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Abstract

The main purpose of this paper is to de�ne a class of contraction-type pair of mappings, called ψ-Geraghty-
Jungck contraction pair, which consists in a Jungck pair of mappings satisfying the Geraghty condition
and, furthermore, its contractive inequality is controlled by an altering distance function. For this class of
mappings, we discuss the existence and uniqueness of its common �xed points under the weakly compatibility
property. These mappings are de�ned in the setting of the so-called Branciari b-metric spaces.
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1. Motivation and preliminary results

In 1922, S. Banach introduced his famous result, the Banach Contraction Principle, (in short (BCP)), in
the metric �xed point theory. It is well know that the BCP has been generalized in di�erent directions, some
of them are: to modify the structure of usual metric space in order to pose this principle in more general
spaces, and to extend the contractive inequality for include large classes of mappings. In this work we will
follow these two directions of research by extending the BCP to pair of mappings and posing it in the setting
of the so-called Branciari b-spaces, which are a combination of b-metric spaces.

More precisely, we want to discuss the existence and uniqueness of common �xed point for a pair of weakly
compatible selfmaps that satisfying the ψ-Geraghty-Jungk contraction condition (see, inequality (2.2)).
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1.1. Branciari b-metric spaces

In this section we de�ne some basic concepts, notions and properties of the so-called Branciari b-metric
spaces, which are going to be used through this paper.

De�nition 1.1 ([6]). Let M be a non empty set and s ≥ 1 be a given real number and let ρ : M ×M −→
IR+ := [0,∞) be a function such that for all x, y ∈M and all distinct points u, v ∈M with u, v ∈M \ {x, y}
the following conditions hold:

Bb1.- ρ(x, y) = 0 is and only if x = y.

Bb2.- ρ(x, y) = ρ(y, x).

Bb3.- ρ(x, y) ≤ s[ρ(x, u) + ρ(u, v) + ρ(v, y)].

Then, ρ is called a Branciari b-metric on M , and (M,ρ) is called a Branciari b-metric space, (in short
BbMS) with coe�cient s ≥ 1.

Note that every usual metric space is a Branciari metric space ([3]) and every Branciari metric space is
a Branciari b-metric space (with coe�cient s = 1). Also, every metric space is a b-metric space ([2]) and
every b-metric space is a Branciari b-metric space, not necessarily with the same coe�cient. Moreover, the
converse of all implications are not necessarily true, as it is shown in Examples 1.4, 1.5 and 1.7 in [6], proving
in this way that this notion is a proper generalization.

Example 1.1 ([6]). Let (M, δ) be a Branciari metric space and p ≥ 1 be a real number. Let ρ(x, y) =
[δ(x, y)]p. It is clear from the convexity of the function f(t) = tp, for t ≥ 0, and Jensen's inequality, that

(a+ b+ c)p ≤ 3p−1(ap + bp + cp)

for nonnegative real numbers a, b, c. Therefore, for all x, y ∈ M and all distinct points and u, v ∈ M with
u, v ∈M \ {x, y}, we get

ρ(x, y) = [δ(x, y)]p ≤ (δ(x, u) + δ(u, v) + δ(v, y))p

≤ 3p−1 [δ(x, u)p + δ(u, v)p + δ(v, y)p]

≤ 3p−1 (ρ(x, u) + ρ(u, v) + ρ(v, y)) .

Thus, condition Bb3 in De�nition 1.1 holds, then ρ is a Branciari b-metric with coe�cient s = 3p−1 > 1.
Therefore, (M,ρ) is a Branciari b-metric space.

In [14], T. Suzuki prove the following lemma which allows to construct Branciari metric spaces from
bounded metric spaces. Then, from example above, we can construct Branciari b-metric spaces from bounded
metric spaces by letting ρ(x, y) := [δ(x, y)]p, with δ(x, y) as in the next result.

Lemma 1.1 ([14]). Let (M,d) be a bounded metric space and let K be a real number satisfying

sup{d(x, y) : x, y ∈M} ≤ K.

