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Abstract 

Modeling the vehicle headway data is fundamental for intelligent transportation applications in 
traffic engineering. It is useful for the traffic signal optimization and flow modelling. 
Exponentiated Weibull (EW) is one of the best flexible model for characterizing uncertainty in 
various fields of data. In this study, we revisit EW distribution and propose to use of ranked set 

sampling as a useful sampling method for estimating the unknown parameters. We deal with the 
performance of ranked set sampling and simple random sampling methods by a simulation study 
in R-software in terms of mean squared errors. We estimate the parameters of EW distribution 
using the maximum likelihood method under the assumption that all parameters are unknown. 
We illustrate the flexibility and the usefulness of EW distribution by analysing generated data 
from a real application study in transportation field. 
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1. INTRODUCTION 

 

Mudholkar and Srivastava [1] introduced the exponentiated Weibull (EW) distribution as a generalization 
of the Weibull distribution. EW distribution has a second shape parameter, and it is commonly used in 

modeling of data in various fields, such as reliability, finance, medicine and environmental studies. The 

detailed information can be found in [1-3] and additional results can be found in [4,5] for modelling with 

EW distribution. 
 

The probability density function (pdf) and cumulative distribution function (cdf) of the EW family are 

given, respectively, by  
 

𝑔(𝑦; 𝛼, 𝛽, 𝜆) = 𝛼𝛽𝜆𝛽𝑦𝛽−1𝑒−(𝜆𝑦)𝛽
(1 − 𝑒−(𝜆𝑦)𝛽

)𝛼−1 ,                                                                                         (1) 

𝐺(𝑦; 𝛼, 𝛽, 𝜆) = (1 − 𝑒−(𝜆𝑦)𝛽
)𝛼 , 0 < 𝑦 < ∞,                              (2) 

 

where 𝜆 > 0 is the scale parameter, and, 𝛼 > 0 and 𝛽 > 0 are referred to as the shape parameters [1]. The 
corresponding hazard function is 

 

𝑟(𝑦; 𝛼, 𝛽, 𝜆) =
𝛼𝛽𝜆𝛽𝑦𝛽−1𝑒−(𝜆𝑦)𝛽

(1−𝑒−(𝜆𝑦)𝛽
)𝛼−1

(1−𝑒−(𝜆𝑦)𝛽
)𝛼

.                       (3) 
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The hazard function has different shapes depending on parameter values, such as monotone increasing (𝛽 ≥
1, 𝛼𝛽 ≥ 1), monotone decreasing (𝛽 ≤ 1, 𝛼𝛽 ≤ 1), bath-tube shaped (𝛽 > 1, 𝛼𝛽 < 1) or unimodal (𝛽 <
1, 𝛼𝛽 > 1) (see, [6]). Figures 1 and 2 illustrate the shapes of the EW with different values of 𝛼, 𝛽, and 𝜆 

for pdf and the hazard function, respectively. If 𝛼 is equal to 1, the distribution is said to be Weibull 

distribution, if 𝛽 is equal to 1, it reduces to the exponentiated exponential model. If 𝛼 and 𝛽 are both 1, the 

distribution has a constant hazard function, that is exponential. For more results and references, one can see 
[7-12]. Also, comprehensive review about EW and other modified Weibull distributions can be found in 

[13,14]. 

 

 
Figure 1. Pdf of EW for different values of parameters 

 

 

 
Figure 2. Hazard function of EW for different values of parameters 

 

Ranked set sampling (RSS) method considers the ranking information of sample units and it obtains more 

representative sample than commonly used simple random sampling (SRS) method. McIntyre [15] is 
introduced RSS as a sampling method in order to estimate the mean of yields. Takahasi and Wakimoto [16] 

presented the theoretical background of the RSS method and proved that the RSS give smaller variance 

than the SRS for the mean estimation when the ranking of the units is perfect. There are several papers 

which are dealing with the estimation of parameters of a model using RSS method and its modified versions. 
Lam et al. [17] obtained the estimator for the parameters of two-parameter exponential distribution under 

RSS. Hassan [18] used maximum likelihood estimation method and Bayesian method for parameter 

estimation in exponentiated exponential distribution and compared the SRS and RSS methods. Esemen and 
Gurler [19] estimated the parameters of generalized Rayleigh distribution by using maximum likelihood 
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method based on the sample obtained from RSS and its modified versions. For more additional study, see 

[20-23], and the references therein.  
 

