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Abstract: In this paper, we introduce the ring R = Zg + uZsg + vZg where u? = u, v? = v, uv = vu = 0 over which the linear codes
are studied. it's shown that the ring R = Zg + uZs + vZsg is a commutative, characteristic 8 ring with u? = u, v? = v, uv = vu = 0.
Also, the ideals of Zg + uZs + vZsg are found. Moreover, we define the Lee distance and the Lee weight of an element of R and
investigate the generator matrices of the linear code and its dual.
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1 Introduction

In algebraic coding theory, the most important class of codes is the family of linear codes. A linear code of length n over [ is a linear subspace
of the vector space IFy; where IF, is the finite field with ¢ elements. A linear code of length n over aring R is an R-submodule of R".

Codes over finite fields have been studied by many researchers. After the appearance of [1], a lot of researchers have considered codes over
Z4. Later, these studies were mostly generalized to several new families of rings such as finite chain rings and rings of the form Fo / (") [2].
There is a very interesting connection between Z,4 and Fo 4+ ulF2. Both are commutative rings of size 4, they are both finite-chain rings. Some
of the main differences between these two rings are that their characteristic is not the same, Gray images of Zi-codes are usually not linear
while the Gray images of 2 4+ ulFo-codes are linear.

Inspired by this similarity (and difference), in [3], Yildiz and Karadeniz considered linear self dual codes over Z4 + uZ4 and proved the
MacWilliams identities for the weight enumerators of the codes involved. The authors defined a linear Gray map from Z4 + uZy to ZZ and
a non-linear Gray map from Z4 + uZy4 to (Fg + uF2)2, and used them to successfully construct formally self-dual codes over Z4 and good
non-linear codes over Fo + ulFo.

In [4] the authors derived the certain lower and upper bounds on the minimum distances of the binary images in terms of the parameters of
the Z4 + uZ4 codes. They performed same analogous procedure on the ring Zg + uZg, where u? = 0, which is a commutative local Frobenius
non-chain ring of order 64. Then, the method was generalized to the class of rings Zgr + uZsar, where u? =0, for any positive integer r.

In [7] the linear codes over the ring Z4 + uZa4 + vZ4 + uvZg where u? = u, v° = v, uv = vu are introduced.

Motivated by the works in [4] and [7], in this paper, the ring R = Zg + uZg + vZg where u? = u, v? = v, uv = vu = 0 is introduced and
the Lee distance and the Lee weight of an element of R are defined, and the generator matrices of the linear code and its dual are investigated.

2 TheRing R = Zg + uZs + vZs

The ring R = Zg + uZg + vZg is a commutative, characteristic 8 ring with u? =u, v2 = v, wv = vu = 0. It can be also viewed as the
Z8 [u7 U]
—u,v? — v, uv = vu)
Lete; =1 —u—wv, ea = u, e3 = v, then ey, ez, e3 are pairwise orthogonal non-zero idempotent elements over R, and the unit element
1 can be decomposed as 1 = e + e2 + e3. By the Chinese Remainder Theorem, we have R = e; R + ea R + e3 R, and r can be expressed
uniquely as r = e1r1 + eare + e3rs, where vy = a, 72 =a+b,r3 =a + c.
The ring R has the following properties:

quotient ring 2 . Let r be any element of 2, which can be expressed uniquely as » = a + ub + vc, where a, b, ¢ € Zg.
U

o The finite ring R is with 512 elements.
e Its units are given by

S = {a+ub+vc |a,a+b,a+ce {1,3,5,7}}.
e It has a total of 64 ideals. Let S; = {1,3,5,7}, So = {2,6} and S3 = {0, 2,4, 6}. The trivial ideals are

(0) = {0} and (r), wherer € S.

The other non-trivial ideals of R is given the last page of the paper.
e R is a principal ideal ring.
e R isnot a finite chain ring.
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Definition 1. A linear code C of length n over the ring R is a R-submodule of R". A codeword is denoted as ¢ = (c1,¢2,...,¢n).

The Lee weights of 0,1, 2,3 € Z4 are defined by wr,(0) =0, wr,(1) =1, wr(2) = 2 and wr (3) = 1. In the case of Z4 + uZy + vZ4,
the Lee weight was defined in [5] as
wi(d) = wy, (a,a+b,a+ o)

where a, b, c € Z4. A similar technique is adopted here.

The Lee weight of a vector v = (vg, v1, . ..,0n—1) € (Zsg)" was defined as
n—1
S~ min {fuil 18— vil}
1=0
in [6].

Let r = a + ub + cv be an element of R, then we define the Lee weight of r as
wr,(r) = wg, (a,a +b,a+ c)

where a, b, ¢ € Zg. The Lee weight of a vector ¢ = (cg, ¢1,...,cn—1) € R™ to be the sum of Lee weights its components:

wr,(r) = wg, (a,a+b,a+¢) =wr(a) +wr(a+b) +wg(a+e).
For any elements x,y € R", the Lee distance between x and y is given by
dr(x—y) =wr(x—y).

