CONSTRUCTIVE MATHEMATICAL ANALYSIS 4 (2021), No. 1, pp. 34-47 http://dergipark.gov.tr/en/pub/cma ISSN 2651 - 2939

Research Article

Abstract generalized fractional Landau inequalities over $\mathbb R$

GEORGE A. ANASTASSIOU*

ABSTRACT. We present uniform and L_p mixed Caputo-Bochner abstract generalized fractional Landau inequalities over $\mathbb R$ of fractional orders $2<\alpha\leq 3$. These estimate the size of first and second derivatives of a composition with a Banach space valued function over $\mathbb R$. We give applications when $\alpha=2.5$.

Keywords: Abstract generalized fractional Landau inequality, right and left Caputo abstract generalized fractional derivatives.

2020 Mathematics Subject Classification: 26A33, 26D10, 26D15.

Dedicated to Professor Francesco Altomare, on occasion of his 70th birthday, with esteem and friendship.

1. Introduction

Let $p \in [1, \infty]$, $I = \mathbb{R}_+$ or $I = \mathbb{R}$ and $f : I \to \mathbb{R}$ is twice differentiable with $f, f'' \in L_p(I)$, then $f' \in L_p(I)$. Moreover, there exists a constant $C_p(I) > 0$ independent of f, such that

(1)
$$||f'||_{p,I} \le C_p(I) ||f||_{p,I}^{\frac{1}{2}} ||f''||_{p,I}^{\frac{1}{2}},$$

where $\|\cdot\|_{p,I}$ is the p-norm on the interval I, see [1], [5]. The research on these inequalities started by E. Landau [10] in 1913. For the case of $p = \infty$, he proved that

(2)
$$C_{\infty}(\mathbb{R}_{+}) = 2 \text{ and } C_{\infty}(\mathbb{R}) = \sqrt{2}$$

are the best constants in (1). In 1932, G. H. Hardy and J. E. Littlewood [7] proved (1) for p = 2, with the best constants

(3)
$$C_2(\mathbb{R}_+) = \sqrt{2} \text{ and } C_2(\mathbb{R}) = 1.$$

In 1935, G. H. Hardy, E. Landau and J. E. Littlewood [8] showed that the best constants $C_p(\mathbb{R}_+)$ in (1) satisfies the estimate

(4)
$$C_p(\mathbb{R}_+) \leq 2$$
, for $p \in [1, \infty)$,

which yields $C_p(\mathbb{R}) \leq 2$ for $p \in [1, \infty)$.

In fact, in [6] and [9] was shown that $C_p(\mathbb{R}) \leq \sqrt{2}$. We need the following concepts from abstract generalized fractional calculus. Our integrals next are of Bochner type [11]. We need the following definition.

Received: 04.07.2020; Accepted: 21.10.2020; Published Online: 01.03.2021 *Corresponding author: George A. Anastassiou; ganastss@memphis.edu

Definition 1.1. ([4], p. 104) Let $[a,b] \subset \mathbb{R}$, $(X,\|\cdot\|)$ a Banach space, $g \in C^1([a,b])$ and increasing, $f \in C([a,b],X)$, $\nu > 0$. We define the left Riemann-Liouville generalized fractional Bochner integral operator

(5)
$$\left(J_{a;g}^{\nu}f\right)(x) := \frac{1}{\Gamma(\nu)} \int_{a}^{x} \left(g\left(x\right) - g\left(z\right)\right)^{\nu-1} g'\left(z\right) f\left(z\right) dz,$$

 $\forall x \in [a,b]$, where Γ is the gamma function. The last integral is of Bochner type. Since $f \in C([a,b],X)$, then $f \in L_{\infty}([a,b],X)$. By Theorem 4.10, p. 98, [4], we get that $(J_{a;g}^{\nu}f) \in C([a,b],X)$. Above we set $J_{a;a}^{0}f := f$ and see that $(J_{a;a}^{\nu}f)(a) = 0$.

We need the following definition.

Definition 1.2. ([4], p. 105) Let $[a,b] \subset \mathbb{R}$, $(X,\|\cdot\|)$ a Banach space, $g \in C^1([a,b])$ and increasing, $f \in C([a,b],X)$, $\nu > 0$. We define the right Riemann-Liouville generalized fractional Bochner integral operator

(6)
$$\left(J_{b-;g}^{\nu}f\right)(x) := \frac{1}{\Gamma(\nu)} \int_{x}^{b} \left(g\left(z\right) - g\left(x\right)\right)^{\nu-1} g'\left(z\right) f\left(z\right) dz,$$

 $\forall x \in [a,b]$, where Γ is the gamma function. The last integral is of Bochner type. Since $f \in C([a,b],X)$, then $f \in L_{\infty}([a,b],X)$. By Theorem 4.11, p. 101, [4], we get that $\left(J_{b-;g}^{\nu}f\right) \in C([a,b],X)$. Above we set $J_{b-;g}^{0}f:=f$ and see that $\left(J_{b-;g}^{\nu}f\right)(b)=0$.

We also need the following definition.

Definition 1.3. ([4], p. 106) Let $\alpha > 0$, $\lceil \alpha \rceil = n$, $\lceil \cdot \rceil$ the ceiling of the number. Let $f \in C^n([a,b],X)$, where $[a,b] \subset \mathbb{R}$, and $(X,\|\cdot\|)$ is a Banach space. Let $g \in C^1([a,b])$, strictly increasing, such that $g^{-1} \in C^n([g(a),g(b)])$. We define the left generalized g-fractional derivative X-valued of f of order α as follows:

$$(7) \qquad \left(D_{a+;g}^{\alpha}f\right)(x):=\frac{1}{\Gamma\left(n-\alpha\right)}\int_{a}^{x}\left(g\left(x\right)-g\left(t\right)\right)^{n-\alpha-1}g'\left(t\right)\left(f\circ g^{-1}\right)^{(n)}\left(g\left(t\right)\right)dt,$$

 $\forall x \in [a,b]$. The last integral is of Bochner type. Ordinary vector valued derivative is as in [12], similar to numerical one. If $\alpha \notin \mathbb{N}$, by Theorem 4.10, p. 98, [4], we have that $\left(D_{a+;g}^{\alpha}f\right) \in C\left([a,b],X\right)$. We see that

(8)
$$\left(J_{a;g}^{n-\alpha}\left(\left(f\circ g^{-1}\right)^{(n)}\circ g\right)\right)(x) = \left(D_{a+;g}^{\alpha}f\right)(x), \ \forall \ x\in\left[a,b\right].$$

We set

$$D_{a+;g}^{n}f\left(x\right):=\left(\left(f\circ g^{-1}\right)^{n}\circ g\right)\left(x\right)\in C\left(\left[a,b\right],X\right),\ n\in\mathbb{N},$$

$$D_{a+;q}^{0}f(x) = f(x), \ \forall x \in [a,b].$$

When g = id, then

(10)
$$D_{a+;g}^{\alpha} f = D_{a+;id}^{\alpha} f = D_{*a}^{\alpha} f,$$

the usual left X-valued Caputo fractional derivative, see [4, Chapter 1].