Let A and B two subsets of M with M = A ∪B and A ∩B = ∅. De�ne a function δ from M ×M into R+

by

δ(x, x) =0

δ(x, y) =δ(y, x) = d(x, y), if x ∈ A, y ∈ B

δ(x, y) =K, otherwise.

Then, (M, δ) is a Branciari metric space.
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On a Branciari b-metric space (M,ρ) we de�ne and denote an open ball of center x ∈M and radius r > 0
as

B(x, r) := {y ∈M : ρ(x, y) < r}.

Let τρ be the collection of all subsets U ⊂ M with the following property: for each y ∈ U there exists
r > 0 such that B(y, r) ⊂ U . Then, τρ de�nes a topology for the Branciari b-metric space which is not
necessarily Hausdor�. Even more, the open balls are not always open sets as Example 1.2 shows.

The next de�nition gives the concepts of convergence of sequences, Cauchy sequences and completeness
on Branciari b-metric spaces.

De�nition 1.2. Let (M,ρ) be a Branciari b-metric space with s ≥ 1 and (xn)n is a sequence in M .

1. The sequence (xn)n is said to be BbMS-convergent to x ∈ M if and only if for every ϵ > 0, exists
n0 ∈ N, such that for n > n0 we have ρ(xn, x) < ϵ, or equivalently, if lim

n→∞
ρ(xn, x) = 0.

2. The sequence (xn)n is called BbMS-Cauchy sequence if and only if for every ϵ > 0 there exists n0 ∈ N
such that for n > n0 and p > 0 we have d(xn, xn+p) < ϵ, or equivalently, lim

n→∞
ρ(xn, xn+p) = 0 for all

p > 0.

3. A Branciari b-metric space (M,d) is called complete if every BbMS-Cauchy sequence in it is BbMS-
convergent to some x ∈M .

The following example shows some properties of Branciari b-metric space which are not shared by the
usual metric spaces. This example appears in [6], however, for the sake of the presentation, here we include
all the missing computations to obtain the conclusions.

Example 1.2 ([6]). Let M = A ∪ B, where A =

{
1

n
: n ∈ N

}
and B = Z+. De�ne ρ : M ×M −→ IR+

such that ρ(x, y) = ρ(y, x) for all x, y ∈M and

ρ(x, y) =


0 if x = y
2α if x, y ∈ A
α

2n
if x ∈ A and y ∈ {2, 3}

α otherwise

where α > 0 is a constant. Notice that:

1. (M,ρ) is not a Branciari metric space (hence it is not a usual metric space) since

ρ

(
1

2
,
1

3

)
= 2α >

17

12
α = ρ

(
1

2
, 4

)
+ ρ (4, 3) + ρ

(
3,

1

3

)
.

Even more, ρ
(
1
n ,

1
m

)
= 2α > α

2n + α + α
2m = ρ

(
1
n , u

)
+ ρ(u, v) + ρ

(
v, 1

m

)
for all u ∈ Z+ \ {2, 3} and

v ∈ {2, 3}. It is easy to check that in the remain cases the inequality ρ(x, y) ≤ ρ(x, u)+ρ(u, v)+ρ(v, y)
holds. Thus, (M,ρ) becomes a BbMS if 2α ≤ s

(
α
2n + α+ α

2m

)
, equivalently, if s ≥ 4

2+ 1
n
+ 1

m

. Since

8
7 = minn,m∈N{ 4

2+ 1
n
+ 1

m

}, then (M,ρ) is a Branciari b-metric space with coe�cient s = 8
7 > 1 (cf. [6]).

2. (M,ρ) is not a b-metric space since for x, y ∈ {2, 3} and z ∈ A, ρ(x, y) = α > α
n = ρ(x, z) + ρ(z, y),

z = 1/n, (n > 1). In this situation, inequality Bb3 holds only if there exists s > n for all n ∈ N, which
is not possible.

