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NEW APPROACH TO THE SOLUTIONS OF THE PIB EQUATION

J. RASHIDINIA1, A.BARATI1 §

Abstract. In this paper, based on the Exp-function method and mathematical deriva-

tion, we obtain several explicit and exact traveling wave solutions for the PIB equation.
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1. Introduction

It is well known that many important phenomena and dynamic processes in physics,
mechanics, chemistry, biology and etc can be represented by nonlinear partial differential
equations. For decades, mathematicians and physicists have devoted considerable effort
to the study of solutions of nonlinear partial differential equations. The study of exact
solutions of nonlinear evolution equations plays an important role in soliton theory and
explicit formulas of such exact solutions play an essential role in the nonlinear science.
Also, the explicit formulas may provide physical information and help us to understand
the mechanism of related physical models.

In recent years, many kinds of powerful methods have been proposed to find solu-
tions of nonlinear partial differential equations, e.g., the inverse scattering method [1], the
variational iteration method [2], the homotopy perturbation method [3, 4, 5], Bäcklund
transformation method [6, 7], the tanh-method [8], the sinh-method [9], the homogeneous
balance method [10], the F-expansion method [11], algebraic geometric method [12]. One
may find a complete review in [13].

J.H.He in [14] suggested a novel method, so-called Exp-function method, to search
for solitary solutions, compact-like solutions and periodic solutions of various nonlin-
ear wave equations. The basic idea of the Exp-function method was provided in [15]
and one may find several applications of the Exp-function method over various areas in
[14, 16, 17, 18, 19, 20].

we consider non-traveling wave solutions of the two dimensional Painleve integrable
Burgers equation (PIB) [21, 22, 23]
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ut = uuy + λvux + µuyy + λµuxx

ux = vy,
(1)

where λ and µ are nonzero constants. Eq. (1) was derived from the generalized Painleve
integrability classification by Hong et al. [22]. Some explicitly exact solutions of Eq. (1)
have been obtained via variable separation approach [22, 23] and multiple Riccati equa-
tions rational expansion method [21].

The outline of this paper is as follows. In the following section we review the Exp-
function method and then we apply the method to find explicit formulas of solution of the
PIB equation in Section 3, We present a brief conclusion in Section 4.

2. The Exp-function method

We consider the following nonlinear partial differential equation

N(χ, χx, χy, χz, χt, χxx, χyy, χzz, χxy, χxt, χyt, · · · ) = 0. (2)

By using transformation

η = a x + b y + c z + d t + γ,

where a, b, c, d and γ are constants, we can convert (2) to the following nonlinear ordinary
differential equation

M(χ, χ′, χ′′, χ′′′, · · · ) = 0, (3)

where the prime denotes the differentiation with respect to η.
Adopting the Exp-function method given in [14], and assuming that the traveling wave

solution can be expressed in the following form

χ(η) =

Nb∑

n=−Na

an exp(n η)

Mb∑

m=−Ma

bm exp(mη)

, (4)

where Ma, Mb, Na and Nb are positive integers which could be freely chosen, and an and
bm are unknown coefficients to be determine. The equation (4) can be rewritten in the
expanded form such as

χ(η) =
aNb

exp(Nb η) + · · ·+ a−Na exp(−Na η)
bMb

exp(Mb η) + · · ·+ b−Ma exp(−Ma η)
. (5)

In order to determine the values of Na and Ma, we balance the linear terms of the highest
order in equation (3) with the highest order nonlinearity. Similarly, to determine the
values of Nb and Mb, we balance the linear terms of the lowest order in equation (3) with
the lowest order nonlinear terms. For more details see [14, 19].
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3. Explicit formula of solutions of the PIB equation

In order to obtain the traveling wave solutions of the equation (1), by using the trans-
formation u(η) = u(x, t, y), η = kx + ωt + βy , the equation (1) can be converted to
following system:

ωu′ = βuu′ + λkvu′ + µβ2u′′ + λµk2u′′

ku′ = βv′,
(6)

from second relation in(6)we have:

v = (
k

β
u + c1), (7)

where c1 is a constant. Substituting (7) into the first relation (6), we get the following
ordinary differential equation:

(β + λk2

β )uu′ + (λkc1 − ω)u′ + (µβ2 + λµk2)u′′ = 0. (8)

Using equation (5) in (8) and according to the homogeneous balance principle yields that

Ma = Na and Mb = Nb.

