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ABSTRACT. We present uniform and L, mixed Caputo-Bochner abstract generalized fractional Landau inequalities
over R of fractional orders 2 < o < 3. These estimate the size of first and second derivatives of a composition with a
Banach space valued function over R. We give applications when oo = 2.5.
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1. INTRODUCTION
Letp € [1,00, I =Ry orl =Rand f : I — Ris twice differentiable with f, f” € L, (I),
then f’ € L, (I). Moreover, there exists a constant C}, (I) > 0 independent of f, such that

(1) 1F1L, 1 < Co (DIFIE F7112

where ||| .1 1s the p-norm on the interval I, see [1], [5]. The research on these inequalities
started by E. Landau [10] in 1913. For the case of p = oo, he proved that

2 Cwo (R-‘r) =2 and Cy (R) = \/§

are the best constants in (1). In 1932, G. H. Hardy and J. E. Littlewood [7] proved (1) for p = 2,
with the best constants

3) Cy(Ry)=+2 and Cy (R) = 1.

In 1935, G. H. Hardy, E. Landau and J. E. Littlewood [8] showed that the best constants C), (R)
in (1) satisfies the estimate

@) Cp(Ry) <2, forp e [1,00),

which yields C, (R) < 2 for p € [1,00).

In fact, in [6] and [9] was shown that C, (R) < /2. We need the following concepts from
abstract generalized fractional calculus. Our integrals next are of Bochner type [11]. We need
the following definition.
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Definition 1.1. ([4], p. 104) Let [a,b] C R, (X, ||-||) a Banach space, g € C* ([a,b]) and increasing,
feC(ab,X) v>0. Wedefine the left Riemann-Liouville generalized fractional Bochner integral
operator

1

© (tl) @)= i [ 0@ =)o ()1 )

Va € [a,b], whereT is the gamma function. The last integral is of Bochner type. Since f € C ([a,b], X),
then f € Lo ([a,b], X). By Theorem 4.10, p. 98, [4], we get that (JY.,f) € C ([a,b], X). Above we
set JO.,f = f and see that (J7., f) (a) = 0.

We need the following definition.

Definition 1.2. ([4], p. 105) Let [a,b] C R, (X, ||-||) a Banach space, g € C* ([a,b]) and increasing,
feC(abl,X) v>0. Wedefine the right Riemann-Liouville generalized fractional Bochner integral
operator

1 b L
© (Boaf) @)= 55 | 0 =9@) o ()] ()

Va € [a,b], whereT is the gamma function. The last integral is of Bochner type. Since f € C ([a,b], X),
then f € Lo ([a,b],X). By Theorem 4.11, p. 101, [4], we get that (Jg’f;gf> € C([a,b],X). Above

we set Ji) . f = f and see that (Jg’_;gf) (b) = 0.
We also need the following definition.

Definition 1.3. ([4], p. 106) Let o > 0, [o] = n, [-] the ceiling of the number. Let f € C" ([a,b] , X),
where [a,b] C R, and (X,|-||) is a Banach space. Let g € C* ([a,b]), strictly increasing, such that
gt € C™(lg(a),g(b)]). We define the left generalized g-fractional derivative X -valued of f of order
o as follows:

D (D) @) = [ @@ e O (Fog ) @)

V x € [a,b]. The last integral is of Bochner type. Ordinary vector valued derivative is as in [12], similar
to numerical one. If a ¢ N, by Theorem 4.10, p. 98, [4], we have that (Dg,.,f) € C([a,b],X). We
see that

®) (e ((Fog™) ™ 0g)) (@) = (Diy ) (@), V€ o],
We set
© Diyf (@)= ((fog™")"0g) (@) € C(la,b],X), neN,

DY, f(x)=f(z), Vo elab].
When g = id, then

(10) a+ gf Da+ zdf D fv
the usual left X -valued Caputo fractional derivative, see [4, Chapter 1].