3. Taking α = 1, we have that B
(
1
2 ,

1
2

)
= {2, 3} and there does not exists any open ball with center 2 and

radius r > 0 contained in B
(
1
2 ,

1
2

)
. In fact, notice that

ρ(2, z) =

{
1, z ∈ B
1
2n , z = 1

n ∈ A.
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Therefore,

B(2, r) =


M, r > 1

A, 1
2 < r ≤ 1

{ 1
n : n ∈ N, n > ⌈ 1

2r⌉} ⊂ A, 0 < r ≤ 1
2 .

Thus B
(
1
2 ,

1
2

)
is not an open set.

4. The sequence (xn)n =
(
1
n

)
n
converges to 2 and 3 in the Branciari b-metric space, hence limit is not

unique. Moreover, ρ
(

1
n ,

1
n+p

)
= 2α ̸→ 0 as n → ∞, therefore, (xn)n =

(
1
n

)
n
is not a BbMS-Cauchy

sequence in (M,ρ).

5. There are not exist any r1, r2 > 0 such that B(2, r1) ∩B(3, r2) = ∅. In fact,

B(2, r) = B(3, r) =

{
M, r > α

{ 1
n : n ∈ N, n > ⌈ α

2r⌉} ⊂ A, 0 < r ≤ α.

Hence, (M,ρ) is not Hausdor�.

Example 1.3 ([13]). Let A = {0, 2}, B =
{

1
n : n ∈ N

}
and M = A ∪ B. De�ne δ : M ×M −→ IR+ as

follows:

δ(x, y) =


0, if x = y
1, if x ̸= y and {x, y} ⊂ A or {x, y} ⊂ B
y, if x ∈ A and y ∈ B
x, if x ∈ B and y ∈ A.

Then, (M, δ) is a complete Branciari metric space, since if (xn)n is a Cauchy sequence in M , for every ϵ > 0
and for all n su�ciently large and p > 0, δ(xn, xn+p) < ϵ. By the de�nition of δ in M , this is possible only
if xn = xn+p for all p > 0, that is, xn is a constant sequence, which converges. Thus, (M,d) is a complete
Branciari space. Now, taking ρ(x, y) = (δ(x, y))2, according to Example 1.1, we obtain a Branciari b-metric
space (M,ρ) with s = 3. Moreover, it can be proved that

1. The sequence (xn)n =
(
1
n

)
n
converges to both 0 and 2 and it is not a Cauchy sequence, since

lim
n→∞

d

(
1

n
,

1

n+ p

)
= 1 ̸= 0.

2. lim
n→∞

1

n
= 0, but 1 = lim

n→∞
ρ

(
1

n
,
1

2

)
̸= ρ

(
0,

1

2

)
=

1

4
; hence ρ is not a continuous function.

Regarding to the above facts about the Branciari b-metric spaces, the following results are useful in
proving our main results. As example before shows, a sequence in a Branciari b-metric space may have two
limits. However, there is a special situation where this is not possible.

Lemma 1.2 ([13]). Let (M,ρ) be a Branciari b-metric space with s ≥ 1 and let (xn)n be a BbMS-Cauchy
sequence in M such that xn ̸= xm for all n ̸= m. Then, (xn)n converges to at most one point.

Lemma 1.3 ([5]). Let (M,ρ) be a Branciari b-metric space with s ≥ 1 and let (xn)n be a sequence in M
such that xn ̸= xm whenever n ̸= m and lim

n→∞
ρ(xn, xn+1) = 0 and lim

n→∞
ρ(xn, xn+2) = 0. If (xn)n is not a

BbMS-Cauchy sequences, there exists ϵ > 0 and two sequences (n(k))k and (m(k))k of positive integers with
n(k) > m(k) > k such that

ρ
(
xm(k), xn(k)

)
≥ ϵ, and ρ

(
xm(k), xn(k)−1

)
< ϵ,



J.R. Morales and A. Vizcaya, Results in Nonlinear Anal. 3 (2020), 128�136 132

and
ϵ ≤ lim

k→∞
sup ρ

(
xm(k), xn(k)

)
≤ sϵ

ϵ

s
≤ lim

k→∞
sup ρ

(
xm(k)+1, xn(k)−1

)
≤ ϵ

ϵ

s
≤ lim

k→∞
sup ρ

(
xm(k), xn(k)−2

)
≤ sϵ

ϵ

s
≤ lim

k→∞
sup ρ

(
xm(k)+1, xn(k)

)
≤ sϵ

ϵ

s
≤ lim

k→∞
sup ρ

(
xm(k)−1, xn(k)−1

)
≤ s2ϵ.