We mention the following definition.

Definition 1.4. ([4], p. 107) Let $\alpha > 0$, $\lceil \alpha \rceil = n$, $\lceil \cdot \rceil$ the ceiling of the number. Let $f \in C^n([a,b],X)$, where $[a,b] \subset \mathbb{R}$, and $(X,\|\cdot\|)$ is a Banach space. Let $g \in C^1([a,b])$, strictly increasing, such that $g^{-1} \in C^n([g(a),g(b)])$. We define the right generalized g-fractional derivative X-valued of f of order α as follows:

$$(11) \qquad \left(D_{b-;g}^{\alpha}f\right)(x) := \frac{\left(-1\right)^{n}}{\Gamma\left(n-\alpha\right)} \int_{x}^{b} \left(g\left(t\right) - g\left(x\right)\right)^{n-\alpha-1} g'\left(t\right) \left(f \circ g^{-1}\right)^{(n)} \left(g\left(t\right)\right) dt,$$

 $\forall x \in [a,b]$. The last integral is of Bochner type. If $\alpha \notin \mathbb{N}$, by Theorem 4.11, p. 101, [4], we have that $\left(D_{b-;g}^{\alpha}f\right) \in C\left([a,b],X\right)$. We see that

(12)
$$J_{b-g}^{n-\alpha} \left((-1)^n \left(f \circ g^{-1} \right)^{(n)} \circ g \right) (x) = \left(D_{b-g}^{\alpha} f \right) (x), \ a \le x \le b.$$

We set

(13)
$$D_{b-;g}^{n}f(x) := (-1)^{n} \left(\left(f \circ g^{-1} \right)^{n} \circ g \right)(x) \in C([a,b],X), \ n \in \mathbb{N},$$

$$D_{b-:q}^{0}f\left(x\right) :=f\left(x\right) ,\ \forall\,x\in\left[a,b\right] .$$

When g = id, then

(14)
$$D_{b-:a}^{\alpha}f(x) = D_{b-:id}^{\alpha}f(x) = D_{b-}^{\alpha}f,$$

the usual right X-valued Caputo fractional derivative, see [4, Chapter 2].

We mention the generalized left fractional Taylor formula:

Theorem 1.1. ([4], p. 107) Let $\alpha > 0$, $n = \lceil \alpha \rceil$, and $f \in C^n([a,b],X)$, where $[a,b] \subset \mathbb{R}$ and $(X, \|\cdot\|)$ is a Banach space. Let $g \in C^1([a,b])$, strictly increasing, such that $g^{-1} \in C^n([g(a),g(b)])$, $a \le x \le b$. Then,

$$f(x) = f(a) + \sum_{i=1}^{n-1} \frac{(g(x) - g(a))^{i}}{i!} (f \circ g^{-1})^{(i)} (g(a))$$

$$+ \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (g(x) - g(t))^{\alpha - 1} g'(t) (D_{a+;g}^{\alpha} f)(t) dt$$

$$= f(a) + \sum_{i=1}^{n-1} \frac{(g(x) - g(a))^{i}}{i!} (f \circ g^{-1})^{(i)} (g(a))$$

$$+ \frac{1}{\Gamma(\alpha)} \int_{g(a)}^{g(x)} (g(x) - z)^{\alpha - 1} ((D_{a+;g}^{\alpha} f) \circ g^{-1})(z) dz.$$
(15)

We also mention the generalized right fractional Taylor formula:

Theorem 1.2. ([4], p. 108) Let $\alpha > 0$, $n = \lceil \alpha \rceil$, and $f \in C^n([a,b],X)$, where $[a,b] \subset \mathbb{R}$ and $(X, \|\cdot\|)$ is a Banach space. Let $g \in C^1([a,b])$, strictly increasing, such that $g^{-1} \in C^n([g(a),g(b)])$,

a < x < b. Then,

$$f(x) = f(b) + \sum_{i=1}^{n-1} \frac{(g(x) - g(b))^{i}}{i!} (f \circ g^{-1})^{(i)} (g(b))$$

$$+ \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (g(t) - g(x))^{\alpha - 1} g'(t) (D_{b-;g}^{\alpha} f)(t) dt$$

$$= f(b) + \sum_{i=1}^{n-1} \frac{(g(x) - g(b))^{i}}{i!} (f \circ g^{-1})^{(i)} (g(b))$$

$$+ \frac{1}{\Gamma(\alpha)} \int_{g(x)}^{g(b)} (z - g(x))^{\alpha - 1} ((D_{b-;g}^{\alpha} f) \circ g^{-1})(z) dz.$$
(16)

By convention, we suppose that

(17)
$$\left(D_{x_0+;g}^{\alpha}f\right)(x) = 0, \text{ for } x < x_0,$$

$$\left(D_{x_0-;g}^{\alpha}f\right)(x) = 0, \text{ for } x > x_0,$$

for any $x, x_0 \in [a, b]$.

The author has already done an extensive amount of work on fractional Landau inequalities, see [3], and on abstract fractional Landau inequalities, see [4]. However, there the proving methods came out of applications of fractional Ostrowski inequalities ([2], [4]) and the derived inequalities were for small fractional orders, i.e. $\alpha \in (0,1)$. Usually there the domains where $[A,+\infty)$ or $(-\infty,B]$, with $A,B\in\mathbb{R}$ and in one mixed case the domain was all of \mathbb{R} .

In this work with less assumptions, we establish uniform and L_p type mixed Caputo-Bochner abstract generalized fractional Landau inequalities over \mathbb{R} for fractional orders $2 < \alpha \le 3$. The method of proving is based on left and right Caputo-Bochner generalized fractional Taylor's formulae with integral remainder, see Theorems 1.1,1.2. We give also applications for $\alpha = 2.5$. Certainly, we are also inspired by [3], [4].

2. Main Results

We give the following abstract mixed generalized fractional Landau inequalities over \mathbb{R} .