We mention the following definition.
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Definition 1.4. ([4], p. 107) Let o > 0, [a] = n, [-] the ceiling of the number. Let f € C" ([a,b] , X),
where [a,b] C R, and (X,|-||) is a Banach space. Let g € C* ([a,b]), strictly increasing, such that
g e C™([g(a),g(b)]). We define the right generalized g-fractional derivative X -valued of f of order
a as follows:

(="

b
) (0,0 @)= s [ a0 =0@) 0 (g™ w0 a

YV x € [a,b]. The last integral is of Bochner type. If o ¢ N, by Theorem 4.11, p. 101, [4], we have that
(Dl‘f‘,;gf) € C ([a,b],X). We see that

(12) T (0" (Fog™) ™ og) (@) = (Dff) (2), @< <0,
We set
(13) Di_yf @)= (=1)" ((fog™")"0g) (@) € C(la,b], X), neN,

DY_yf (2) = f (2), Ve € o8],
When g = id, then
(14) Dy f (2) = D§_af () = D§._f,
the usual right X-valued Caputo fractional derivative, see [4, Chapter 2].
We mention the generalized left fractional Taylor formula:
Theorem 1.1. ([4], p. 107) Let o > 0, n = [«], and f € C™ ([a,b],X), where [a,b] )C R and

n
(X, ||Il) is a Banach space. Let g € C* ([a, b)), strictly increasing, such that g~ € C™ ([g (a), g (b)]),
a < x <b. Then,

g | 0@ =g @) 0 (D5,0) O

= [(a)+ 3 T (Fog ™) (g (@)
1 197(1) 1
(15) + m " (9 (m) - Z)a_ ((D3+;gf) © g_l) (2)dz.

We also mention the generalized right fractional Taylor formula:

Theorem 1.2. ([4], p. 108) Let o« > 0, n = [«], and f € C" ([a,b],X), where [a,b] C R and
(X, ||Il) is a Banach space. Let g € C* ([a, b]), strictly increasing, such that g=* € C™ ([g (a), g (b)]),
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a < x <b. Then,

Fa)= £ )+ Z 0@ =90V (1441)9 (g 1)
t i/ 00— 9@)" g 0) (D5, f) ()
YOI YUt ;g(b))i (Fos ) (o (8)
i=1
(16) + ﬁ /g?:))) (z—g @) ((DF_yf) 0 97") (2) da.

By convention, we suppose that

(Dgﬁ;gf) (r) =0, forx <z,
17)
(D2 _..f) () =0, for x > o,

To—;9

forany z,x0 € [a,b].

The author has already done an extensive amount of work on fractional Landau inequalities,
see [3], and on abstract fractional Landau inequalities, see [4]. However, there the proving
methods came out of applications of fractional Ostrowski inequalities ([2], [4]) and the derived
inequalities were for small fractional orders, i.e. & € (0,1). Usually there the domains where
[A, +00) or (—o0, B], with A, B € R and in one mixed case the domain was all of R.

In this work with less assumptions, we establish uniform and L,, type mixed Caputo-Bochner
abstract generalized fractional Landau inequalities over R for fractional orders 2 < o < 3. The
method of proving is based on left and right Caputo-Bochner generalized fractional Taylor’s
formulae with integral remainder, see Theorems 1.1,1.2. We give also applications for o = 2.5.
Certainly, we are also inspired by [3], [4].

2. MAIN RESULTS

We give the following abstract mixed generalized fractional Landau inequalities over R.

Theorem 2.3. Let2 < a < 3and f € C3 (R, X), where (X, ||-||) is a Banach space. Let g € C* (R),
strictly increasing, such that g=' € C® (g (R)). We assume that ||| ||| ., r < oo and that

K = max {|[|((P400) 0 7) )| gy

(18) HH(D5—08) 297 Ml ey} <
where (a,z) € R x g (R). Then,

L S Mo
(19 ooyl <o (rass) (Foms)
and

N AN Moo T
(20 ooy ol <o (rass) (Fams=)
That is,

—1\/ —1\"
oo™y oslll ol osy ool <o
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Proof. Here 2 < oo < 3,i.e. [a] = 3. Let f € C* (R, X), where (X, |-||) is a Banach space, a € R
is fixed momentarily. We need the following abstract generalized fractional Taylor formulae
for n = 3. By Theorem 1.1, we get

@) f(x)—fla)=(9(z) —g(a) (fog™") (g(a)) +

2
1 g(x) N L
+F(a)/g(a) (9(2) = 2™ (Do) 097) (2)d2, Vo> a
And by Theorem 1.2, we get
— a 2 "
@ f@) - f@ =@ -9@) (Fog™) (w(@)+ LDID (100" (g (w)