2. ψ-Geraghty-Jungck contraction pair of mappings

In this section, we introduce a new pair of contractive-type mappings on b-Branciari metric spaces which
generalize the Jungck pair of maps. To de�ne it, we control the contractive inequality with altering distance
functions and we introduce an extra function as Geraghty [7]. These extra functions allows to include large
classes of mappings which we will prove they have common �xed points.

We recall that in 1984, M.S. Khan, M. Swalech and S. Sessa [10] introduced the notion of altering distance
function as follows:

De�nition 2.1. A function ψ : IR+ −→ IR+ is called an altering distance function if the following properties
are satis�ed:

ψ1.- ψ is monotonically non-decreasing.

ψ2.- ψ is a continuous mapping.

ψ3.- ψ(t) = 0 if and only if t = 0.

In the sequel, we will denote by Ψ the set of all altering distance functions. The class of all functions
β : IR+ −→ [0, 1/s], with s > 1, satisfying the following condition:

lim
n→∞

β(tn) =
1

s
=⇒ lim

n→∞
tn = 0, (2.1)

for any (tn)n ⊂ IR+, will be denoted by Bs. Note that if we take s = 1 we obtain the Geraghty's condition
([7]).

Now, using the altering distance functions and condition (2.1), we introduce the class of pairs of ψ-
Geraghty-Jungck contraction type mappings as follows.

De�nition 2.2. Let (M,ρ) be a Branciari b-metric space with s ≥ 1. A pair of mappings S, T : M −→ M
is called a ψ-Geraghty-Jungck contraction pair if for all x, y ∈M there exists β ∈ Bs and ψ ∈ Ψ such that

ψ
[
s2ρ(Sx, Sy)

]
≤ β [ψ(ρ(Tx, Ty))]ψ [ρ(Tx, Ty)] . (2.2)

This class of mappings extend and generalize several classes of mappings of Jungck's and Geraghty's
type. See, for instance, [4] and references therein.

We recall that for two self mappings S, T on M , a point x ∈ M is called a coincidence point of S and
T if Sx = Tx. A point w ∈ M is called a point of coincidence (in short, POC) of S and T if there exists a
coincidence point x ∈M of S and T such that Sx = Tx = w.

The next result will help us to show the existence of a POC for the class of ψ-Geraghty-Jungck contraction
pairs.

Proposition 2.1. Let (M,ρ) be a Branciari b-metric space with s ≥ 1 and let S, T : M −→ M be two
mappings with SM ⊂ TM . If the pair (S, T ) satis�es condition (2.2), then for any x0 ∈ M , the sequence
de�ned by yn = Sxn = Txn+1, with n = 0, 1, . . . , satis�es:
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1. lim
n→∞

ρ(yn, yn+1) = 0 and lim
n→∞

ρ(yn, yn+2) = 0,

2. (yn)n is a BbMS-Cauchy sequence in M .

Proof. For any arbitrary point x0 ∈M , from condition SM ⊂ TM , we choose sequences (xn)n and (yn)n in
M as

yn = Sxn = Txn+1, n = 0, 1, . . .

If yk = yk+1 for some k ∈ N, then
Sxk+1 = yk+1 = yk = Txk+1.