The minimum Lee distance defined as
dr,(C) =min{dp(x—y) : x #Yy, forallx,y € C}.
Example 1. Letr =2+ 6u+vandr’ =1+ u+ 4v € R. The Lee weights of r and v’ as follows

wr(r) =wr, (2,2+46,2+1) =wg(2,0,3) =5,

wr,(r') = wy, (LT+1,1+4) =wp(1,2,5) =6.
The Lee distance between r and ' as follows
dr(r—r")y =wp(r—r'") =wr, (14 5u+50) = wy, (1,1+5,1+5) =5.
Letx = (zg,Z1,..-,Zn—1), ¥ = (Y0, ¥1,---,Yn—1) be two vectors in R". The inner product between x and y is defined as
(X,¥) =2oYo + T1Y1 + ... + Tpn—_1Yn—1
where the operation are performed in the ring R.
Definition 2. Let C' be a linear code over the ring R of length n, then we define the dual of C' as

ct = {y € R"|(x,y) =0, forallx € C}

Note that from the definition of inner product, it is clear that C+ is also a linear code over R™. A code C is said to be self-orthogonal if
C C ¢+, and self-dual if C' = C*.

3 Linear Codes over Z; + uZs + vZs

Let C be a linear code of length n over R, we denote C; (1 < ¢ < 3) as:

C1 = {a€Zzg|3bcecZg,(1-u—v)atub+vceC}
Co = {beZg|3JaceZy,(1-u—v)at+ub+vceC}
C3 = {ceZg|JadeZ,(1-—u—v)atub+vceC}

where C7, C and Cs are linear codes over Zg of length n. And C can be uniquely expressed as
C=(1—-u—v)C1+uCy+vCs.

According to the direct sum decomposition in above, we have |C| = |C1]||C2||C3] .
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Theorem 1. Let C be a linear code of length n over R, then

1. C=(1—u—v)C1 +uCs+ vCs, where C; (1 < i < 3) is alinear code of length n over Zg, and the direct sum decomposition is unique.
2. Ct = (1 —u—v)Ci + uCs +vC5, where Ci- is the dual code of C; (1 < i < 3).

3. Cis a self-orthogonal code if and only if C; (1 < i < 3) is a self-orthogonal code over Zg. Furthermore, C'is a self-dual code if and only
if C; (1 <4 < 3) is a self-dual code over Zs.

Proof: 1. Let r = (r(o),r(l), ., r™ DY) e R where r() = (1—uw—v)ry; +urig+ovrjg and i =0,1,...,n— 1. It is clear that
1 — u — v, u and v are pairwise orthogonal non-zero idempotent elements over R, then r can be uniquely expressed asr = (1 — u — v)ry +
urg + vr3, where r; = (roj,rlj, .. ﬂ"n,l,j) € 7Zg and j =1,2,3. Since a linear code C over R is a subgroup of R", then C can be

uniquely expressed as C' = (1 — u — v)C1 + uCa + vCs.
2. Let D=(1—u—v)Cf{ +uCy +vCs, for any d= (1 —u—v)at+ub+veeC, d =(1—u—v)a +ub +ve’ €D, where
a,b,c € Canda’,b’,c¢’ € D. Then we have

d-d = (1—u—v)aa’ + ubb’ 4 vec'.
Hence, d - d’ = 0, so we have D C C-. Moreover, the ring R is Frobenius ring [8], so |C/| ‘Cl‘ = |R|" [8]. Thus

8" 8" 8" R" ‘ n

0l = et ||| |os | = i = 161 = 1€

I

therefore we have D = C'+.
3. According to (1) and (2), we have C' C Ct ifand only if C; C C’Z-J‘ (1 <4 < 3) is aself-orthogonal code over Zg. Similarly, C is a self-dual
code if and only if C; C C’iL (1 < i < 3) is a self-dual code over Zsg. |

Corollary 1. There are self-dual codes of arbitrary lengths over R.

Proof: From Theorem 1, there exists a self-dual code over R if and only if there exists a self-dual code over Zg. Clearly, there exists a self-dual
code over Zg generated by

4

4

nxn

]

We give the generator matrix of the linear codes over R. Let C' = (1 — u — v)C1 + uCs + vCs, for C; (1 < ¢ < 3) is a linear code over
Zg, then C} is permutation-equivalent to a code generated by

2D; 2E; | [9].
0 0 4l, A4F

Thus, C' is permutation-equivalent to a linear code generated by

1-—u—v)Gy
G = uGo
vG3

The dual code CiJ‘ of the Zg-linear code C; has the generator matrix
~T} + B{A{ + F{ B = F{D{A{ —E{+F/D; —F/ Iy pg—ky—ks
H; = —2B! + 2Dt Al —2D} 21},
—4A! 41y, 0 0