Theorem 2.3. Let $2 < \alpha \le 3$ and $f \in C^3(\mathbb{R}, X)$, where $(X, \|\cdot\|)$ is a Banach space. Let $g \in C^1(\mathbb{R})$, strictly increasing, such that $g^{-1} \in C^3(g(\mathbb{R}))$. We assume that $\|\|f\|\|_{\infty,\mathbb{R}} < \infty$ and that

(18)
$$K := \max \left\{ \left\| \left\| \left(\left(D_{a+;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right\| \right\|_{\infty, \mathbb{R} \times g(\mathbb{R})}, \right. \\ \left\| \left\| \left(\left(D_{a-;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right\| \right\|_{\infty, \mathbb{R} \times g(\mathbb{R})} \right\} < \infty,$$

where $(a, z) \in \mathbb{R} \times g(\mathbb{R})$. Then,

(19)
$$\left\| \left\| \left(f \circ g^{-1} \right)' \circ g \right\| \right\|_{\infty, \mathbb{R}} \le \alpha \left(\frac{K}{\Gamma(\alpha + 1)} \right)^{\frac{1}{\alpha}} \left(\frac{\left\| \left\| f \right\| \right\|_{\infty, \mathbb{R}}}{\alpha - 1} \right)^{\frac{\alpha - 1}{\alpha}}$$

and

(20)
$$\left\| \left\| \left(f \circ g^{-1} \right)'' \circ g \right\| \right\|_{\infty, \mathbb{R}} \le \alpha \left(\frac{K}{\Gamma(\alpha + 1)} \right)^{\frac{2}{\alpha}} \left(\frac{4 \left\| \left\| f \right\| \right\|_{\infty, \mathbb{R}}}{\alpha - 2} \right)^{\frac{\alpha - 2}{\alpha}}.$$

That is,

$$\left\| \left\| \left(f \circ g^{-1} \right)' \circ g \right\| \right\|_{\infty,\mathbb{R}}, \left\| \left\| \left(f \circ g^{-1} \right)'' \circ g \right\| \right\|_{\infty,\mathbb{R}} < \infty.$$

Proof. Here $2 < \alpha \le 3$, i.e. $\lceil \alpha \rceil = 3$. Let $f \in C^3(\mathbb{R}, X)$, where $(X, \|\cdot\|)$ is a Banach space, $a \in \mathbb{R}$ is fixed momentarily. We need the following abstract generalized fractional Taylor formulae for n = 3. By Theorem 1.1, we get

(21)
$$f(x) - f(a) = (g(x) - g(a)) \left(f \circ g^{-1} \right)' (g(a)) + \frac{(g(x) - g(a))^{2}}{2} \left(f \circ g^{-1} \right)'' (g(a)) + \frac{1}{\Gamma(\alpha)} \int_{g(a)}^{g(x)} (g(x) - z)^{\alpha - 1} \left(\left(D_{a+;g}^{\alpha} f \right) \circ g^{-1} \right) (z) dz, \ \forall x \ge a.$$

And by Theorem 1.2, we get

(22)
$$f(x) - f(a) = (g(x) - g(a)) \left(f \circ g^{-1} \right)' (g(a)) + \frac{(g(x) - g(a))^{2}}{2} \left(f \circ g^{-1} \right)'' (g(a)) + \frac{1}{\Gamma(\alpha)} \int_{g(x)}^{g(a)} (z - g(x))^{\alpha - 1} \left(\left(D_{a - g}^{\alpha} f \right) \circ g^{-1} \right) (z) dz, \ \forall x \le a.$$

Let $x_1 > a$, then

$$(g(x_1) - g(a)) (f \circ g^{-1})' (g(a)) + \frac{(g(x_1) - g(a))^2}{2} (f \circ g^{-1})'' (g(a))$$

(23)
$$= (f(x_1) - f(a)) - \frac{1}{\Gamma(\alpha)} \int_{g(a)}^{g(x_1)} (g(x_1) - z)^{\alpha - 1} ((D_{a+;g}^{\alpha} f) \circ g^{-1}) (z) dz =: A,$$

and let $x_2 < a$, then

$$(g(x_{2}) - g(a)) (f \circ g^{-1})' (g(a)) + \frac{(g(x_{2}) - g(a))^{2}}{2} (f \circ g^{-1})'' (g(a))$$

$$= (f(x_{2}) - f(a)) - \frac{1}{\Gamma(\alpha)} \int_{g(x_{2})}^{g(a)} (z - g(x_{2}))^{\alpha - 1} ((D_{a - g}^{\alpha} f) \circ g^{-1}) (z) dz =: B.$$

Let h > 0, we can choose x_1 such that $g(x_1) - g(a) = h$ and we can choose x_2 such that $g(a) - g(x_2) = h$. That is $g(x_1) = g(a) + h$ and $g(x_2) = g(a) - h$, and $g(x_2) - g(a) = -h$. Furthermore, it holds $g(x_2) - g(x_1) = -2h$. We can rewrite (23) as

(25)
$$h(f \circ g^{-1})'(g(a)) + \frac{h^2}{2}(f \circ g^{-1})''(g(a)) = A,$$

and we can rewrite (24) as

(26)
$$-h\left(f\circ g^{-1}\right)'(g\left(a\right)) + \frac{h^{2}}{2}\left(f\circ g^{-1}\right)''(g\left(a\right)) = B.$$

Solving the system of (25) and (26), we find

(27)
$$(f \circ g^{-1})'(g(a)) = \frac{A - B}{2h}$$

and

$$(f \circ g^{-1})''(g(a)) = \frac{A+B}{h^2}.$$

We assumed that

$$\left\|\left\|\left(\left(D_{a+;g}^{\alpha}f\right)\circ g^{-1}\right)(z)\right\|\right\|_{\infty,\mathbb{R}\times q(\mathbb{R})}, \left\|\left\|\left(\left(D_{a-;g}^{\alpha}f\right)\circ g^{-1}\right)(z)\right\|\right\|_{\infty,\mathbb{R}\times q(\mathbb{R})}<\infty.$$

We obtain,

$$\left\| \left(f \circ g^{-1} \right)' \left(g \left(a \right) \right) \right\| = \frac{1}{2h} \left\| A - B \right\|$$

and

(28)
$$\left\| \left(f \circ g^{-1} \right)'' \left(g \left(a \right) \right) \right\| \le \frac{1}{h^2} \left(\|A\| + \|B\| \right).$$

We get

$$||A|| = \left| \left| (f(x_{1}) - f(a)) - \frac{1}{\Gamma(\alpha)} \int_{g(a)}^{g(x_{1})} (g(x_{1}) - z)^{\alpha - 1} \left(\left(D_{a+;g}^{\alpha} f \right) \circ g^{-1} \right) (z) dz \right| \right|$$

$$\leq 2 |||f|||_{\infty, \mathbb{R}} + \frac{1}{\Gamma(\alpha)} \int_{g(a)}^{g(x_{1})} (g(x_{1}) - z)^{\alpha - 1} \left| \left(\left(D_{a+;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right| dz$$

$$\leq 2 |||f|||_{\infty, \mathbb{R}} + \frac{K}{\Gamma(\alpha)} \left(\int_{g(a)}^{g(x_{1})} (g(x_{1}) - z)^{\alpha - 1} dz \right)$$

$$= 2 |||f|||_{\infty, \mathbb{R}} + \frac{K}{\Gamma(\alpha + 1)} (g(x_{1}) - g(a))^{\alpha} = 2 ||||f|||_{\infty, \mathbb{R}} + \frac{K}{\Gamma(\alpha + 1)} h^{\alpha}.$$

$$(29)$$

That is,

(30)
$$||A|| \le 2 |||f|||_{\infty,\mathbb{R}} + \frac{K}{\Gamma(\alpha+1)} h^{\alpha}, \ h > 0.$$

