k different
positive integer values, i.e.

P{Rn ≤ m} =
m∑

k=1

P{Rn = k} =

m∑

k=1

n!
(n− k + 1)!

∞∑

i1=1

pi1

∞∑

i2=i1+1

pi2 . . .
∞∑

ik=ik−1+1

pik(pi1+pi2+. . .+pik)n−k ≤
m∑

k=1

n!
(n− k + 1)!

pn−k
sup,k → 0,

(5)
where psup,k = supi1,i2,...,ik

(pi1 + pi2 + . . . + pik) < 1. ¤
In light of the previous result it is interesting to trace the limit behavior of the ratio

Rn
n . It is easily seen that

ERn

n
>

ERn+1

n + 1
(n ≥ 1).

The following asymptotic result holds.

Theorem 2.2. For any discrete F such that N = ∞, we have
ERn

n
→ 0 and

Rn

n
→p 0.

Proof. Indeed,
ERn

n
= on(1) +

1
n

∞∑

j=J

[1− (1− pj)n] .

By the inequality

n(a− b)bn−1 < an − bn < n(a− b)an−1 (a > b > 0), (6)

we get
ERn

n
< on(1) + 1− F (J − 1).

Choosing J as large one can make the right-hand side of the last inequality smaller than
any ε > 0. The first statement of Theorem 2.2 readily follows.

The second statement of Theorem 2.2 follows from Chebyshev’s inequality and the first
statement. ¤

We see that the sequence Rn converges to infinity, and Rn/n converges to zero. Properly
normalized Rn can tend to one.

Theorem 2.3. For any discrete F such that N = ∞, we have
Rn

En
→p 1

Proof. By Chebyshev’s inequality,

P{|Rn −ERn| > εERn} ≤ V arRn

ε2E2
n

.

Let us estimate V arRn. We have

V arRn = 2
n−1∑

i=2

n∑

k=i+1

Eξi,nξk,n + 3En −E2
n.
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It follows from (3) that
n−1∑

i=2

n∑

k=i+1

Eξi,nξk,n = 1− En +
∞∑

j=1

∞∑

l=j+1

(1− (1− pj)n − (1− pl)n + (1− pj − pl)n)

and

V arRn = 2 + En − E2
n + 2

∞∑

j=1

∞∑

l=j+1

(1− (1− pj)n − (1− pl)n + (1− pj − pl)n) =

2 +
∞∑

j=1

((1− pj)n − (1− 2pj)n) +
∞∑

j=1

∞∑

l=1

((1− pj − pl)n − (1− pj − pl + pjpl)n) ≤

2 +
∞∑

j=1

((1− pj)n − (1− 2pj)n).

Then
V arRn

E2
n

=

∑∞
j=1((1− pj)n − (1− 2pj)n)∑∞

j=1(1− (1− pj)n)En
.

By (5),
V arRn

E2
n

<
n

∑
j=1 pj(1− pj)n−1

∑∞
j=1(1− (1− pj)n)En

<
1

En
→ 0.

¤
In the above theorem we found that Rn

En
→p 1. What one can say about the limiting

behavior of En? Obviously, En ≤ n. In the following result we find the lower bound for
En.

Proposition 2.1. For any n ≥ 1

En ≥
n∑

j=1

(1− F (1))j−1

j
.

Proof. Observe that

En =
∞∑

i=1

pi +
∞∑

i=1

pi(1− pi) + . . . +
∞∑

i=1

pi(1− pi)n−1.

However,
∞∑

i=1

pi(1− pi)j ≥
∞∑

i=1

(F (i)− F (i− 1))(1− F (i))j ≥
∫ 1

F (1)
(1− x)jdx =

(1− F (1))j

j + 1
.

¤
It is reasonable to assume that for some distributions the sum En can tend to finite

limit as n →∞ and for other distributions it can tend to infinity. We focus now on these
matters.

In Eisenberg et al. (1993) and Brands et al. (1994) the asymptotic behavior of the
number of maxima in the discrete case is discussed. The following limit

lim
i→∞

pi+1

pi
= p ∈ [0, 1] (7)

is used for distribution tail classification.
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Theorem 2.4. 1) Let the limit in (7) exist and p ∈ [0, 1), then En → E < ∞.
1) Let the limit in (7) exist and p = 1, then En →∞.

Proof. Observe first that if the limit in (7) exist and p ∈ [0, 1], then for any n ≥ 1

lim
i→∞

1− (1− pi+1)n

1− (1− pi)n
= p ∈ [0, 1].

2) Let us choose ε > 0 and I such that

1− (1− pi+1)n

1− (1− pi)n
< p + ε < 1 (i > I).

Then
∞∑

i=I+1

[1− (1− pi)n] <
1− (1− pI+1)n

1− p− ε
.

Obviously, En is bounded and increasing, which implies the first statement of Theorem 2.4.
2) Choose ε > 0 and I such that

1− (1− pi+1)n

1− (1− pi)n
> 1− ε (i > I).

Then
∞∑

i=I+1

[1− (1− pi)n] >
1− (1− pI+1)n

ε
.

Taking ε as small we can do the right-hand side of the last inequality as great. This implies
the truth of the second statement of Theorem 2.4. ¤

The last result can be commented in the following way. When p ∈ [0, 1), i.e. the
distribution tail is not heavy, the order statistics are concentrated in the ”beginning” of
the tail, each positive integer is occupied by many sample observations and, consequently,
we have a finite number of runs. When the tail is heavy, i.e. p = 1, the sample disperse
is great. We have many ”strong” (isolated) order statistics, which give us the infinite
number of runs.

In the conclusion, we present a limit result for the longest run.

Proposition 2.2. For any discrete F such that N = ∞, we have

Ln

n
→p pM ,

where pM = max{p1, p2 . . .}.
Proof. We apply the same argument that was already used in the end of Subsection 2.1.
Choose K rather large such that K > J ≥ 1, where pM = pJ , and pM > p̃K = pK +
pK+1 + . . . Now we can suppose that we have a finite case, where X = 1, . . . , K − 1,K
with p1, . . . , pK−1, p̃K . The argument that was once used for a Bernoulli scheme can be
applied now again. ¤
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