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Highlights
* The paper focused on the numerical solution of higher order initial value problems.
* Power series was used as the basis function for the derivation of the method.
» The method solved second, third and fourth order ordinary differential equations concurrently.
» This method satisfied the basic properties of a linear multistep method.
» This method generated more accurate results than the existing numerical methods.

Article Info Abstract

This article presents a two-step hybrid linear multistep block method for solving second, third
Received: 01/10/2019 and fourth order initial value problems of ordinary differential equations directly. The derivation
Accepted: 01/06/2020 of the method was done using collocation and interpolation techniques, while approximated

power series was used as an interpolating polynomial. The fourth derivative of the power series
was collocated at the entire grid and off-grid points, while the fifth and sixth derivatives of the

Keywords polynomial were collocated at the endpoint only. The basic properties of the developed method,
Hybrid Block method that is, order, error constant, zero stability, region of absolute stability, convergence and
Collocation consistency of the method were properly investigated. The numerical results demonstrated that
Interpolation the scheme developed handles: second, third and fourth order ordinary differential equations
Power series efficiently and accurately when compared with existing methods. The proposed method takes
Higher order away the burden of developing a separate method for the solution of second, third and fourth

order initial value problem of ordinary differential equations.

1. INTRODUCTION

A numerical method is an approach where difficult problems in mathematics are being solved. This
technique provides an approximate solution to differential equations which are ordinary differential
equations (ODEs) and partial differential equations (PDEs). Different researchers have worked on the
development of numerical methods for solving these differential equations and this includes [1-4].

The direct numerical solution of second, third and fourth order initial value problem of ODEs of the system:
y' () =fley,¥),y(0) =y0,¥ (x0) = y1

y"@) =y y, vy, y(xo) = yo, ¥ (x0) = y1,¥" (x0) = y2 1)
Yy =y, y, vy, y(x0) = v0,¥" (x0) = y1,¥" (x0) = y2,5"" (x0) = ¥3

is considered using a single linear multistep hybrid technique in this research.
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There are two approaches to solving Equation (1). The first approach is to reduce Equation (1) above to its
equal system of first order ordinary differential equations, and to solve using the appropriate method as
highlighted by [5-7]. The second approach for solving (1) is using a direct method as proposed by [8-11].
These methods give the numerical solution one point at a time, but the results are poor in terms of accuracy.

To overcome these challenges and bring improvement on the numerical method, [12-14] developed block
procedures for solving higher order ODEs directly. Here, the correctness of the procedures is better than
when it is reduced to the arrangement of first order ODEs. Similarly, [14-16] established a hybrid block
method for the direct solution of the general second, third and fourth order initial value problem of ODEs
respectively. Generalized hybrid technique for solving second order ordinary differential equations directly
was also done by [17]. [18] presented a direct two-point parallel block method for solving third and fourth
order ODEs. [19] built a 2-point block mode for solving first and second order ODEs using different step
size.

In this study, the usage of a lone hybrid block linear multistep method for the solution of second, third and
fourth order ordinary differential equations which are uncommon in Numerical Analysis literature will be
our focus.

Therefore, we are going to extend the work done in [18] and [19] by implementing a 2-step hybrid technique
in block mode to solve second, third and fourth order ordinary differential equations directly.

2. RESEARCH METHODOLOGY

2.1. The Development of the New Numerical Technique

We considered power series as an estimated solution to Equation (1) to be the model

k+9

y(x)=2 a;x’ o)
j=0

where a;'s are parameters to be determined and k is the step-length.

The fourth, fifth and sixth derivatives of (2) are obtained as:
k+9

y' (0 =2 i(i-D(i-2)(j-3ax"™* (3)
j=0

yV(X)=f,j(]—1)(1'—2)(J'—3)(]—4)61,-><"’5 (4)

y' (x) =ij(j ~D(i-2)(i-3(-H(i-5ax"*. ()
j=0

Collocating the fourth derivative at all the grid and off-grid points x = x,,,;, where j = 0,% ,1,% ,2 and

the fifth and sixth derivatives are collocated atXx=X_, .,where j=2. The base function is being

n+j?
. . 1,3 . .
interpolated at X =X, )= 0, E 1, E . These equations were then combined to generate a structure of non-