Let 21 > a, then

(9(x1) —g(a) (fog™) (g(a) +
23 Tl) o=l ((pe ~1 dz =: A
@) =) - )/g (21) = )7 (DS 0 f) 097) (2)dz = A,

and let 25 < q, then

(9 (@2) = g(@) (Fog™") (9(a)) +

1 o . -

@) =(fa) - f@) - [ G T (D, f) os™) (2)dz = B
F(a) g(x2)

Let h > 0, we can choose z; such that g (z1) — g(a) = h and we can choose x> such that

g(a) — g (z2) = h. Thatis g(x1) = g(a) + hand g (z2) = g (a) — h, and g (22) — g (a) = —h.

Furthermore, it holds g (x2) — g (x1) = —2h. We can rewrite (23) as

fog™)" (9(a)

25) n(Tog™) (9a) +1 (Fog™)" (9(a)) = A,
and we can rewrite (24) as
(26) “h(fog™) (g@) + o (Fog™) (9(a)) = B.

Solving the system of (25) and (26), we find

@) (oo™ (o) =0

and

(Foa™) (w(ay="E

We assumed that
I1((DG+:90) 0 97) DIl o gz  MIPE=05) 0 97") Ml 2 gy <
We obtain,
|(ro @) = 5 14— B
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and
(28) (700" (0@ < 7z U141+ 1B1)
We get
1 g(z1) w1 N B
IIAII—H(f(xl)—f(a))—F(a) /g(a) (9(01) =2 (D24 gf) 0 970) (2) d
1 g(z1) a
<2l gy [ 0G0 =9 N(DEgf) 057 )
K g(z1) o
<2l + 5 (/g(a) (9(21) - 2) 1dz>
K a K o
(29) = 21l + 2 75 900~ 9 @)” = 20l + 2 51
That is,
(30) JAL <21l g + = h®, B> 0
- oo,R Ma+1) "~ '
Similarly, it holds
g(a) . N o
18Il = ||(f (2) - (— / (D2 f) o9 ) (=) dz
1
<20l + F / 92" (D2 ) 097) (2] 2
g
K (a) a L
<20l flllus + m(/ dz)
K K .
(31) = 20fllas+ Ty @@ ~ 9 @) = 20+ T 3"
That is,
(32) 1B < 21 fllw g+ =B, B> 0
- oo,R Ma+1) "’ '
Furthermore, we have
2K
(33) JAL+ 1B < 411 laom + = oh®, > 0.

I'law+1)

39
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We also notice that

g(z1)
4= Bl = £ @)~ @ =gy [ @) =2 (D) o9 ()
g(a) 4
—f(z2) + f(a (/( : ((Dg_;gf)ogil) (2)dz
1 g(w1)
6y <) - fEl+ ()V (9e1) =" [ (D) 097) ()] d=
g(a) L
[ e (D) o)
g(x2)

K g(z1) o1 g(a) w1
<2l + gy | [ 0@ =" [ g dz]
=21l + gy 00 = 9(0)" + (90) =g (22))]
=20l + T 355

That is,
) B2 <iflen + sy h>o

Consequently, we obtain

H(@$é35)””f””ugR Kho!

|(Fog™) 9@ = ; NCESY

and

(36) |(Feg™)" (9(a))

H(0829®)4”HJMHQLR 2Kh°?
- h? I'(a+1)’
h >0, for any a € R. Hence,

oy oo, < Wl , g2

h I'a+1)

and

AILA 2K h2

N oo,R

@ llres™y ool = =7 + rray
trueVh>0,2<a<3. Cal
(38) o= om0 = .
both are greater than zero. Set also p := a — 1 > 1. We consider the function
(39) y(h) =5 4+007, Vh>0.
We have