Similarly, it holds

$$||B|| = \left\| (f(x_{2}) - f(a)) - \frac{1}{\Gamma(\alpha)} \int_{g(x_{2})}^{g(a)} (z - g(x_{2}))^{\alpha - 1} \left(\left(D_{a - ;g}^{\alpha} f \right) \circ g^{-1} \right) (z) dz \right\|$$

$$\leq 2 ||||f|||_{\infty, \mathbb{R}} + \frac{1}{\Gamma(\alpha)} \int_{g(x_{2})}^{g(a)} (z - g(x_{2}))^{\alpha - 1} \left\| \left(\left(D_{a - ;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right\| dz$$

$$\leq 2 ||||f|||_{\infty, \mathbb{R}} + \frac{K}{\Gamma(\alpha)} \left(\int_{g(x_{2})}^{g(a)} (z - g(x_{2}))^{\alpha - 1} dz \right)$$

$$= 2 ||||f|||_{\infty, \mathbb{R}} + \frac{K}{\Gamma(\alpha + 1)} (g(a) - g(x_{2}))^{\alpha} = 2 ||||f|||_{\infty, \mathbb{R}} + \frac{K}{\Gamma(\alpha + 1)} h^{\alpha}.$$
(31)

That is,

(32)
$$||B|| \le 2 |||f|||_{\infty,\mathbb{R}} + \frac{K}{\Gamma(\alpha+1)} h^{\alpha}, \ h > 0.$$

Furthermore, we have

(33)
$$||A|| + ||B|| \le 4 |||f|||_{\infty,\mathbb{R}} + \frac{2K}{\Gamma(\alpha+1)} h^{\alpha}, \ h > 0.$$

We also notice that

$$||A - B|| = \left| ||f(x_{1}) - f(a)| - \frac{1}{\Gamma(\alpha)} \int_{g(a)}^{g(x_{1})} (g(x_{1}) - z)^{\alpha - 1} \left(\left(D_{a+;g}^{\alpha} f \right) \circ g^{-1} \right) (z) dz \right|$$

$$-f(x_{2}) + f(a) + \frac{1}{\Gamma(\alpha)} \int_{g(x_{2})}^{g(a)} (z - g(x_{2}))^{\alpha - 1} \left(\left(D_{a-;g}^{\alpha} f \right) \circ g^{-1} \right) (z) dz \right|$$

$$\leq ||f(x_{1}) - f(x_{2})|| + \frac{1}{\Gamma(\alpha)} \left[\int_{g(a)}^{g(x_{1})} (g(x_{1}) - z)^{\alpha - 1} \left\| \left(\left(D_{a+;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right\| dz \right]$$

$$+ \int_{g(x_{2})}^{g(a)} (z - g(x_{2}))^{\alpha - 1} \left\| \left(\left(D_{a-;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right\| dz \right]$$

$$\leq 2 \left\| ||f|||_{\infty,\mathbb{R}} + \frac{K}{\Gamma(\alpha)} \left[\int_{g(a)}^{g(x_{1})} (g(x_{1}) - z)^{\alpha - 1} dz + \int_{g(x_{2})}^{g(a)} (z - g(x_{2}))^{\alpha - 1} dz \right]$$

$$= 2 \left\| ||f|||_{\infty,\mathbb{R}} + \frac{K}{\Gamma(\alpha + 1)} \left[(g(x_{1}) - g(a))^{\alpha} + (g(a) - g(x_{2}))^{\alpha} \right]$$

$$= 2 \left\| ||f|||_{\infty,\mathbb{R}} + \frac{2Kh^{\alpha}}{\Gamma(\alpha + 1)} \right.$$

That is,

(35)
$$\frac{\|A - B\|}{2} \le \|\|f\|\|_{\infty, \mathbb{R}} + \frac{Kh^{\alpha}}{\Gamma(\alpha + 1)}, \ h > 0.$$

Consequently, we obtain

$$\left\| \left(f \circ g^{-1} \right)' \left(g \left(a \right) \right) \right\| \stackrel{\text{((28), (35))}}{\leq} \frac{\left\| \| f \| \right\|_{\infty, \mathbb{R}}}{h} + \frac{K h^{\alpha - 1}}{\Gamma \left(\alpha + 1 \right)}$$

and

(36)
$$\left\| \left(f \circ g^{-1} \right)'' \left(g \left(a \right) \right) \right\| \stackrel{\text{((28), (33))}}{\leq} \frac{4 \left\| \left\| f \right\| \right\|_{\infty, \mathbb{R}}}{h^2} + \frac{2Kh^{\alpha - 2}}{\Gamma \left(\alpha + 1 \right)},$$

h > 0, for any $a \in \mathbb{R}$. Hence,

$$\left\| \left\| \left(f \circ g^{-1} \right)' \circ g \right\| \right\|_{\infty, \mathbb{R}} \le \frac{\left\| \left\| f \right\| \right\|_{\infty, \mathbb{R}}}{h} + \frac{Kh^{\alpha - 1}}{\Gamma(\alpha + 1)}$$

and

(37)
$$\left\| \left\| \left(f \circ g^{-1} \right)'' \circ g \right\| \right\|_{\infty, \mathbb{R}} \le \frac{4 \left\| \left\| f \right\| \right\|_{\infty, \mathbb{R}}}{h^2} + \frac{2Kh^{\alpha - 2}}{\Gamma(\alpha + 1)},$$

true $\forall h > 0, 2 < \alpha \leq 3$. Call

(38)
$$\mu := \|\|f\|\|_{\infty,\mathbb{R}}, \quad \theta = \frac{K}{\Gamma(\alpha+1)},$$

both are greater than zero. Set also $\rho := \alpha - 1 > 1$. We consider the function

(39)
$$y(h) := \frac{\mu}{h} + \theta h^{\rho}, \ \forall h > 0.$$

We have

$$y'(h) = -\frac{\mu}{h^2} + \rho \theta h^{\rho - 1} = 0,$$

then

$$\rho\theta h^{\rho+1} = \mu,$$

with a unique solution

(40)
$$h_0 := h_{crit.no} = \left(\frac{\mu}{\rho\theta}\right)^{\frac{1}{\rho+1}}.$$

We have that

(41)
$$y''(h) = 2\mu h^{-3} + \rho (\rho - 1) \theta h^{\rho - 2}.$$

We observe that

$$y''(h_0) = 2\mu \left(\frac{\mu}{\rho\theta}\right)^{-\frac{3}{\rho+1}} + \rho \left(\rho - 1\right) \theta \left(\frac{\mu}{\rho\theta}\right)^{\frac{\left(\left(\rho + 1\right) - 3\right)}{\rho+1}}$$

$$= \left(\frac{\mu}{\rho\theta}\right)^{-\frac{3}{\rho+1}} \left[2\mu + \mu \left(\rho - 1\right)\right] = \mu \left(\frac{\mu}{\rho\theta}\right)^{-\frac{3}{\rho+1}} \left(\rho + 1\right) > 0.$$