linear system of equations which were solved using Gaussian Elimination Method. The resulting values
generated were substituted back to the power series to give a continuous hybrid formula of the form in
Equation (6)

y(X) = Zaj (X)yn+j + h4 [Zﬁ] (X) fn+j +ﬂv(x) fn+vj+ h5 [Z}/J (X)gn+j ]+h6 [er (X)mn+jJ (6)
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where y(x)is the numerical solution of the initial value problem, v =

a;, B;,y; and z; areconstants. fy,+ j, gn+; and m,,, ; are expressed in Equations (7), (8) and (9) as follows:

fosj = Y(xn+p}’n+p3’n+py n+j

j=0(1)k

n
In+j = y(xn+pyn+j'yn+j'y n+]'yn+j

nr

Mpyj = y(xn+]:yn+j'yn+]'y n+]ryn+]'yn+j)

j=0(1)k

j=0(Dk .

%g are the hybrid points and

()
(8)
©)

It should be noted that aq, B, Yo and T, are not zero since (3), (4) and (5) are contuous and differentiable;
hence it is evaluated along with its derivatives at all the grid and off-grid points. This will produce a block

method for general higher order ordinary differential equation of the type in Equation (10) below:

AOy, = ADy, | + h*[BYE, + BOY,,_,] (10)
where
Y = [Vn+1 Ynaos ---ryn+r]T’ Yim-1 = [Yn-1,Yn-2, ---:yn]Ti
En = [fo farrs favzr oo furk] ' Fmer = Ufnets famz, faoss o fal o 1
is the order of the differential equation.
This gives the independent solution {y,,;},i = 1(1)k without overlapping.
Using the transformation,
_ (x=xp41) _1
t =", dt =—dx
the coefficients of y,.;,9,,; and m_,,are gotten in terms of t as follows:
11 4

a,(t t+at ——t°+1

=(-Srear -]
a, (t) = (4t° ~10t* +6t)

2
o, (t) = (-4t° +8t* -3t)
as(t)z(gt—zt%fﬁj
> 3 3
ﬂ(t)=h4( 131 tg_ﬂts_ 1o 1, 74 1 ., 1397 15893 0 41 , 30973
° 40320 720 2016 24 576 30240 1290240 645120 1440 3870720
B (1) = h“[ 73 X 1t5— 2 N 33 & 103 24 1 {0 _ 299 +11 t3+£t6j
420 5 189 560 17920 1260 53760 189 18
,83(t) h4(116 5) o 43 4 1259t +Et5— 29 7579 B 8t6—it1°j
315 315 315 24192 45 5760 60480 15 945

ﬂ
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407 ;1198117 , 499 . 305 o 11423, 13693, 83 , 41893 4231973

l%0)=h4(
2():h5(_ 1o, 5 o, 1 o 13 1681 5 7 . 2431 , 1

¢ 517 X 81 , 19 , 5 ., 349 47323 , 155 ¢ 13535
7,(t)=h t+——t'——t" - t - t- t°— t+
6048 27216 576 9072 276480 1741824 1296 1161216
Evaluating the continuous method at the endpoint i.e. at X ., yields equation (11)

9871f ,,+48096f ,+244296f  +

n+=
2

5806080 | 60896 f , —279f —3750hg, ., +450h’m,_,

yn+2 = 4yn+§ +4yn+1 _6yn+1 - yn +
2 2

Evaluating the first, second and third derivatives of the continuous scheme at all the points give:

1 16381°m, , ~14658h°,,, ~12573n"f, ~6458h" , , +41803n"f, , - 269152n‘F
/ 2
116121600 ~58464h" 1, ~42577920y, - 34836480y, + 69672960y , + 7741440y
2 2 2
1 4086h°m, , 411781, , +1143n1, + 4348081, +1298000",, + 3852161" ,
' 2
Y11 bo672960n ~225216"f 46448640y, +130345920y,, ~ 69672960y , - 23224320 |,
2 2 2
1 23681, , ~23466h°g, , ~B73N", + 200088h"f, , +7321N"f, , +1234241 |
] 2
1= 348364800 | 1200761 f ,-11612160y, -34836480y, , + 69672960y , ~23224320y
2 2 2
1 738h°m, , ~6942h°g,., ~330h" f, +187848N", , +203630°, , +54976h*f |
' 2
037 77418400 _20928n" f ,-5160960y, -46448640y, , +23224320y , +28385280y |
2 2 2
1 BO10Rm, , ~69774h°s, , ~5355"1, +5640840" ., +227875h"Y, , +1332320n'F |
! 2
2= 348364800 | 18763201 4 ~127733760y, - 661893120y, + 467710720y , +301916160y ,
2 2 2
43758h°m, ,, — 406050h°g, ., — 278757h* f_ +200232h*f_ .
yr——— 1 1198717h*f, , ~3298912h* f | ~1812960h*f , 139345920y,