In the following subsections, we consider some arbitrary values of the numbers Na and
Nb to derive explicit analytic solutions of (8). One may choose the numbers Na and
Nb arbitrary , but the resultant solutions do not strongly depend upon such choice (see
[14, 19]).

3.1. Case 1: Na = 1 and Nb = 1. For simple case of these choice, the trial function (5)
becomes

u(η) =
a1 exp(η) + a0 + a−1 exp(−η)
b1 exp(η) + b0 + b−1 exp(−η)

. (9)

For convenience, set b1 = 1. Substituting equation (9) into equation (8) and using some
mathematical calculations we can derive the following relations:

case I:

a0 = a0, a1 = −−2ωβb0 + 2βλkc1b0 + β2a0 + λk2a0

b0(β2 + λk2)
, a−1 = 0,

b0 = b0, b−1 = 0, β = β, λ = λ, k = k,

µ = −λk2a0 + βλkc1b0 + β2a0 − βωb0

βb0(β2 + λk2)
, ω = ω, c1 = c1.

Then we have the following solitonary solution u(η)

u(η) =
−−2ωβb0+2βλkc1b0+β2a0+λk2a0

b0(β2+λk2)
exp(η) + a0

exp(η) + b0
,

where a0,b0, λ,β,k,ω and c1 are arbitrary parameters.
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case II:

a0 = 0, a1 = a1, a−1 = a1a−1 − 4a−1µβ,

b0 = 0, b−1 = b−1, β = β, λ = λ, k = k,

µ = µ, ω =
a1β

2 + a1λk2 + βλkc1 − 2µβ3 − 2µβλk2

β
, c1 = c1.

Then we have the following solitonary solution u(η)

u(η) = a1 − 4µa−1β exp(−η)
exp(η) + a−1 exp(−η)

,

where a1, a−1, µ and β are arbitrary parameters.

3.2. Case 2: Na = 2 and Nb = 2. In this case, we set Na = Ma = 2 and Nb = Mb = 2,
then the trial function (5) becomes

u(η) =
a2 exp(2 η) + a1 exp(η) + a0 + a−1 exp(− η) + a−2 exp(−2 η)
b2 exp(2 η) + b1 exp(η) + b0 + b−1 exp(−η) + b−2 exp(−2 η)

. (10)

There are some arbitrary parameters in the above equation. We also set a1 = b1 = 0 for
convenience, then the trial function (10) is simplified as:

u(η) =
a2 exp(2 η) + a0 + a−1 exp(− η) + a−2 exp(−2 η)
b2 exp(2 η) + b0 + b−1 exp(−2 η) + b−2 exp(−2 η)

. (11)

Substituting equation (11) into equation (8), we can derive the following relations:
case I:

a2 = a2, a−1 = 0, a0 = 0, a−2 = a2b−2 − 8µβb−2, b−1 = 0,

b0 = 0 b−2 = b−2, β = β, λ = λ, µ = µ, k = k

ω = −−βkλc1 + 4µβλk2 − λk2a2 + 4µβ3 − β2a2

β
, c1 = c1.

Then, we have the following solitonary solution u(η)

u(η) = a2 − 8µβb−2 exp(−2 η)
exp(2 η) + b−2 exp(−2 η)

,

where a2, b−2, µ and β are arbitrary parameters.
case II:

a2 =
6µβb−1 + a−1

b−1
, a−1 = a−1, a0 = 0, a−2 = 0, b−1 = b−1

b0 = 0 b−2 = 0, β = β, λ = λ, µ = µ, k = k

ω =
3µβ3b−1 + β2a−1 + 3µβλk2b−1 + λk2a−1 + βλkc1b−1

βb−1
, c1 = c1.
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Then, we have the following solitonary solution u(η)

u(η) = a−1 +
6µβ exp(2 η)

exp(2 η) + b−1 exp(− η)
,

where a−1 , b−1 , µ and β are arbitrary parameters.

4. Conclusions

In the two previous cases we obtained the exact solution for equation (1)which are
satisfied and having the meaningful physical interpretation. This approach give us some
more implicit solutions, but all these solutions may not satisfy in the given equation .
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