[9]. Then Ctis permutation-equivalent to a linear code generated by

(1—-u—v)H;
H = qu
vH3

H is called the party-check matrix of C.
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Example 2. Let C' = (1 — u — v)Cp 4+ uCs + vCs3, where C1, Co and Cs are linear codes over Z% generated by

Gi=(4 0),Go=(4 4),Gs=(4 0).
Then C' is generated by
4—4u—-4v O
G = 4u 4dv
4v 0
The dual codes C1, C2 and Cs have the generator matrix
0 1 71 0 1
m=(z o) m=(0)m=(30)
Then the dual code C* is generated by
0 l—u—-v
2—-2u—2v 0
Tu U
H= 2u 0
0 v
2v 0
{a+ub+vc|la=b=0,c=4} {a+ub+vc|la=c=0,b=4}
ideals with 2 elements {a+ub+vec|b=c=0,a=4} {a+ub+vc|a=b=4,c=0}
{a+ub+vc|a=c=4,b=0} {a+ub+vc|b=c=4,a =0}
ideals with 4 elements {a+ub+vc|la=b=0,c€ S2} {a+ub+vc|a=c=0,b€ Sy}
i i {a+ub+vec|b=c=0,a € Sy}
{a+ub+vc|la=b=0,c€ S} {a+ub+vc|la=c=0,be St}
{a+ub+vc|b=c=0,a€ 51} {a+ub+vc|a=0,b=4,ce€ Sa}
ideals with 8 elements {a+tubtve|a=0,c=4,b€ Sz}

a+ub+vec|a€ Sy,a+b=4,a+c=0
at+ub+vc|la=4,a+b=0,a+c€ Sy

at+ub+ve|la€ Se,a+b=0,a+c=4
at+ubt+vc|la=4,a+b€ Sy,a+c=0
a+ub+vc\a:u+b:a+c:4}

{a+ub+vc|a=0,be Sy,c=4}
{a+ub+vc|a=0,bce€ Sz}

ideals with 16 elements {a+ub+'uc la=afc=4,b€ 52}
a+ub+vc|a:m652,m:0,}
a4+ ub4vec|la=4,a+b€Si,atc=0
a+ub+vc|a€Sl,a7+b:4,a7+c:0i

{a+ub+vc|la=0,b=4,c€ S1}
u+ub+vc\a:m:4,c€5‘2}
a+ub+uc\a€52,m:a7+c:4,}
a+ub+vc\a:m€52,m:0}
a+ubtvecla=4,a+b=0,aFfc€E S
a+ub+vc\a€51,a7+b:0,a7+c:4i

a+ub+vc|a:0,mesl,m€5‘2
a+ub+vc|a€Sl,mesz,m:Oi
a+ub+vc|aesl,m:m:4}
a+ub+vc|a652,m651,m:0}
a+ub+vc|a:m652,m:4}
a+ub+vc|a=m=4,mesl,}

ideals with 32 elements

a+ub+vc\a:0,m632,m€ S1
a+ub+vc\a€sl,m:0,m€ So
a4+ub+vc|a€Sy,atb=0,a+ce S
a+ub+vc\a:mES2,m:4}
a+ub+ve|a=4,a+b=a+c€ Sa,
a+ub+vc\a:a7+c:4,a7+b651,i

ideals with 64 elements atubtwe|a€S,a+b€Srate= 4%

at+ub+vc|la=4,a+b€ Sy,atc€ Sy
a+ub+vc|a:a+b=a+ces2}
a+ub+vc|aESl,a+b:4,a+c€Sg}

at+ubt+vc|la=4,a+b€ Sy,atce S
a+ub+uc\a:a+c€51,a+b:0}
a+ub+vc\aESz,a+b:4,a+ceSl}

u+ub+vc\a€S2,a+b€Sl,a+c:4£

clements a+ub+wvc|a€ Sy,a+b=a+ceS;

§a+ub+vca0a+ba+cesl}

a+ub+vc|a:a+b681,a+6653i

§a+ub+vcaa+b651,a+c0}

ideals with 128 at+ub+ve|la=4,a+b=a+ceS; a+ub+vc\a:a+b651,a+c=4}
elements at+ub+vec|la=a+c€ Sy,a+b=4 at+ub+vc|a€ Se,a+b=a+c€S;

a+ub+v6|a:a+cesz,a+besl} a+ubtve|a€S,afb=atce Sy
ideals with 256 a+ub+uc\a:a+c€5’1,a+b65’3}

Table 1 Ideals of R

4 Conclusion

In this work, it’s shown that the ring R = Zg + uZg + vZg is a commutative, characteristic 8 ring with u? = Uu, v? = v, uv = vu = 0.
Moreover, the ideals of Zg + uZg + vZg are found and the Lee weight is defined on Zg + uZg + vZg. In the last part the generator matrices

of the linear code and its dual are obtained.
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