174182402 ’ ek e
278691840y, ,, +348364800y , + 69672960y |

2 2

- "+ +
181440 34836480 2160 163296 120960 38880 54432 11612160 52254720

+ + + —t° - —
1296 1344 15120 92160 580608 540 1935360 120 2016

‘
t7j
-—¢5j.

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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4194h°m,_, —38910h°g, , —18531h* f, +59400n* f_ +
Y, =— 1 _|114770n"f, , ~700184n"f | ~172224h*f ,+139345920y, (18)
w1 34836480h ek sl
+139345920y,,, — 278691840y |,
n-*—E
. [126h°m, ,~1050h°, , ~201hf, +112824n°f, , +2641n°1, , +
Yra =~ 30508007 | 4640n°f | +1056h* , +46448640y, , — 23224320y , —23224320y | (19)
H+E n+§ n+E n+E
11034h°m, , ~87990h°g, , ~6975h" f, +5827464h*f, +203191h° 1, +1464896h*f |
1 n+§
V= (20)
w5 348364800° | 494784h°1 , ~139345920y, - 696720600, , +557383680y , +278691840y
n+§ n+E n+E
Ba42h°m, , ~1117500°g, , ~4527h*f, +66564720° T, +676375h" 1, +1440092°F |
1 n+§
Vs =0 (21)
*1T4182400° | +30314881° 1 , 139345020y, - 557383680y, + 487710720y , +209018880y |
n+§ n+E n+E
1512900°m, , ~1419690h°g, , ~1287333h"f, +3041280n*f, , + 4231973h"f,,
1
= _5969504h*f | —6548256h*f , — 69672060y, — 209018880y, , + 209018880y (22)
8709120n* s s ' e
69672960y |,
-
30690n°m, , —300930h°g, ., ~37665h* , +1963872h*f, , +929089h", ,
1
" o=—— | 1871136h*f | ~1549152n*f , +69672960y, + 209018880 23
Yt = g700120H° - ol 4 Y (23)
~209018880y , —69672960y |
n+E n+E
21690h°m,, —218730M°g, , ~9477h* f, +1921536h*f, , +691580h*f,,
1
"= | 4813472h*f | —1239840n*f , 69672960y, — 209018880y, , + 24
Y1 = g7091200° " s & o 4
200018880y , +69672960y |
n+E n+E
9090h°m, ., ~120930h°g, ., —81h* f, —3811104h*f,  +
y" =T | 479473h*f, ,—697120h*f , —2503008h*f ,+ 69672960y, (25)
n+y 8709120h N+ n+s
+209018880y, , — 209018880y , — 69672960y |

2 2
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13050h°m, ., —267690h"g, ., —1701h* f, +3704832h*f  +
yr=— L 2399525h4 fm2 +715168h*f | +4068576h" f , —69672960y, |. (26)
8709120 et il
209018880y, , + 209018880y , + 69672960y ,

2

2

These schemes were combined in matrix form through matrix inversion; and a block method was produced
in the following form:

_ ; [ 1]
o o My 1 1000 Sy 7
1000 fooon] 0005 iyn—ﬁ
0100 0001 000 1]y “ly
yn+1 — yn—l +h yn—l +h20 0 0 2 Ynl +
0010y, |000T1y, 3y, Yy,
Sl000 273 973
0001 2/]0001 2| 0005"2
yn+ yn yn— Yn,
L Ins2 L I ] _0002__ 2] _0002__ 2]
000 L Y 1 _ 8 517 139 173737
1y 1320 |t 3645 1935360 26880 52254720 [
000 1| " 0 2143 || ™2 28 709 74 163001 | "2
o 6 | Vs oh 120960 || f.s Lpi| 5103 15120 945 3265020 o
000 9y, 000 19143 || f 1857 2511 3L 5B | f,
16 286720 fz 8960 14336 1120 286720 f 2
Yo . o
0005-2_ 000@-- 15104 368 256 376 L'l
I 3 I 945 | 25515 945 315 729
19391 _ 000 - 275 o
17418240 [g | 2322432 [m |
000 9131 2 . o m 2
I 5;12:50 O |, ps 18;;1;10 it 27)
000 =20 19 g _ m s
143360 2 71680 2
gn+ mn+
000 WO T g 2
8505 | 2835 |
By writing out the block in Equation (27) explicitly, we have
7 8 5017 139
4320 f”+36452 vl 1035360 ™ ' 26880 02
y =y 4= hyn+ hzyn y;”+h4 2 2 (28)
e 173737 19391 2715,
- n+2 + gn+2 -———~h mn+2
52254720 17418240 2322432
2143 . 218 709 LY
n 1 it i3
v =y +yhs 1 2y s hgy,,,+h4 120960 " 5103 n; 15120 945 . (29)
2 6 163901 9131 323,
T AAAEAAA N2 —hgn+2 _—h mn+2
3265920 544320 181440
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19143 ¢ 1857 ‘ 2511 351 ¢

.t
286720

3 9
= n+—h;+—h2: "+h?
g ThTyh gt "y 57723

- +
8960 n+; 14336 "' 1120

- fn+2
| 286720

+ hg,., -
143360 ez
158 15104 368 256

f + f

9657 513 ,
h mn+2
71680

Yoz = Yo + 20y, +20°y7 + h3yé"+ he| 940

—f .+
i 729 n+2

5 42869
f +

Y i=Yi+s W”—hWﬁm34%

2%
25515 ner 945 "

376 1468 52

ez NG00 —
8505
Substituting the above Equations (28) — (31) into Equations (12) — (26) yield Equations (32) — (43)

2177280 n+:

2

244511 779

315 2

2

nonLC h2 mn+2
2835

8419
T anocan T
322560

10583
241920 n+2

2
1931,

8709120 "
3569

+ —
82944 Gni2
1471 . 209 53

mn+2
1935360

n+ 1
60480 8505 n+;

Vit = w+hW+ hW” h?

- na1 T
171260

f
189 n+d

2

97897 1091 193 ,
T EA1290 fn+2 a7 9.2 ————h M2
544320 18144 30240
20547 927 12393 6201
fn + f 1 n+l + f 3
2w 15| 143360 " 1792 nl 35840 8960 n+>
Y s yn+ hy h Yo +h
63711 2133 8l ,
T A AnA~n fn+2_|_— gn+2_—h mn+2
143360 14336 5120
50 . . 256 32 256
189 " 243 v T63 ™ 189 n
Yiiz = Yo+ 2Ny + 2077+ b i i
202 158 4
T AAA fn+2 +_hgn+2 -——h mn+2
243 567 135
74023 4825 8677 5381
fn + f 1 n+l + 3
y il 1 hy”, | 1290240 " 36288 ;53760 20160 o+
" 1983911 22093 781 .,
- n+2 + gn+2 -——h mn+2
11612160 387072 129024
443 .I:n+52 f 1_£fn+1+ﬁf 3
3360 " 105 n 14 105 n+3

2

yn+1 yn + hy”!+ h2

1403 47 5

2

h?m

= f +—hg.,,———
3360 n+2 336 gn+2 336 n+2

4209 ¢ 1973 ; 6183

n+ 1
v a=yis 3hy” 42| 20480 " 2240 0
= 93791

et t
143360

2= h
14336 Gne2

- T
17920

SN < SO
14336

465
448 n+d

2

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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I

- + hg..,— m
1451520 ™ 48384 I 16128 "

88 . 512, 32 . 512

" " " 2 315 " 405 n+% 105 nt 315 n+
yn+2 = yn +2hyn + h

0,82
g1 "? 27 "2 g3 "7

" "k 8179 ¢ 13277 1931 781 860177 9559

1= ) nt fo- fat—"1

> 53760 © 22680 n+, 3360 840 n+
" —y’”+h_ 493 ¢ 13277 9 64 12293 139
n+tl = Jn A

" m
Y 3=V, +h
>

"

yn+2 = yn +

2649

210 "