Therefore, y has a global minimum at $h_0 = \left(\frac{\mu}{\rho\theta}\right)^{\frac{1}{\rho+1}}$, which is

$$y(h_{0}) = \frac{\mu}{\left(\frac{\mu}{\rho\theta}\right)^{\frac{1}{\rho+1}}} + \theta \left(\frac{\mu}{\rho\theta}\right)^{\frac{\rho}{\rho+1}}$$

$$= (\rho\theta)^{\frac{1}{\rho+1}} \frac{\mu}{\mu^{\frac{1}{\rho+1}}} + \frac{\theta\mu^{\frac{\rho}{\rho+1}}}{\rho^{\frac{\rho}{\rho+1}}\theta^{\frac{\rho}{\rho+1}}}$$

$$= (\theta\mu^{\rho})^{\frac{1}{\rho+1}} \left(\rho^{\frac{1}{\rho+1}} + \frac{1}{\rho^{\frac{\rho}{\rho+1}}}\right) = (\theta\mu^{\rho})^{\frac{1}{\rho+1}} \left(\frac{\rho+1}{\rho^{\frac{\rho}{\rho+1}}}\right)$$

$$= (\theta\mu^{\rho})^{\frac{1}{\rho+1}} (\rho+1) \rho^{-\frac{\rho}{\rho+1}}.$$
(43)

That is,

(44)
$$y(h_0) = (\theta \mu^{\rho})^{\frac{1}{\rho+1}} (\rho+1) \rho^{-\frac{\rho}{\rho+1}}.$$

Consequently,

(45)
$$y(h_0) = \left(\frac{K}{\Gamma(\alpha+1)} \left\| \left\| f \right\| \right\|_{\infty,\mathbb{R}}^{\alpha-1} \right)^{\frac{1}{\alpha}} \alpha (\alpha-1)^{-\left(\frac{\alpha-1}{\alpha}\right)}.$$

We have proved that

$$\left\| \left\| \left(f \circ g^{-1} \right)' \circ g \right\| \right\|_{\infty, \mathbb{R}} \le \left(\frac{K}{\Gamma(\alpha + 1)} \left\| \left\| f \right\| \right\|_{\infty, \mathbb{R}}^{\alpha - 1} \right)^{\frac{1}{\alpha}} \alpha \left(\alpha - 1 \right)^{-\left(\frac{\alpha - 1}{\alpha} \right)}.$$

Next call

(47)
$$\xi := 4 \|\|f\|\|_{\infty,\mathbb{R}}, \quad \psi = \frac{2K}{\Gamma(\alpha+1)},$$

both are greater than zero. Set also $\varphi:=\alpha-2>0.$ We consider the function

(48)
$$\gamma(h) := \frac{\xi}{h^2} + \psi h^{\varphi} = \xi h^{-2} + \psi h^{\varphi}, \ \forall h > 0.$$

We have

$$\gamma'(h) = -2\xi h^{-3} + \varphi \psi h^{\varphi - 1} = 0,$$

then

$$\varphi \psi h^{\varphi+2} = 2\xi,$$

with a unique solution

(49)
$$h_0 := h_{crit.no} = \left(\frac{2\xi}{\varphi\psi}\right)^{\frac{1}{\varphi+2}}.$$

We have that

(50)
$$\gamma''(h) = 6\xi h^{-4} + \varphi(\varphi - 1)\psi h^{\varphi - 2}.$$

We see that

$$\gamma''(h_0) = 6\xi \left(\frac{2\xi}{\varphi\psi}\right)^{-\frac{4}{\varphi+2}} + \varphi(\varphi - 1)\psi\left(\frac{2\xi}{\varphi\psi}\right)^{\frac{(\varphi+2)-4}{\varphi+2}}$$

$$= \left(\frac{2\xi}{\varphi\psi}\right)^{-\frac{4}{\varphi+2}} \left[6\xi + (\varphi - 1)2\xi\right] = 2\xi \left(\frac{2\xi}{\varphi\psi}\right)^{-\frac{4}{\varphi+2}} (\varphi + 2) > 0.$$

Therefore, γ has a global minimum at $h_0 = \left(\frac{2\xi}{\varphi\psi}\right)^{\frac{1}{\varphi+2}}$, which is

(52)
$$\gamma(h_0) = \xi \left(\frac{2\xi}{\varphi\psi}\right)^{-\frac{2}{\varphi+2}} + \psi \left(\frac{2\xi}{\varphi\psi}\right)^{\frac{\varphi+2-2}{\varphi+2}}$$

$$= \left(\frac{2\xi}{\varphi\psi}\right)^{-\frac{2}{\varphi+2}} \left[\xi + \psi \frac{2\xi}{\varphi\psi}\right] = \frac{\xi}{\varphi} \left(\frac{\xi}{\varphi}\right)^{-\frac{2}{\varphi+2}} \left(\frac{2}{\psi}\right)^{-\frac{2}{\varphi+2}} (\varphi+2)$$

$$= \left(\frac{\xi}{\varphi}\right)^{\frac{\varphi}{\varphi+2}} \left(\frac{\psi}{2}\right)^{\frac{2}{\varphi+2}} (\varphi+2) .$$

That is,

(53)
$$\gamma(h_0) = \left(\frac{\xi}{\varphi}\right)^{\frac{\varphi}{\varphi+2}} \left(\frac{\psi}{2}\right)^{\frac{2}{\varphi+2}} (\varphi+2).$$

Consequently,

(54)
$$\gamma(h_0) = \left(\frac{4 \|\|f\|\|_{\infty,\mathbb{R}}}{\alpha - 2}\right)^{\frac{\alpha - 2}{\alpha}} \left(\frac{K}{\Gamma(\alpha + 1)}\right)^{\frac{2}{\alpha}} \alpha.$$

We have proved that

(55)
$$\left\| \left\| \left(f \circ g^{-1} \right)'' \circ g \right\| \right\|_{\infty, \mathbb{R}} \le \left(\frac{4 \left\| \left\| f \right\| \right\|_{\infty, \mathbb{R}}}{\alpha - 2} \right)^{\frac{\alpha - 2}{\alpha}} \left(\frac{K}{\Gamma(\alpha + 1)} \right)^{\frac{2}{\alpha}} \alpha.$$

The theorem is established.