In this paper, we aim to provide the results for the estimation of the parameters for EW distribution by using 

RSS method. We also illustrate the use of EW distribution as an alternative model for vehicle headway 

data. In Section 2 and 3, we give some details for the maximum likelihood estimation of the parameters 
when all parameters are unknown based on SRS and RSS methods, respectively. In Section 4, we present 

the results of the Monte Carlo simulation study in order to compare the performance of SRS and RSS 

methods. In Section 5, we give an application for modeling a vehicle headway data using EW distribution 
to show its convenience. We discuss the results drawn from analysing the data given in the study of 

Badhrudeen et al. [24]. Finally, in Section 6, we give conclusions. 

 

2. MAXIMUM LIKELIHOOD ESTIMATION USING SRS 

 

Consider that 𝑌1, 𝑌2 , . . . , 𝑌𝑚 is a random sample of size 𝑚 from 𝐸𝑊(𝛼, 𝛽, 𝜆), where 𝛼, 𝛽 and 𝜆 are unknown. 

For the maximum likelihood estimation of the parameters, Mudholkar and Srivastava [1] gave the log-

likelihood function, 𝑙(𝛼, 𝛽, 𝜆), as below 

 

𝑙(𝛼, 𝛽, 𝜆) = 𝑚log𝛼 + 𝑚log𝛽 + 𝑚𝛽log𝜆 + (𝛽 − 1) ∑𝑚
𝑠=1 log(𝑦𝑠) − 𝜆𝛽 ∑𝑚

𝑠=1 𝑦𝑠
𝛽

  
 

      +(𝛼 − 1) ∑𝑚
𝑠=1 log(1 − exp(−(𝜆𝑦𝑠)𝛽)).                                                                                         (4) 

 

Therefore, maximum likelihood equations for the parameters of EW distribution become, 
 

 
𝜕𝑙

𝜕𝛼
=

𝑚

𝛼
+ ∑𝑚

𝑠=1 log(1 − exp(−(𝜆𝑦𝑠)𝛽)) = 0,                                (5) 

 

 
𝜕𝑙

𝜕𝛽
=

𝑚

𝛽
+ 𝑚log𝜆 + ∑𝑚

𝑠=1 log(𝑦𝑠) + (𝛼 − 1)𝜆𝛽 ∑𝑚
𝑠=1

𝑦𝑠
𝛽

log(𝜆𝑦𝑠)exp(−(𝜆𝑦𝑠)𝛽)

1−exp(−(𝜆𝑦𝑠)𝛽)
 

−𝜆𝛽 ∑𝑚
𝑠=1 𝑦𝑠

𝛽
log(𝜆𝑦𝑠) = 0,                                                                                                           (6) 

 

 
𝜕𝑙

𝜕𝜆
=

𝑚𝛽

𝜆
+ (𝛼 − 1)𝛽𝜆𝛽−1 ∑𝑚

𝑠=1
exp(−(𝜆𝑦𝑠)𝛽)𝑦𝑠

𝛽

1−exp(−(𝜆𝑦𝑠)𝛽)
− 𝛽𝜆𝛽−1 ∑𝑚

𝑠=1 𝑦𝑠
𝛽

= 0.                                                   (7) 

 

Since equations given in Equations (5), (6), (7) have nonlinear forms, it is necessary to solve these by using 

numerical methods to obtain maximum likelihood estimators of the parameters, namely, �̂�𝑠𝑟𝑠, �̂�𝑠𝑟𝑠, �̂�𝑠𝑟𝑠.  