y'(h) =~ m+wml 0,
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then
pOh’*t = p,
with a unique solution
T
(40) ho := heritno = <M> .
po
We have that
(41) y" (h) =2uh™% + p(p— 1) 0h"~2.
We observe that
"(ho)=2p (L) —ne(L)
y" (ho) u(p9> +olp—1) <p9
~#h ~h
@) - (;;) g+ 1 (p — 1) :u(p‘;> (p+1) > 0.
Therefore, y has a global minimum at hg = (ﬁ) o , which is
S Y A
y(ho)_ " pll+0<p9>
pb
Qurtt
= (o)™ L =
pett pr TQo+1
1 1 1 1 1
3) = )7 (o7 4 ) = o (2
pm pm
= (0p) 7T (p+ 1) p 751
That is,
(44) y (ho) = (0u°) 7 (p+1) p~ 757
Consequently,
K a1 o —(251)
= - 1 o .
) yiho) = (g M) " ata =)
We have proved that
-1/ K a—1)°% _(L*l)
i [ — a ),
(o Nwoa™ed| ., = (Fg 0E2) ata-1
Next call
(47) E=4llfMlowr, ¥=ra5D
both are greater than zero. Set also ¢ := o — 2 > 0. We consider the function
(48) v (h) ::%erh‘”:éh*%wh*”, Vh>0.
We have

7 (h) = =26h7° + pyh?™! =0,
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then

with a unique solution

(49)

We have that
(50)

We see that
7" (ho) =

(51)

George A. Anastassiou
+2 _
QYRS = 2€,

28
ho := heritno = | —
’ ' (W

1
) o+2

v (h) =66h™* + ¢ (p — 1) Yh? 2.

(pt+2)—4
g _ E P+2
65(@#) Tl Dw(wﬁ)
NN oo (26 T
—(W) 66 + (o — 1)2¢] 25(@) (o2 >0.

1
Therefore, v has a global minimum at hy = (j—i) o , which is

2¢ \ "7 2\ Fir
ho) = s el
() ’f(sow) (%)
2 §]_E (&) T (2) 7
) =5 S z
2 (W) {g %w} s@(@) (1/}) (o2
() e
That is,
53) v = (£)7(5) T e
Consequently,
e / K \3
(54) ’Y(ho):<”l|_”2 ’R) (F(a +1>) .
We have proved that
Loy 4 es T (K \E
©5) lloesyeal o< (o=5=) " (rarn) =

The theorem is established.

We also give an L, analog of a generalized fractional Landau inequality

Theorem 2.4. Let p,q
Banach space. Let g €

>1: o+, =12<a<3andfe CR,X) where (X, |-|) is a
C! (R), strictly increasing, such that g=' € C®(g(R)). We assume that
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1Nl r < 00, and that

M s fsup (D) 0 7) Gl

56 sup (Do) 07 Gl <
Then,
1)

[[esyedl

i o ) (s \ o
7 <(+) <r<a><q<a—1>+1>é> (a—l—é>

2) under the additional assumption 2 + % < a < 3, we have

fliros s

‘HOO,R

(=1) /4 (552)
L M 2 (AN, ;
) S(a_p)<Fmﬂﬂa—n+4ﬁ> (a—2_§> :
That is,

llzosy ool Mereay o], <o

Proof. We continue with the proof of Theorem 2.3. By (23), we have

1 g(w1) .
HfH|H(f(xl)f(a))t/m (9(x1) = 2)" ((Daygf) 097") (2) dz

I («) (@)
1 9 a—1 1
< 21 ez ¥ m)/( o) =T (g f) og ) (]
g(a
g(w1) %
<20l + 5 ( / IR dz)
g(a

1
P

g(z1) . »
SR N (CREIE
(ag(a=1)+1)

L (g9(z1) —g(a))
I'(a) (g(a—1)+ 1)%
Y

(s (025 ) o6 Gl

<21l + 1D%08) 057 Ol s

1 h® ™7
a) (g(a—1)+1)a

R
<2/ loo + M.
I'(a)(gla—=1)+1)9

<21 Mo e +
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That is,

M a1l
(60) A< 2{[[[£lll so, + Th®"r, h>0.

I'(e)(g(a=1)+1)"

Similarly, from (24), we get

1 g(a) L
18] = ‘(f(zz)f(a))r(a) / oo @) (D) 007 ()
g(a
<2l + ﬁ / G (D) 0g™) ()] 0z

Q=

)
L
(a) q(a 1)
<2l + T / i
9

g(a) p
X(L@)H«Dswﬁog”)wwpw>

6 <2llen+ <g(;il‘_gl(ffi);p (500 (D201 0 7Y Il )

1
h*»
<2 fllor + T M.
I'(a)(g(a—1)+1)9
That is,
M Yl
(62) 1Bl < 21 flllloor + Th®" %, h>0.
I'(a)(g(a—1)+1)1
Hence, it holds
A+ B[ <[A | +]B]
(by (60), (62)) 2M a1
(63) < Al Meer + rh*"7, h>0.