643

- n+_
17920 " 840

" h{—gl-f +

2176

2835 n+l

[N n +— 1 —
13360 © 22680 +, 70

9

5 2

+—1f .- f .+ hg ,———hm
" 105 2 30240 "? 1008 In-2 33

291

2

29083

317

3,

+——f +—1F .- f ,+——hg, ., - m
> 1120 ™ 280 S 53760 " 1792 2T 7gp e

2

8

128

2

+—f
105 105 n+

1193
- fn+2
5670

3. ANALYSIS OF THE PROPERTIES OF THE BLOCK
3.1. Order and Error Constant of the Block

25

L h?m

+=hg ,-—
189 gn+2 63 n+2

(39)

(40)

(41)

(42)

(43)

In agreement with authors [5] and [20], we described the local truncation error related to a linear multistep

method to be the linear difference operator. That is,

LLy(x);h]= Z{ajy(x+ i) —h*gy" (x+ jh)}.

(44)

Assuming that y(x) is sufficiently differentiable, we can expand the terms in (44) above as a Taylor series
about X to obtain the expression:

LLy(x);h]=C,y(x) +C.hy"+...,+C 'y (x) +...,

where the constant coefficients Cq ,=0,1,... aregiven as follows:

C, =

O
Il

M- 1M

1l
o

aj,

E.

1] . S
C, =—.{Zlqa; —(@=1 i |.
q:| = =t

(45)

According to [18], we say that our block is of uniform order p =7 and error constants given by the vector

C11 :{

113437

653

27801

53

.
858370867200’335301120’3532390400’532619540} '
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3.2. Zero Stability of the Block Method

Assuming the general form of the block method:

A%y, =AY, +h*[BYF, +BOF, .

A block method is assumed to be zero stable, if the roots:

det[ AA® - AV ] =0

of the first characteristic polynomial fulfil | 4| <1, and for the roots with || <1, the multiplicity must not

surpass the order of the differential equation.
For our block,

10

A=|z

o o o

o o K

o r O o
R O O o
o o o o
o O o o
o O o o
R

A=7z*-2*=0,2=0,0,0,0.
This means that the block is zero stable.

3.3. Region of Absolute Stability

The stability nature of the method is found in the spirit of [5] and [21] shown in Figure (1) below:

Region of Absolute Stability of Two-step Two-off step Sixth Derivative Method
15 T T l T T |

05F-4

05k

Re(z)

Figure 1. Showing the region of absolute stability of our method
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3.4. Convergence

Theorem 1: Convergence [5] - The necessary and sufficient condition for a linear multistep method to
be convergent is for it to be consistent and zero stable. From the theorem above, the new hybrid block
method is convergent.

4. NUMERICAL RESULTS

Here in this section, the performance of the new 2-step hybrid method was observed on some test
examples. The results obtained from the test examples are shown in tabular form.

Example 1.

We considered the non-homogeneous example:
y"=-100y+99sinx, y(0)=1y'(0)=11, h=0.003125

Exact solution: y = sin(10x) + cos(10x) +sin x

Source: [22].

Table 1. Showing the comparison of the result for test example 1 with the error in method [22]

X Exact Solution New Scheme Solution Error Error in Method
[22] k =1

0.003125 | 1.03388166738420191 1.03388166738426647 6.45600E-14 7.9800E-11
0.006250 | 1.06675678785245466 1.06675678785236532 8.93400E-14 -
0.009375 | 1.09859628036501657 1.09859628036472113 2.95440E-13 8.3780E-10
0.012500 | 1.12937207509626653 1.12937207509542852 8.38010E-13 -
0.015625 | 1.15905714081491135 1.15905714081343779 1.47356E-12 -
0.018750 | 1.18762551125002438 1.18762551124751685 2.50753E-12 3.3600E-09
0.021875 | 1.21505231041716944 1.21505231041349118 1.54455E-12 -
0.025000 | 1.21431377687988004 1.21431377687456903 5.31101E-12 -
0.028125 | 1.26638728692280306 1.26638728691567611 7.12695E-12 7.3481E-09
0.031250 | 1.29025137661387913 1.29025137660440947 9.46966E-12 -

Example 2.
y"=-¢, y(0)=1y(0)=-1y"(0)=3 h=0.1

Exact Solutio

Source: [23].