 

3. MAXIMUM LIKELIHOOD ESTIMATION USING RSS 

 

RSS is a useful method for data collection, especially when the procedure of the measurement is time 

consuming or expensive. When the sampling method is RSS, we should consider the following steps for 

obtaining a sample of size 𝑘 (see, [20]):  

Step 1: Select randomly 𝑘 sets with 𝑘 size of sample units from the target population. 

Step 2: Rank the units in each set without measuring the variable of interest. Ranking process can be done 
by using any inexpensive method, such as using an auxiliary variable, visual inspection or expert judgment 

etc.  

Step 3: Choose from the first set the smallest ranked unit, from the second set the second smallest ranked 
unit, and so forth until from the last set the largest ranked unit. 

 

The three steps above provides a 𝑘-sized ranked set sample and this whole procedure is referred as a cycle. 

The cycle can be repeated 𝑐 times to obtain a sample of size 𝑚 = 𝑘𝑐. 
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Suppose 𝑌𝑠(𝑠:𝑘)𝑡 , 𝑠 = 1,2, . . . , 𝑘, 𝑡 = 1,2, . . . , 𝑐 is a ranked set sample of size 𝑚 = 𝑘𝑐 drawn from EW 

distribution where 𝑘 and 𝑐 are the set size and the cycle size, respectively. We represent 𝑌𝑠(𝑠:𝑘)𝑡 by 𝑋𝑠𝑡, 

which is the 𝑠th order statistic, in order to simplify the following formulations. The pdf of 𝑋𝑠𝑡 is  
 

ℎ𝑠(𝑥𝑠𝑡) =
𝑘!

(𝑠−1)!(𝑘−𝑠)!
𝑔(𝑥𝑠𝑡)[𝐺(𝑥𝑠𝑡)]𝑠−1[1 − 𝐺(𝑥𝑠𝑡)]𝑘−𝑠 ,                                                               (8) 

 

where 𝑔(𝑥𝑠𝑡) denotes the pdf and 𝐺(𝑥𝑠𝑡) denotes the cdf. The likelihood function for EW distribution using 

RSS can be written as 
     

 𝐿∗(𝛼, 𝛽, 𝜆) = ∏𝑐
𝑡=1 ∏𝑘

𝑠=1 ℎ𝑠(𝑥𝑠𝑡; 𝛼, 𝛽, 𝜆) 

                   = 𝐴𝑘𝑐𝛼𝑘𝑐𝛽𝑘𝑐𝜆𝑘𝑐𝛽 ∏𝑐
𝑡=1 ∏𝑘

𝑠=1 𝑥𝑠𝑡
𝛽−1

exp(−(𝜆𝑥𝑠𝑡)𝛽)(1 − exp(−(𝜆𝑥𝑠𝑡)𝛽))𝛼𝑠−1 

            × (1 − (1 − exp(−(𝜆𝑥𝑠𝑡)𝛽))𝛼)𝑘−𝑠 ,                                                                                  (9) 

 

where 𝐴 =
𝑘!

(𝑘−𝑠)!(𝑠−1)!
 . Then, the log-likelihood function is 

 

 𝑙∗(𝛼, 𝛽, 𝜆) = 𝑘𝑐log𝐴 + 𝑘𝑐log𝛼 + 𝑘𝑐log𝛽 + 𝑘𝑐𝛽log𝜆 + (𝛽 − 1) ∑𝑐
𝑡=1 ∑𝑘

𝑠=1 log(𝑥𝑠𝑡) 

                         −𝜆𝛽 ∑𝑐
𝑡=1 ∑𝑘

𝑠=1 𝑥𝑠𝑡
𝛽

+ ∑𝑐
𝑡=1 ∑𝑘

𝑠=1 (𝛼𝑠 − 1)log(1 − exp(−(𝜆𝑥𝑠𝑡)𝛽)) 

            + ∑𝑐
𝑡=1 ∑𝑘

𝑠=1 (𝑘 − 𝑠)log(1 − (1 − exp(−(𝜆𝑥𝑠𝑡)𝛽))𝛼).                     (10) 

 

Maximum likelihood equations for each parameter are given in the following: 