That is, S and T have a POC. Therefore, we suppose that yn ̸= yn+1 for all n ∈ N. Putting x = yn+1 and
y = yn in (2.2) we obtain

ψ [ρ(yn, yn+1)] ≤ ψ
[
s2ρ(yn, yn+1)

]
= ψ

[
s2ρ(Sxn, Sxn+1)

]
≤ β [ψ (ρ(Txn, Txn+1))]ψ(ρ(Txn, Txn+1))

= β [ψ (ρ(yn−1, yn))]ψ(ρ(yn−1, yn))

<
1

s
ψ(ρ(yn−1, yn)) < ψ(ρ(yn−1, yn)).

Since ψ ∈ Ψ, this implies
ρ(yn, yn+1) < ρ(yn−1, yn).

It follows that zn = (ρ(yn, yn+1))n is a monotone non increasing sequence of positive real numbers, conse-
quently there exists L ≥ 0 such that

lim
n→∞

ρ(yn, yn+1) = L.

Notice that, if L > 0, then

0 ≤ ψ(L) ≤ ψ(s2L) = lim
n→∞

ψ
(
s2ρ(yn, yn+1)

)
≤ lim

n→∞
supβ [ψ(ρ(yn−1, yn))] lim

n→∞
supψ(ρ(yn−1, yn))

<
1

s
ψ(L) < ψ(L)

which is a contradiction, therefore, L = 0. Thus,

lim
n→∞

ρ(yn, yn+1) = 0.

In a similar way we can prove:
lim
n→∞

ρ(yn, yn+2) = 0.

Suppose now that yn = ym for some n > m, hence yn+k = ym+k for k ∈ N. Then, from (2.2) we have

ψ [ρ(ym, ym+1)] ≤ ψ
[
s2ρ(ym, ym+1)

]
= ψ

[
s2ρ(yn, yn+1)

]
= ψ

[
s2ρ(Sxn, Sxn+1)

]
≤ β [ψ(ρ(Txn, Txn+1))]ψ(ρ(Txn, Txn+1))

= β [ψ(ρ(yn−1, yn))]ψ(ρ(yn−1, yn))

< ψ(ρ(yn−1, yn)) ≤ ψ(s2ρ(yn−1, yn))

...

≤ β [ψ(ρ(ym, ym+1))]ψ(ρ(ym, ym+1)) < ψ(ρ(ym, ym+1))

which is a contradiction. Thus, in what follows, we assume that yn ̸= ym for n ̸= m.
Now, we want to show that (yn)n is a BbMS-Cauchy sequence in M . Suppose the contrary. Then, there

exists an ϵ > 0 and sequences (n(k))k and (m(k))k of positive integers such that n(k) > m(k) > k satisfying

ρ(ym(k), yn(k)) ≥ ϵ
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and
ρ(ym(k), yn(k)−1) < ϵ.

Now, we substitute x = ym(k) and y = yn(k) in (2.2). We have,

ψ
[
s2ρ(ym(k), yn(k))

]
= ψ

[
s2ρ(Sxm(k), Sxn(k))

]
≤ β

[
ψ
(
ρ(Txm(k), Txn(k))

)]
ψ
(
ρ(Txm(k), Txn(k))

)
= β

[
ψ
(
ρ(ym(k)−1, Txn(k)−1)

)]
ψ
(
ρ(ym(k)−1, Txn(k)−1)

)
.

Taking lim sup as k → ∞ and using Lemma 1.3, we obtain

ψ(s2ϵ) ≤ lim
k→∞

supψ
[
s2ρ(ym(k), yn(k))

]
≤ lim

k→∞
supβ

[
ψ
(
ρ(ym(k)−1, Txn(k)−1)

)]
lim
k→∞

supψ
(
ρ(ym(k)−1, Txn(k)−1)

)
<

1

s
ψ(s2ϵ) < ψ(s2ϵ),

which is a contradiction. Therefore, (yn)n is a BbMS-Cauchy sequence in M .

Proposition 2.2. Let S and T be two self maps on a Branciari-b-metric space (M,ρ) with s ≥ 1. Let us
assume that the pair (S, T ) satis�es condition (2.2). If S and T have a POC in M , then it is unique.