We also give an L_p analog of a generalized fractional Landau inequality

Theorem 2.4. Let p,q>1: $\frac{1}{p}+\frac{1}{q}=1$, $2<\alpha\leq 3$ and $f\in C^3(\mathbb{R},X)$, where $(X,\|\cdot\|)$ is a Banach space. Let $g\in C^1(\mathbb{R})$, strictly increasing, such that $g^{-1}\in C^3(g(\mathbb{R}))$. We assume that

 $\|\|f\|\|_{\infty,\mathbb{R}}<\infty$, and that

(56)
$$M := \max \left\{ \sup_{a \in \mathbb{R}} \left\| \left\| \left(\left(D_{a+;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right\| \right\|_{p,g(\mathbb{R})}, \right.$$

$$\left. \sup_{a \in \mathbb{R}} \left\| \left\| \left(\left(D_{a-;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right\| \right\|_{p,g(\mathbb{R})} \right\} < \infty.$$

Then,

$$\left\| \left\| \left(f \circ g^{-1} \right)' \circ g \right\| \right\|_{\infty, \mathbb{R}}$$

$$\leq \left(\alpha - \frac{1}{p}\right) \left(\frac{M}{\Gamma\left(\alpha\right) \left(q\left(\alpha - 1\right) + 1\right)^{\frac{1}{q}}}\right)^{\left(\frac{1}{\alpha - \frac{1}{p}}\right)} \left(\frac{\|\|f\|\|_{\infty, \mathbb{R}}}{\alpha - 1 - \frac{1}{p}}\right)^{\left(\frac{\alpha - 1 - \frac{1}{p}}{\alpha - \frac{1}{p}}\right)}$$

2) under the additional assumption $2+\frac{1}{p}<\alpha\leq 3$, we have

$$\left\| \left\| \left(f \circ g^{-1} \right)'' \circ g \right\| \right\|_{\infty, \mathbb{R}}$$

$$(58) \qquad \leq \left(\alpha - \frac{1}{p}\right) \left(\frac{M}{\Gamma\left(\alpha\right) \left(q\left(\alpha - 1\right) + 1\right)^{\frac{1}{q}}}\right)^{\left(\frac{2}{\alpha - \frac{1}{p}}\right)} \left(\frac{4 \left\|\left\|f\right\|\right\|_{\infty, \mathbb{R}}}{\alpha - 2 - \frac{1}{p}}\right)^{\left(\frac{\alpha - 2 - \frac{1}{p}}{\alpha - \frac{1}{p}}\right)}.$$

That is,

$$\left\| \left\| \left(f \circ g^{-1} \right)' \circ g \right\| \right\|_{\infty, \mathbb{R}}, \left\| \left\| \left(f \circ g^{-1} \right)'' \circ g \right\| \right\|_{\infty, \mathbb{R}} < \infty.$$

Proof. We continue with the proof of Theorem 2.3. By (23), we have

$$||A|| = \left\| (f(x_{1}) - f(a)) - \frac{1}{\Gamma(\alpha)} \int_{g(a)}^{g(x_{1})} (g(x_{1}) - z)^{\alpha - 1} \left(\left(D_{a+;g}^{\alpha} f \right) \circ g^{-1} \right) (z) dz \right\|$$

$$\leq 2 |||f|||_{\infty,\mathbb{R}} + \frac{1}{\Gamma(\alpha)} \int_{g(a)}^{g(x_{1})} (g(x_{1}) - z)^{\alpha - 1} \left\| \left(\left(D_{a+;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right\| dz$$

$$\leq 2 ||||f|||_{\infty,\mathbb{R}} + \frac{1}{\Gamma(\alpha)} \left(\int_{g(a)}^{g(x_{1})} (g(x_{1}) - z)^{q(\alpha - 1)} dz \right)^{\frac{1}{q}}$$

$$\times \left(\int_{g(a)}^{g(x_{1})} \left\| \left(\left(D_{a+;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right\|^{p} dz \right)^{\frac{1}{p}}$$

$$\leq 2 ||||f|||_{\infty,\mathbb{R}} + \frac{1}{\Gamma(\alpha)} \frac{(g(x_{1}) - g(a))^{\frac{(q(\alpha - 1) + 1)}{q}}}{(q(\alpha - 1) + 1)^{\frac{1}{q}}} \left\| \left\| \left(\left(D_{a+;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right\| \right\|_{p,g(\mathbb{R})}$$

$$\leq 2 ||||f|||_{\infty,\mathbb{R}} + \frac{1}{\Gamma(\alpha)} \frac{h^{\alpha - \frac{1}{p}}}{(q(\alpha - 1) + 1)^{\frac{1}{q}}} \left(\sup_{a \in \mathbb{R}} \left\| \left\| \left(\left(D_{a+;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right\| \right\|_{p,g(\mathbb{R})} \right)$$

$$\leq 2 |||f|||_{\infty,\mathbb{R}} + \frac{h^{\alpha - \frac{1}{p}}}{\Gamma(\alpha) (q(\alpha - 1) + 1)^{\frac{1}{q}}} M.$$

That is,

(60)
$$||A|| \le 2 |||f|||_{\infty,\mathbb{R}} + \frac{M}{\Gamma(\alpha) (q(\alpha - 1) + 1)^{\frac{1}{q}}} h^{\alpha - \frac{1}{p}}, h > 0.$$

Similarly, from (24), we get

$$||B|| = \left\| (f(x_{2}) - f(a)) - \frac{1}{\Gamma(\alpha)} \int_{g(x_{2})}^{g(a)} (z - g(x_{2}))^{\alpha - 1} \left(\left(D_{a - ;g}^{\alpha} f \right) \circ g^{-1} \right) (z) dz \right\|$$

$$\leq 2 |||f|||_{\infty, \mathbb{R}} + \frac{1}{\Gamma(\alpha)} \int_{g(x_{2})}^{g(a)} (z - g(x_{2}))^{\alpha - 1} \left\| \left(\left(D_{a - ;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right\| dz$$

$$\leq 2 |||f|||_{\infty, \mathbb{R}} + \frac{1}{\Gamma(\alpha)} \left(\int_{g(x_{2})}^{g(a)} (z - g(x_{2}))^{q(\alpha - 1)} dz \right)^{\frac{1}{q}}$$

$$\times \left(\int_{g(x_{2})}^{g(a)} \left\| \left(\left(D_{a - ;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right\|^{p} dz \right)^{\frac{1}{p}}$$

$$\leq 2 |||f|||_{\infty, \mathbb{R}} + \frac{1}{\Gamma(\alpha)} \frac{(g(a) - g(x_{2}))^{\alpha - \frac{1}{p}}}{(q(\alpha - 1) + 1)^{\frac{1}{q}}} \left(\sup_{a \in \mathbb{R}} \left\| \left| \left(\left(D_{a - ;g}^{\alpha} f \right) \circ g^{-1} \right) (z) \right| \right| \right\|_{p, g(\mathbb{R})} \right)$$

$$\leq 2 |||f|||_{\infty, \mathbb{R}} + \frac{h^{\alpha - \frac{1}{p}}}{\Gamma(\alpha) (g(\alpha - 1) + 1)^{\frac{1}{q}}} M.$$