 

 
𝜕𝑙∗

𝜕𝛼
=

𝑘𝑐

𝛼
+ ∑𝑐

𝑡=1 ∑𝑘
𝑠=1 𝑠 log(1 − exp(−(𝜆𝑥𝑠𝑡)𝛽)) 

 

          − ∑𝑐
𝑡=1 ∑𝑘

𝑠=1 (𝑘 − 𝑠)
(1−exp(−(𝜆𝑥𝑠𝑡)𝛽))𝛼log(1−exp(−(𝜆𝑥𝑠𝑡)𝛽))

1−(1−exp(−(𝜆𝑥𝑠𝑡)𝛽))𝛼 = 0, 

 

 
𝜕𝑙∗

𝜕𝛽
=

𝑘𝑐

𝛽
+ 𝑘𝑐log𝜆 + ∑𝑐

𝑡=1 ∑𝑘
𝑠=1 log(𝑥𝑠𝑡) − 𝜆𝛽log𝜆 ∑𝑐

𝑡=1 ∑𝑘
𝑠=1 𝑥𝑠𝑡

𝛽
− 𝜆𝛽 ∑𝑘

𝑠=1 𝑥𝑠𝑡
𝛽

log(𝑥𝑠𝑡) 

         − ∑𝑐
𝑡=1 ∑𝑘

𝑠=1 (𝑘 − 𝑠)
𝛼log(𝜆𝑥𝑠𝑡)(𝜆𝑥𝑠𝑡)𝛽(1−exp(−(𝜆𝑥𝑠𝑡)𝛽))𝛼−1exp(−(𝜆𝑥𝑠𝑡)𝛽)

1−(1−exp(−(𝜆𝑥𝑠𝑡)𝛽))𝛼  

         + ∑𝑐
𝑡=1 ∑𝑘

𝑠=1 (𝛼𝑠 − 1)
(𝜆𝑥𝑠𝑡)𝛽exp(−(𝜆𝑥𝑠𝑡)𝛽)log(𝜆𝑥𝑠𝑡)

1−exp(−(𝜆𝑥𝑠𝑡)𝛽)
= 0, 

 
𝜕𝑙∗

𝜕𝜆
=

𝑘𝑐𝛽

𝜆
− 𝛽𝜆𝛽−1 ∑𝑐

𝑡=1 ∑𝑘
𝑠=1 𝑥𝑠𝑡

𝛽
+ ∑𝑐

𝑡=1 ∑𝑘
𝑠=1 (𝛼𝑠 − 1)

𝛽𝑥𝑠𝑡(𝜆𝑥𝑠𝑡)𝛽−1exp(−(𝜆𝑥𝑠𝑡)𝛽)

1−exp(−(𝜆𝑥𝑠𝑡)𝛽)
  

          − ∑𝑐
𝑡=1 ∑𝑘

𝑠=1 (𝑘 − 𝑠)
𝛼𝛽𝑥𝑠𝑡(𝜆𝑥𝑠𝑡)𝛽−1exp (−(𝜆𝑥𝑠𝑡)𝛽)(1−exp (−(𝜆𝑥𝑠𝑡)𝛽))𝛼−1

1−(1−exp (−(𝜆𝑥𝑠𝑡)𝛽))𝛼 = 0. 

 
Since the maximum likelihood equations obtained for estimation of parameters are in nonlinear forms, they 

should be solved by numerical methods to obtain maximum likelihood estimates namely, �̂�𝑟𝑠𝑠, �̂�𝑟𝑠𝑠, �̂�𝑟𝑠𝑠. 
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4. NUMERICAL RESULTS 

 
In this section, we conduct a Monte Carlo simulation for numerical comparison of the SRS and RSS for 

estimating the unknown parameters (𝛼, 𝛽, and 𝜆) of EW distribution using the maximum likelihood method. 