Proof. Let z and w be two POC of S and T . Thus, there exist some x, y ∈M such that

w = Sx = Tx and z = Sy = Ty.

By (2.2), we have

ψ(ρ(w, z)) ≤ ψ(s2ρ(w, z)) = ψ(s2ρ(Sx, Sy))

≤ β [ψ(ρ(Tx, Ty))]ψ(ρ(Tx, Ty))

= β [ψ(ρ(w, z))]ψ(ρ(w, z))

<
1

s
ψ(ρ(w, z)) < ψ(ρ(w, z))

which is a contradiction. Thus, we conclude that w = z and the POC is unique.

3. On the existence and uniqueness of common �xed points

In this section we prove our main results concerning to the existence and uniqueness of common �xed
points for ψ-Geraghty-Jungck contraction type mappings de�ned on Branciari b-metric spaces, without as-
suming continuity requirements. The classical assumptions in this line of research, as the commutativity
property, in this case is reduced to the existence of points of coincidence, and the completeness of the space
is reduced to natural conditions. Even more, we prove that the Jungck-Picard iterative scheme ([8]) converges
to the unique common �xed point of a ψ-Geraghty-Jungck contraction pair.

We recall that S and T are said to be weakly compatible if S and T commute at their coincidence points,
that is, if Sx = Tx then STx = TSx ([9]). We would like to point out that weakly compatible is a minimal
requirement for the existence of common �xed points for contractive pair of mappings. For a discussion in
the subject see, e.g., [11, 12].

Lemma 3.1 ([9]). Let S and T be weakly compatible self mappings on a non empty set M . If S and T have
a unique POC, w = Sx = Tx, then w is the unique common �xed point of S and T .

Theorem 3.1. Let (M,ρ) be a Branciari b-metric space with s ≥ 1 and let S, T : M −→ M two self maps
such that

i. SM ⊂ TM .
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ii. TM ⊂M is a complete subspace.
iii. Suppose that the pair (S, T ) satis�es the condition (2.2).

Then,

1. S and T have a unique POC.
2. If S and T are weakly compatible self mappings, then S and T have a unique common �xed point and

the Jungck-Picard iterative scheme

yn = Sxn = Txn+1, x0 ∈M, n = 0, 1, . . . (3.1)

converges to the unique common �xed point of (S, T ).

Proof. Let x0 ∈ M be an arbitrary point, using the condition SM ⊂ TM we choose sequences (xn)n and
(yn)n in M such that yn = Sxn = Txn+1, for n = 0, 1, . . . From Proposition 2.1, we have the following
conclusions:

1.
lim
n→∞

ρ(yn, yn+1) = 0 and lim
n→∞

ρ(yn, yn+2) = 0. (3.2)

2. (yn)n is BbMS-Cauchy sequence in M .

Since (Txn+1)n ⊂ TM and TM ⊂M is a closed subspace, there exists z ∈ TM such that

lim
n→∞

Txn+1 = z (3.3)

that is, z = Tu for some u ∈M . Now, we prove that z = Su = Tu.

Suppose that Su ̸= Tu. Then by Lemma 1.2 it follows that yn di�ers from Su and Tu for n su�ciently
large. Hence, applying the quadrilateral inequality, we obtain

ρ(Su, Tu) ≤ s[ρ(Su, yn−1) + ρ(yn−1, yn) + ρ(yn, Tu)].

Letting n→ ∞, and applying (3.2) and (3.3) in the above inequality, we get

ρ(Su, Tu) = 0, so z = Su = Tu.

From Proposition 2.2 we get that z is unique POC of S and T . Finally, if S and T are weakly compatible,
by Lemma 3.1 we conclude that z is the unique common �xed point of S and T in M which is the limit of
the Jungck-Picard iterative scheme (3.1).