0 Y(X)=2+2x* —e™

Table 2. Showing the comparison of the result for test example 2 with the error in method [23]

X Exact Solution New Scheme Solution Error Error in Method
[23] k=4

0.1 0.91482908192435238 0.914829081924317644 3.473600E-14 2.5080E-13

0.2 0.85859724183983017 0.858597241840162860 3.326900E-13 6.4932E-11

0.3 0.83014119242399690 0.830141192420339910 3.709100E-14 1.6831E-09

0.4 0.82817530235872968 0.828175302359308864 5.791840E-13 3.3668E-09

0.5 0.85127872929987185 0.851278729300229951 3.581010E-13 6.6147E-09
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0.6 0.89788119960949103 0.897881199610700328 1.209298E-12 9.9982E-09

0.7 0.96624729252952348 0.966247292530703475 1.179995E-12 1.5283E-08

0.8 1.05445907150753240 1.054459071510046900 2.514500E-12 2.1980E-08

0.9 1.16039688884305034 1.160396888845880500 2.409110E-12 3.4643E-08

1.0 1.28171817154095476 1.281718171545825430 4.870670E-12 5.9998E-08
Example 3.

We considered the special fourth order problem

i 11 1 1.2 0.1
iv ":O, 0 :0, /0 =l-——= |, ”0 =l— mo S ,h:—
ey ¥0) y(0) ( 72—507[} v’ (144—1007Z'J y'(0) ( 144—1007[} 32

1-x—-cosx—1.2sinX
144 -1007

Exact Solution: y(X) =

Source: [24].

Table 3. Showing the comparison of the result for test example 3 with the error in method [24]

X Exact Solution New Scheme Solution Error Error in Method
[24] k =1
0.103150 | 0.0000403745930229973261 | 0.0000403745930229994393 | 2.11320E-18 | 0.38142683E-18
0.206250 | 0.0000806915800710702613 | 0.0000806915800710702613 | 1.05766E-17 | 0.37184370E-17
0.306250 | 0.000120950746770959792 | 0.000120950746771004095 | 4.43030E-17 | 0.26822346E-16
0.406250 | 0.000161151879314058272 | 0.000161151879314125709 | 6.74370E-17 | 0.29384802E-16
0.506250 | 0.000201294764458497415 | 0.000201294764458612830 | 1.15415E-16 | 0.41813224E-15
0.603125 | 0.000241379189531230713 | 0.000241379189531382827 | 1.52114E-16 | 0.38734880E-15
0.703125 | 0.000281404942430110347 | 0.000281404942430323570 | 2.13223E-16 | 0.28714827E-15
0.803125 | 0.000321371811625958463 | 0.000321371811626220817 | 2.62354E-16 | 0.86740034E-14
0.903125 | 0.000361279586164632919 | 0.000361279586164968374 | 3.35455E-16 | 0.70802448E-14
1.003125 | 0.000401128055669087341 | 0.000401128055669483216 | 3.95875E-16 | 0.35121472E-14

5. DISCUSSION OF RESULTS AND CONCLUSION

In table 1, our new scheme was applied on a non-homogenous second order initial value problem (IVP)
ODE which had been solved by [22]. Our new method generated more correct results compared to the One-
step hybrid block method executed by [22]. The solution of a third order I\VP ODE executed by our new
hybrid method is shown in table 2 and it is evident that our method performs better than that of [23]’s four-
step scheme. Table 3 shows the comparison of the result of our method with [24]’s One-step hybrid block
method on a special fourth order IVP ODE. However, our scheme is found to be more accurate than [24]’s.

In conclusion, we propose a two-step scheme with two hybrid points for the direct solution of second, third
and fourth order I\VVPs of ordinary differential equations. From the three test examples solved by the new
scheme; it has been established that it is effective in handling second, third and fourth order ordinary
differential equations initial value problems directly. This finding is seen from the accuracy of the numerical
results presented so far. Hence it is efficient, accurate and reliable.
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