In numerical analysis, a quasi-Newton type algorithm is used to approximate solutions of the maximum 

likelihood equations. The study is designed using R-software with 𝑁 = 10,000 repetitions for different 

values of sample size (𝑚). In addition, different values for 𝛼, 𝛽, and 𝜆 parameters are considered to obtain 

different shapes of EW distribution. The numerical results of bias and mean squared error (MSE) are 

obtained by the following formulations, respectively, 

 

 𝑏𝑖𝑎𝑠(𝜃) =
1

𝑁
∑𝑁

𝑠=1 (𝜃𝑠 − 𝜃),                                                 (11) 

 

𝑀𝑆𝐸(𝜃) =
1

𝑁
∑𝑁

𝑠=1 (𝜃𝑠 − 𝜃)2,                                                   (12) 

 

where 𝜃 is the estimator of 𝜃 parameter and 𝜃𝑠 represents the estimation of parameter in 𝑠𝑡ℎ repetition for 

𝑠 = 1, … , 𝑁.  

 

Tables 1 and 2 show the estimated MSE and bias values of the parameters, respectively. We numerically 
observe that MSE values based on RSS are smaller than the values based on SRS for all cases. One can 

conclude that the MSE values are high for small sample sizes for the parameter 𝜆 in the case of 

(0.5; 1.5; 2.5). In addition, MSE values based on RSS method decrease as the set size increases for all 
parameters. Moreover, the bias values in Table 2 show that both sampling methods give biased estimation 

values with ML method.  

 

Table 1. The estimated MSE values for parameters of the EW distribution based on SRS and RSS 

(𝛼; 𝛽; 𝜆) 𝑚 �̂�𝑠𝑟𝑠 �̂�𝑠𝑟𝑠 �̂�𝑠𝑟𝑠 (𝑘; 𝑐) �̂�𝑟𝑠𝑠 �̂�𝑟𝑠𝑠 �̂�𝑟𝑠𝑠 

(2; 0.8; 2) 

  

  
 

 

 

 
  

  

  
  

  

  

12 

  
  

1.8605 

  
  

0.6490 

  
  

 2.2361 

  
  

 (3; 4) 1.5435 0.5288 1.6833 

 (4; 3) 1.5065  0.5320 1.6814 

 (6; 2) 1.3241  0.4842  1.3158 

24 

  

  

1.7822 

  

  

0.3867 

  

  

2.2826 

  

  

 (3; 8) 1.4777 0.3313 1.7156 

 (4; 6) 1.3970 0.3276 1.5903 

 (6; 4) 1.1829 0.3042 1.2787 

48 
  

  

1.5893 
 

 

0.1847 
 

 

2.2706 
 

 

 (3; 16) 1.3428 0.1505 1.7203 

 (4; 12) 1.2170 0.1445 1.5080 

 (6; 8) 1.0094 0.1279 1.2038 

96 

  

  

1.2852 

 

 

0.0667 

 

 

1.9634 

 

 

 (3; 32) 1.0330 0.0565 1.4225 

 (4; 24) 0.9892 0.0513 1.3432 

 (6; 16) 0.7666 0.0432 0.9909 

(2; 1.5; 2) 

  
  

  

 
  

  

  

  
  

  

  
  

12 

  

  

3.8382 

 

 

1.3380 

 

 

1.0787 

 

 

 (3; 4) 3.0376 0.7630 0.8230 

 (4; 3) 2.6299 0.8299 0.7334 

 (6; 2) 1.8949 1.1963 0.5511 

24 
  

  

3.4557 
 

 

0.8576 
 

 

1.0135 
 

 

 (3; 8) 2.7100 0.5032 0.7645 

 (4; 6) 2.3642 0.5343 0.6478 

 (6; 4) 1.8448 0.7671 0.5465 

48 

  

  

3.0878 

 

 

0.5005 

 

 

0.8976 

 

 

 (3; 16) 2.2815 0.3374 0.6500 

 (4; 12) 2.0997 0.3257 0.6062 

 (6; 8) 1.5208 0.3840 0.4337 

96 

  
  

2.2837 

 
 

0.2594 

 
 

0.6784 

 
 