Example 3.1. Let M = {0, 1, 2, 3} and de�ne ρ :M ×M −→ IR+ as follows:

1. ρ(x, y) = 0 if and only if x = y,
2. ρ(x, y) = ρ(y, x) for all x, y ∈M and
3. ρ(0, 3) = ρ(2, 3) = ρ(0, 2) = 1, ρ(1, 3) = 3, ρ(0, 1) = 6, ρ(1, 2) = 5.

The authors in [1] proved that (M,ρ) is a Branciari b-metric space. We de�ne S, T :M −→M as follows:

1. T0 = 0, T1 = 2, T2 = 3, T3 = 1, TM = {0, 1, 2, 3}.
2. S0 = S1 = S2 = 0, S3 = 2, SM = {0, 2} ⊂ TM .

Hence,

6

5
=ψ

(
s2ρ(S0, S3)

)
≤ β [ψ(ρ(T0, T3))]ψ(ρ(T0, T3)) =

6

5

√
6.

6

5
=ψ

(
s2ρ(S1, S3)

)
≤ β [ψ(ρ(T1, T3))]ψ(ρ(T1, T3)) =

6

5

√
5.

6

5
=ψ

(
s2ρ(S2, S3)

)
≤ β [ψ(ρ(T2, T3))]ψ(ρ(T2, T3)) =

6

5

√
3.

Therefore, S and T satisfy inequality (2.2). It is clear that SM ⊂ TM and TM ⊂ M is complete, also S
and T are weakly compatible, thus we can apply Theorem 3.1 to conclude that z = 0 is the unique common
�xed point of S and T .



J.R. Morales and A. Vizcaya, Results in Nonlinear Anal. 3 (2020), 128�136 136

References

[1] Z.I. Al-Muhiameed, Z. Mostefaqui and M. Bousselsal, Coincidence and common �xed point thorems for (ψ,φ)-weakly
contractive mapping in rectangular b-metric spaces, Elec. J. Math. Anal. Appl., 6(2) (2018), 211�220.

[2] I.A. Bakhtin, The contraction mapping Principle in almost metrics spaces, Functional Analysis, 30, (1989), 26�37.
[3] A. Branciari, A �xed point theorem of Banach�Caccioppoly type on a class of generalized metric space, Publ. Math.

Debrecen, 57, (2000), 31�37.
[4] H-S. Ding, M. Imdad, S. Radenovi¢ and J. Vujakovi¢, On some �xed point results in b-metric, rectangular and b-rectangular

metric spaces, Arab J. Math. Sci., 22, (2016), 151�164
[5] H.S. Ding, V. Ozturk and S. Radenovi¢, On some new �xed point results in b-rectangular metric spaces, J. Nonlinear Sci.

Appl., 8, (2015), 378�386.
[6] R. George, S. Radenovic, S. Reshma and S. Shukla, Rectangular b-metric spaces and contraction principles, J. Nonlinear

Sci. Appl. 8, (2015), 1005-1013.
[7] M.A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40, (1973), 604�608.
[8] G. Jungck, Commuting mappings and �xed points, Amer. Math. Monthly, 83(4) (1976), 261�263.
[9] G. Jungck and B.E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, 7(2)

(2006) 287�296.
[10] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc.,

vol. 30, (1984), 1�9.
[11] J.R. Morales and E.M. Rojas, Contractive mappings of rational type controlled by minimal requirements functions, Afr.

Mat., vol. 27, no. 1-2, (2016), 65�77.
[12] J.R. Morales, E.M. Rojas and R.K. Bisht, Common �xed points for pairs of mappings with variable contractive parameters,

Abstract and Applied Analysis, Volume 2014, Article ID 209234, 7 pages.
[13] J.R. Roshan, V. Parvaneh, Z. Kadelburg and N. Hussain, New �xed point results in b-rectangular metric spaces, Nonlinear

Anal. Model. Control, 21(5) (2016), 614�634.
[14] T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstract and Applied Analysis Volume 2014,

Article ID 458098, 5 pages.


	Motivation and preliminary results
	Branciari b-metric spaces 

	-Geraghty-Jungck contraction pair of mappings
	On the existence and uniqueness of common fixed points