I'(a)(g(a—1)+1)7
Furthermore, we have

34
A =Bl < 2/l1f ez

1 g(z1) q o
+Fum[(4m><gwn o ) I(0800r) 05 Ol

g(a) 1 B
([ e e )rw« oo M@MLMMI

M 21w
(64) <2l Moo + 7 T
(@) [(gla—1)+1)7
We have proved that
A-B M a_l
(65) A= B < + hh, >0

2 I r@@e-n+n
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From (27), (65), we have

_ 1N o M ;
(66) [(ros™ @) < £ 4 h°
I'(a)(q(a—1)+1)®
h >0, any a € R. And from (27), (63), we get that
4 oo, 2M 1
H* ||Hf|||| R, ami_o

I(a)(q(a—1)+1)

(©7) |(Fog

h > 0,any a € R. Hence,

1 /1o, a1 1

@ sy ed|_, < hm(ma)(q(afﬁlm);>h<p>
and

4||Hf||||oo a1

LR P e e L

trueVh>02<a<3,pg>1: %4—% = 1. In (69), we restrict ourselves to2+% <a<3.Call

f=— M
I(@)(g(a—1)+1)3

both are greater than zero. Setalso p := o — 1 — 1% > % > 0. We consider the function

(70) = Moo >

9

71) y(h) = % L OR?, Y h> 0.
As in the proof of Theorem 2.3, it has only one critical number

7
(72) ho = herit.no = <‘u>

po
and a global minimum
(73) y (ho) = 077 751 (p 4 1) p~ 751
Consequently,
M -3 —
y(ho)=< ) ([F{Y N )
['(a) (g(a—=1) + 1)

(D

We have proved that (see (68))

—1\/
oo™ e,

M (NN (=),
7 <<r<a><q<a—1>+1>é> (cv—l—) <a_p>‘

We also call
(76) E=4|Ifllr, »=—""="Y—7,

T'(a)(g(a—1)+1)a
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both are greater than zero. Set also ¢ := a — 2 — % > 0. We consider the function

£

(77) v (h) = 72 +Yh?, Vh>O0.
As in the proof of Theorem 2.3, v has a global minimum at
2 > v

78 he = [ 2= 7
7®) ’ (W
which is

_(E) ()T
79) 1= (£)7(5) .
Consequently,

(i (1) Y (=),
0 ﬂhO)_(M) (r(a><q<a—1>+1>3> <a_p>‘

We have proved that (see (69))

flirosyes

oo,R
IR = " (=),
&1 “\a-—2-1 T a—~].
=23 [(a)(g(a—1)+1) P
The theorem is established. -

Next, we apply Theorems 2.3, 2.4 for g (t) = €', t € Rand o = 2.5.

Corollary 2.1. Let f € C3 (R, X), where (X, ||-||) is a Banach space. We assume that ||| f|| loor < 00,
and that

Ky s ;:max{””( at; eff) Oln) Z)HHOO,Rx(O,oo) ’

32 D22, 8) o 10) D] oy} < 20

where (a,z) € R x (0,00). Then,

(83) II(f o) o€t <1.21136(K2,5)0'4(||Hf||||oo7R)O'6
and
(84) I1(f o) o et||]| . <1.4471:5(17<2,5)°'8(||||f\|||OOVR)O'2
That is,
1 o) o e[l g s [ (F o)™ 0 ef[f]| g < 0.
Proof. By Theorem 2.3. O

We finish with the following result.
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Corollary 2.2. (caseof g (t) = €', =2.5,p=q=2) Let f € C* (R, X), where (X, ||-||) is a Banach
space. We assume that ||[| f||[| ., r < oo, and that

Mys = max {iﬁ% HI((D25,00 £) 0 1) ()] 0.

) s [[((D221) 010) ()] | <

Then,

(86) I[](foln) o €t||||oo,R < 1.226583057/ Mas ||| f]|l| o . < -

Proof. By Theorem 2.4, (57). O
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