 (3; 32) 1.7379 0.1885 0.5000 

 (4; 24) 1.5303 0.1727 0.4401 

 (6; 16) 1.1161 0.1688 0.3259 

(0.5; 1.5; 2.5) 12 0.7459 0.6505 10.1066  (3; 4) 0.5544 0.6325 7.6216 



897 Busra SEVINC, Selma GURLER, Melek ESEMEN/ GU J Sci, 33(4): 892-902 (2020) 

 

  

  

  
 

  

  
  

  

  
  

  

  

  

  

 

 

 

 

 

 
 (4; 3) 0.4868 0.5849 6.6253 

 (6; 2) 0.4152 0.5397 5.3953 

24 

  

  

0.4620 

 

 

0.4318 

 

 

7.6939 

 

 

 (3; 8) 0.3330 0.4302 4.7245 

 (4; 6) 0.3081 0.4287 4.3945 

 (6; 4) 0.2475 0.4056 3.4146 

48 

  
  

0.2184 

 
 

0.3186 

 
 

3.6440 

 
 

 (3; 16) 0.1668 0.3014 2.4107 

 (4; 12) 0.1504 0.2907 2.1035 

 (6; 8) 0.1156 0.2819 1.4939 

96 

  

  

0.0833 

 

 

0.1859 

 

 

1.2315 

 

 

 (3; 32) 0.0636 0.1767 0.8009 

 (4; 24) 0.0531 0.1628 0.6296 

 (6; 16) 0.0473 0.1530 0.5415 

(0.8; 0.8; 1) 

  
  

  

 

  
  

  

  
  

  

  
  

12 
  

  

0.8692 
 

 

0.2417 
 

 

4.5121 
 

 

 (3; 4) 0.5877 0.1925 2.8218 

 (4; 3) 0.5827 0.1836 2.4713 

 (6; 2) 0.5088 0.1535 1.9837 

24 
  

  

0.6621 
 

 

0.1494 
 

 

3.6248 
 

 

 (3; 8) 0.4840 0.1300 2.3875 

 (4; 6) 0.4226 0.1291 1.8962 

 (6; 4) 0.3530 0.1143 1.4309 

48 

  

  

0.4276 

 

 

0.0940 

 

 

2.4840 

 

 

 (3; 16) 0.3334 0.0915 1.5563 

 (4; 12) 0.2988 0.0878 1.2995 

 (6; 8) 0.2497 0.0795 0.9663 

96 

  
  

0.2360 

 
 

0.0578 

 
 

1.2053 

 
 

 (3; 32) 0.1917 0.0541 0.7589 

 (4; 24) 0.1651 0.0530 0.5904 

 (6; 16) 0.1457 0.0474 0.4772 

 

Table 2. The estimated bias values for parameters of the EW distribution based on SRS and RSS 

(𝛼; 𝛽; 𝜆) 𝑚 �̂�𝑠𝑟𝑠 �̂�𝑠𝑟𝑠 �̂�𝑠𝑟𝑠 (𝑘; 𝑐) �̂�𝑟𝑠𝑠 �̂�𝑟𝑠𝑠  �̂�𝑟𝑠𝑠 

(2; 0.8; 2) 
 

 

 

 
  

  

  
  

  

  
  

  

12 

  

  

 -0.1975 

  

  

0.4590 

  

  

 -0.0689 

  

  

 (3; 4)  -0.2618  0.4150  -0.1381 

 (4; 3)  -0.2911  0.4176  -0.1551 

 (6; 2)  -0.3306  0.3957  -0.2241 

24 
  

  

 -0.1009 
  

  

0.3245 
  

  

 0.0501 
  

  

 (3; 8)  -0.1602  0.2984  -0.0332 

 (4; 6)  -0.1816  0.2968  -0.0577 

 (6; 4)  -0.2554  0.2882  -0.1412 

48 

  

  

 0.0668 

  

  

 0.1781 

  

  

 0.2265 

  

  

 (3; 16)  0.0388  0.1563  0.1627 

 (4; 12)  0.0294  0.1480  0.1438 

 (6; 8)  -0.0466  0.1471  0.0528 

96 
  

  