That is,

(62)
$$||B|| \le 2 |||f|||_{\infty,\mathbb{R}} + \frac{M}{\Gamma(\alpha) (q(\alpha-1)+1)^{\frac{1}{q}}} h^{\alpha-\frac{1}{p}}, \ h > 0.$$

Hence, it holds

(63)
$$||A + B|| \le ||A|| + ||B||$$

$$\le ||A|| + ||A||$$

$$\le ||A||$$

Furthermore, we have

$$||A - B|| \stackrel{\text{(34)}}{\leq} 2 ||||f|||_{\infty,\mathbb{R}} + \frac{1}{\Gamma(\alpha)} \left[\left(\int_{g(a)}^{g(x_1)} (g(x_1) - z)^{q(\alpha - 1)} dz \right)^{\frac{1}{q}} |||| \left(\left(D_{a+;g}^{\alpha} f \right) \circ g^{-1} \right) (z) ||||_{p,g(\mathbb{R})} + \left(\int_{g(x_2)}^{g(a)} (z - g(x_2))^{q(\alpha - 1)} dz \right)^{\frac{1}{q}} |||| \left(\left(D_{a-;g}^{\alpha} f \right) \circ g^{-1} \right) (z) ||||_{p,g(\mathbb{R})} \right]$$

$$\leq 2 ||||f|||_{\infty,\mathbb{R}} + \frac{M}{\Gamma(\alpha)} \left[\frac{2h^{\alpha - \frac{1}{p}}}{(q(\alpha - 1) + 1)^{\frac{1}{q}}} \right].$$

We have proved that

(65)
$$\frac{\|A - B\|}{2} \le \|\|f\|\|_{\infty, \mathbb{R}} + \frac{M}{\Gamma(\alpha) \left(q(\alpha - 1) + 1\right)^{\frac{1}{q}}} h^{\alpha - \frac{1}{p}}, \ h > 0.$$

From (27), (65), we have

(66)
$$\left\| \left(f \circ g^{-1} \right)'(g(a)) \right\| \le \frac{\left\| \|f\| \right\|_{\infty, \mathbb{R}}}{h} + \frac{M}{\Gamma(\alpha) \left(g(\alpha - 1) + 1 \right)^{\frac{1}{q}}} h^{\alpha - \frac{1}{p} - 1},$$

h > 0, any $a \in \mathbb{R}$. And from (27), (63), we get that

(67)
$$\left\| \left(f \circ g^{-1} \right)'' \left(g \left(a \right) \right) \right\| \leq \frac{4 \left\| \|f\| \right\|_{\infty, \mathbb{R}}}{h^2} + \frac{2M}{\Gamma \left(\alpha \right) \left(g \left(\alpha - 1 \right) + 1 \right)^{\frac{1}{q}}} h^{\alpha - \frac{1}{p} - 2},$$

h > 0, any $a \in \mathbb{R}$. Hence,

(68)
$$\left\| \left\| \left(f \circ g^{-1} \right)' \circ g \right\| \right\|_{\infty, \mathbb{R}} \le \frac{\left\| \left\| f \right\| \right\|_{\infty, \mathbb{R}}}{h} + \left(\frac{M}{\Gamma(\alpha) \left(g \left(\alpha - 1 \right) + 1 \right)^{\frac{1}{q}}} \right) h^{\left(\alpha - \frac{1}{p} - 1 \right)}$$

and

(69)
$$\left\| \left\| \left(f \circ g^{-1} \right)'' \circ g \right\| \right\|_{\infty, \mathbb{R}} \le \frac{4 \left\| \left\| f \right\| \right\|_{\infty, \mathbb{R}}}{h^2} + \left(\frac{2M}{\Gamma(\alpha) \left(g \left(\alpha - 1 \right) + 1 \right)^{\frac{1}{q}}} \right) h^{\left(\alpha - \frac{1}{p} - 2 \right)},$$

true $\forall h > 0, 2 < \alpha \le 3, p, q > 1 : \frac{1}{p} + \frac{1}{q} = 1$. In (69), we restrict ourselves to $2 + \frac{1}{p} < \alpha \le 3$. Call

(70)
$$\mu := \|\|f\|\|_{\infty,\mathbb{R}}, \quad \theta = \frac{M}{\Gamma(\alpha)(q(\alpha-1)+1)^{\frac{1}{q}}},$$

both are greater than zero. Set also $\rho := \alpha - 1 - \frac{1}{p} > \frac{1}{q} > 0$. We consider the function

(71)
$$y(h) := \frac{\mu}{h} + \theta h^{\rho}, \ \forall h > 0.$$

As in the proof of Theorem 2.3, it has only one critical number

(72)
$$h_0 := h_{crit.no} = \left(\frac{\mu}{\rho\theta}\right)^{\frac{1}{\rho+1}}$$

and a global minimum

(73)
$$y(h_0) = \theta^{\frac{1}{\rho+1}} \mu^{\frac{\rho}{\rho+1}} (\rho+1) \rho^{-\frac{\rho}{\rho+1}}.$$

Consequently,

$$y(h_0) = \left(\frac{M}{\Gamma(\alpha)\left(q(\alpha - 1) + 1\right)^{\frac{1}{q}}}\right)^{\frac{1}{(\alpha - \frac{1}{p})}} \left(\|\|f\|\|_{\infty, \mathbb{R}}\right)^{\left(\frac{\alpha - 1 - \frac{1}{p}}{\alpha - \frac{1}{p}}\right)}$$

$$\left(\alpha - \frac{1}{p}\right)\left(\alpha - 1 - \frac{1}{p}\right)^{-\left(\frac{\alpha - 1 - \frac{1}{p}}{\alpha - \frac{1}{p}}\right)}.$$
(74)

We have proved that (see (68))

$$\left\| \left\| \left(f \circ g^{-1} \right)' \circ g \right\| \right\|_{\infty, \mathbb{R}}$$

$$(75) \qquad \leq \left(\frac{M}{\Gamma\left(\alpha\right)\left(q\left(\alpha-1\right)+1\right)^{\frac{1}{q}}}\right)^{\frac{1}{\left(\alpha-\frac{1}{p}\right)}} \left(\frac{\|\|f\|\|_{\infty,\mathbb{R}}}{\alpha-1-\frac{1}{p}}\right)^{\left(\frac{\alpha-1-\frac{1}{p}}{\alpha-\frac{1}{p}}\right)} \left(\alpha-\frac{1}{p}\right).$$

We also call

(76)
$$\xi := 4 \|\|f\|\|_{\infty,\mathbb{R}}, \quad \psi = \frac{2M}{\Gamma(\alpha)(q(\alpha-1)+1)^{\frac{1}{q}}},$$

both are greater than zero. Set also $\varphi := \alpha - 2 - \frac{1}{p} > 0$. We consider the function