 0.2158 
  

  

0.0656 
  

  

 0.3578 
  

  

 (3; 32)  0.1911  0.0532  0.3021 

 (4; 24)  0.1837  0.0496  0.2870 

 (6; 16)  0.1045  0.0525  0.1866 

(2; 1.5; 2) 

 

  
  

  

  

  
  

  

  
  

  

  

12 

  
  

 0.3510 

  
  

0.5520 

  
  

 0.1531 

  
  

 (3; 4)  0.3691  0.3625  0.1494 

 (4; 3)  0.2898  0.3786  0.1231 

 (6; 2)  0.0494  0.5564  0.0491 

24 

  

  

 0.3426 

  

  

0.3962 

  

  

 0.1575 

  

  

 (3; 8)  0.3348  0.2719  0.1475 

 (4; 6)  0.2662  0.2793  0.1143 

 (6; 4)  0.0427  0.3958  0.0063 

48 
  

  

 0.3814 
  

  

0.2450 
  

  

 0.1866 
  

  

 (3; 16)  0.3193  0.1834  0.1509 

 (4; 12)  0.3121  0.1655  0.1555 

 (6; 8)  0.1296  0.2241  0.0537 

96 

  

  

 0.3781 

  

  

0.1191 

  

  

 0.1963 

  

  

 (3; 32)  0.3215  0.0905  0.1608 

 (4; 24)  0.2816  0.0865  0.1417 

 (6; 16)  0.1771  0.0981  0.0877 
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(0.5; 1.5; 2.5) 

 

  
  

  

  
  

  

  

  
  

  

  

12 

  
  

 -0.4064 

  
  

-0.0916 

  
  

-1.6464 

  
  

 (3; 4)  -0.3356  -0.1072 -1.3677 

 (4; 3)  -0.3048  -0.0977 -1.2323 

 (6; 2)  -0.2746  -0.0891 -1.0904 

24 

  
  

 -0.3028 

  
  

-0.0221 

  
  

-1.2932 

  
  

 (3; 8)  -0.2393  -0.0523  -0.9724 

 (4; 6)  -0.2217  -0.0681  -0.9101 

 (6; 4)  -0.1898  -0.0673  -0.7670 

48 
  

  

 -0.1757 
  

  

-0.0363 
  

  

-0.7556 
  

  

 (3; 16)  -0.1343  -0.0610  -0.5627 

 (4; 12)  -0.1271  -0.0594  -0.5230 

 (6; 8)  -0.0985  -0.0778  -0.4074 

96 

  

  

 -0.0850 

  

  

-0.0358 

  

  

-0.3595 

  

  

 (3; 32)  -0.0632  -0.0501  -0.2622 

 (4; 24)  -0.0529  -0.0520  -0.2157 

 (6; 16)  -0.0452  -0.0566  -0.1879 

(0.8; 0.8; 1) 
 

  

  

  
  

  

  
  

  

  

  
  

12 

  

  

 0.3502 

  

  

 0.1609 

  

  

 0.8925 

  

  

 (3; 4)  0.2316  0.1469  0.6418 

 (4; 3)  0.2542  0.1273  0.6379 

 (6; 2)  0.2339  0.1074  0.5723 

24 
  

  

 0.2993 
  

  

 0.0874 
  

  

 0.7921 
  

  

 (3; 8)  0.2293  0.0847  0.5891 

 (4; 6)  0.2046  0.0853  0.5291 

 (6; 4)  0.1698  0.0824  0.4373 

48 

  

  

 0.2224 

  

  

 0.0486 

  

  

 0.6076 

  

  

 (3; 16)  0.1813  0.0522  0.4632 

 (4; 12)  0.1565  0.0569  0.4054 

 (6; 8)  0.1296  0.0570  0.3325 

96 
  

  

 0.1357 
  

  

 0.0325 
  

  

 0.3622 
  

  

 (3; 32)  0.1093  0.0348  0.2744 

 (4; 24)  0.0988  0.0348  0.2439 

 (6; 16)  0.0892  0.0311  0.2153 

 