(77)
$$\gamma(h) := \frac{\xi}{h^2} + \psi h^{\varphi}, \ \forall h > 0.$$

As in the proof of Theorem 2.3, γ has a global minimum at

(78)
$$h_0 = \left(\frac{2\xi}{\varphi\psi}\right)^{\frac{1}{\varphi+2}},$$

which is

(79)
$$\gamma(h_0) = \left(\frac{\xi}{\varphi}\right)^{\frac{\varphi}{\varphi+2}} \left(\frac{\psi}{2}\right)^{\frac{2}{\varphi+2}} (\varphi+2).$$

Consequently,

$$(80) \qquad \gamma\left(h_{0}\right) = \left(\frac{4\left\|\left\|f\right\|\right\|_{\infty,\mathbb{R}}}{\alpha - 2 - \frac{1}{p}}\right)^{\left(\frac{\alpha - 2 - \frac{1}{p}}{\alpha - \frac{1}{p}}\right)} \left(\frac{M}{\Gamma\left(\alpha\right)\left(q\left(\alpha - 1\right) + 1\right)^{\frac{1}{q}}}\right)^{\left(\frac{2}{\alpha - \frac{1}{p}}\right)} \left(\alpha - \frac{1}{p}\right).$$

We have proved that (see (69))

(81)
$$\left\| \left\| \left(f \circ g^{-1} \right)'' \circ g \right\| \right\|_{\infty, \mathbb{R}} \left(\frac{4 \left\| \left\| f \right\| \right\|_{\infty, \mathbb{R}}}{\alpha - 2 - \frac{1}{p}} \right) \left(\frac{M}{\Gamma\left(\alpha\right) \left(g\left(\alpha - 1 \right) + 1 \right)^{\frac{1}{q}}} \right)^{\left(\frac{2}{\alpha - \frac{1}{p}}\right)} \left(\alpha - \frac{1}{p} \right).$$

The theorem is established.

Next, we apply Theorems 2.3, 2.4 for $g\left(t\right)=e^{t}$, $t\in\mathbb{R}$ and $\alpha=2.5$.

Corollary 2.1. Let $f \in C^3(\mathbb{R}, X)$, where $(X, \|\cdot\|)$ is a Banach space. We assume that $\|\|f\|\|_{\infty, \mathbb{R}} < \infty$, and that

(82)
$$K_{2.5} := \max \left\{ \left\| \left\| \left(\left(D_{a+;e^{t}}^{2.5} f \right) \circ \ln \right) (z) \right\| \right\|_{\infty, \mathbb{R} \times (0, \infty)}, \right. \\ \left\| \left\| \left(\left(D_{a-;e^{t}}^{2.5} f \right) \circ \ln \right) (z) \right\| \right\|_{\infty, \mathbb{R} \times (0, \infty)} \right\} < \infty,$$

where $(a, z) \in \mathbb{R} \times (0, \infty)$. Then,

(83)
$$\|\|(f \circ \ln)' \circ e^t\|\|_{\infty,\mathbb{R}} \le 1.21136 (K_{2.5})^{0.4} (\|\|f\|\|_{\infty,\mathbb{R}})^{0.6}$$

and

(84)
$$\|\|(f \circ \ln)'' \circ e^t\|\|_{\infty,\mathbb{R}} \le 1.44713 (K_{2.5})^{0.8} (\|\|f\|\|_{\infty,\mathbb{R}})^{0.2}.$$

That is,

$$\|\|(f \circ \ln)' \circ e^t\|\|_{\infty \mathbb{R}}, \|\|(f \circ \ln)'' \circ e^t\|\|_{\infty \mathbb{R}} < \infty.$$

Proof. By Theorem 2.3.

We finish with the following result.

Corollary 2.2. (case of $g(t) = e^t$, $\alpha = 2.5$, p = q = 2) Let $f \in C^3(\mathbb{R}, X)$, where $(X, \|\cdot\|)$ is a Banach space. We assume that $\|\|f\|\|_{\infty, \mathbb{R}} < \infty$, and that

(85)
$$M_{2.5} := \max \left\{ \sup_{a \in \mathbb{R}} \left\| \left\| \left(\left(D_{a+;e^{t}}^{2.5} f \right) \circ \ln \right) (z) \right\| \right\|_{2,(0,\infty)}, \right. \\ \left. \sup_{a \in \mathbb{R}} \left\| \left\| \left(\left(D_{a-;e^{t}}^{2.5} f \right) \circ \ln \right) (z) \right\| \right\|_{2,(0,\infty)} \right\} < \infty.$$

Then,

(86)
$$\|\|(f \circ \ln)' \circ e^t\|\|_{\infty, \mathbb{R}} \le 1.226583057 \sqrt{M_{2.5} \|\|f\|\|_{\infty, \mathbb{R}}} < \infty.$$

Proof. By Theorem 2.4, (57).

REFERENCES

- [1] A. Aglic Aljinovic, Lj. Marangunic and J. Pecaric: On Landau type inequalities via Ostrowski inequalities, Nonlinear Funct. Anal. Appl. Vol., 10, 4 (2005), pp. 565-579.
- [2] G. Anastassiou: Fractional Differentiation inequalities, Research monograph, Springer, New York, 2009.
- [3] G. A. Anastassiou: Advances on Fractional Inequalities, Springer, New York, 2011.
- [4] G. A. Anastassiou: Intelligent Computations: Abstract Fractional Calculus, Inequalities, Approximations, Springer, Heidelberg, New York, 2018.
- [5] N. S. Barnett, S. S. Dragomir: Some Landau type inequalities for functions whose derivatives are of locally bounded variation, Tamkang Journal of Mathematics, 37, No. 4, 301-308, winter 2006.
- [6] Z. Ditzian: Remarks, questions and conjectures on Landau-Kolmogorov-type inequalities, Math. Inequal. Appl., 3 (2000), 15-24.
- [7] G. H. Hardy, J. E. Littlewood: Some integral inequalities connected with the calculus of variations, Quart. J. Math. Oxford Ser., 3 (1932), 241-252.
- [8] G. H. Hardy, E. Landau and J. E. Littlewood: Some inequalities satisfied by the integrals or derivatives of real or analytic functions, Math. Z., 39 (1935), 677-695.
- [9] R. R. Kallman, G. C. Rota: *On the inequality* $||f'||^2 \le 4 ||f|| \cdot ||f''||$, in *Inequalities*, Vol. II, (O. Shisha, Ed.), 187-192, Academic Press, New York, 1970.
- [10] E. Landau: Einige Ungleichungen für zweimal differentzierban funktionen, Proc. London Math. Soc., 13 (1913), 43-49.
- [11] J. Mikusinski: The Bochner integral, Academic Press, New York, 1978.
- [12] G. E. Shilov: Elementary Functional Analysis, Dover Publications Inc., New York, 1996.

GEORGE A. ANASTASSIOU UNIVERSITY OF MEMPHIS DEPARTMENT OF MATHEMATICAL SCIENCES MEMPHIS, TN 38152, U.S.A. ORCID: 0000-0002-3781-9824

E-mail address: ganastss@memphis.edu