5. MODELING OF VEHICLE HEADWAY DATA USING EW DISTRIBUTION 

 
Modeling of the headway data is essential for traffic signal optimization and flow modeling in traffic 

engineering. Vehicle headway is defined as the time interval between successive arrival of vehicles in a 

lane and is a key topic for many traffic flow optimization studies and vehicle simulation problems. During 
the last two decades, statistical modeling of vehicle headway data has received considerable attention and 

various distributions are available where it can be used for different traffic conditions. Some of the statistical 

distributions found suitable for modelling vehicle headway are inverse Weibull [25], shifted lognormal 

[26], gamma [26,27], negative exponential [27], lognormal [28-30], log-logistic [29,31], and generalized 
extreme value [32]. Recently, Li and Chen [33] presented a comprehensive review on the vehicle headway 

modeling and provide the genealogical tree of headway models used in past studies. 

 
Badhrudeen et al. [24] proposed to use of the Weibull distribution as the best model fitted for vehicle 

headway data in India. In their study, the headway observations are collected from an automated sensor 

located on an urban road consisting of six lanes and analysed separately based on the leader-follower pairs 

and also for the specific time of a day. They found that the best model for the headway data between the 
hours 07:30 am and 10:45 am was the Weibull distribution and they estimated the shape and the scale 

parameters as 1.9718 and 2.6372, respectively. In this section, we generate a data set from the results of the 

study of Badhrudeen et al. [24]. The generated data set consists of 1000 observations for the vehicle 
headway between the hours 07:30 and 10:45. Table 3 gives the summary statistics of the data set. For the 

estimation procedure of the parameters for EW distribution, we used a quasi-Newton type algorithm in R-

software to maximize the likelihood function and obtain that the maximum likelihood estimates as �̂� =

1.3475, �̂� = 1.7686, and �̂� = 0.4233. We found that the EW distribution provides an acceptable fit for 

the generated headway data according to the Anderson-Darling goodness of fit test, A-D=0.4195, 𝑝 −
𝑣𝑎𝑙𝑢𝑒 =0.8293. 
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Table 3. Descriptive statistics of the generated data set 

N Min Max Mean Median 
Standard 
deviation 

1000 0.2111 6.8711  2.3959 2.2470  1.2161 

 

In order to estimate the parameters of EW distribution, we select two sets of sample of size 𝑚 = 40 from 

the generated headway data by SRS and RSS methods. For the RSS method, we select the set size and the 

cycle size as 𝑘 = 5 and 𝑐 = 8 and the sample is drawn with replacement. The maximum likelihood 

estimates of the parameters of EW distribution based on SRS and RSS are given in Table 4.  Kolmogorov-
Smirnov test indicates that both the samples by SRS and RSS methods follow EW distribution with the 

estimated parameters, DSRS= 0.0899, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.8740; DRSS= 0.0806, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.9389, respectively. 

Figure 3 shows the histogram of the generated headway data and the shapes of EW models for two different 
sampling methods with parameter values given in Table 4.  

 

Table 4. Estimated parameter values of EW distribution using SRS and RSS methods  

�̂� �̂� �̂� 

SRS 0.6135  2.3532  0.3103 

RSS  1.7320  1.4549  0.5000 

 

 
Figure 3. Histogram of the generated data and the pdfs of the fitted models using SRS and RSS 

 

 

6. CONCLUSION 

 

In this study, maximum likelihood equations for parameters of EW distribution are obtained based on RSS 

when all parameters are unknown. The Monte Carlo simulation study is conducted in R-software in order 
to compare the performances of the RSS and SRS methods on the parameter estimation of EW distribution. 

The results support that RSS gives more efficient result than SRS method based on their MSE values for 

all cases of sample and set sizes. Also, an application based on a simulation from real data for vehicle 

headway is presented to show the flexibility of EW distribution. It is seen that EW distribution may be used 
as an alternative model for the vehicle time headway data in transportation studies.  
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