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Abstract
We study the reversibility of skew Hurwitz series at zero as a generalization of an α-
rigid ring, introducing the concept of skew Hurwitz reversibility. A ring R is called skew
Hurwitz reversible (SH-reversible, for short), if the skew Hurwitz series ring (HR, α) is
reversible i.e. whenever skew Hurwitz series f, g ∈ (HR, α) satisfy fg = 0, then gf = 0.
We examine some characterizations and extensions of SH-reversible rings in relation with
several ring theoretic properties which have roles in ring theory.
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1. Introduction
Throughout this paper, R denotes an associative and commutative ring with identity

and α denotes a nonzero and non-identity endomorphism, unless otherwise stated.
Rings of formal power series have been of interest and have had important applications

in many areas, one of which has been differential algebra. In a series of papers ([13–15])
Keigher demonstrated that the ring HR of Hurwitz series over a commutative ring R with
identity has many interesting applications in differential algebra.

The concept of Hurwitz series was extended by Hassanein in [7] to the ring of skew
Hurwitz series. The ring (HR, α) of skew Hurwitz series over a ring R is defined as
follows: the elements of (HR, α) are functions f : N → R, where N is the set of all natural
numbers. The operation of addition in (HR, α) is componentwise and the operation of
multiplication is defined, for everyf, g ∈ (HR, α), by

(fg)(n) =
n∑

k=0

(
n

k

)
f(k)αk(g(n − k)) for all n ∈ N

where
(n

k

)
is the binomial coefficient defined for all n, k ∈ N with n ≥ k by n!

k!(n−k)! .
If one identifies a skew formal power series

∑∞
i=0 aix

i ∈ R[[x; α]] with the function f
such that f(n) = an, then multiplication in (HR, α) is similar to the usual product of
skew formal power series, except that binomial coefficients appear in each term in the
product introduced above. In [21, Proposition 2.1], it has been shown that for any ring R
that containing the field of rational numbers Q and α is an Q-algebra homomorphism of
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R, then the rings (HR, α) and R[[x; α]] are isomorphic. To avoid repetitions some of the
results known for skew power series ring R[[x; α]], we assume that R is a ring which does
not contain the field of rational numbers throughout this paper.

To each r ∈ R and n ∈ N, we associate elements hr, h′
n ∈ (HR, α) defined by

hr(x) =
{

r, x = 0;
0, x 6= 0 , h′

n(x) =
{

1, x = n;
0, x 6= n

where for all x ∈ N. It is clear that r 7→ hr is a ring embedding of R into (HR, α) and
also (HR, α) is a ring with identity h1. Let supp(f) denote the support of f ∈ T , i.e.
supp(f) = {i ∈ N | 0 6= f(i) ∈ R} and π(f) denote the minimal element in supp(f)
and 4(f) denote the maximal element in supp(f). The ring (hR, α) of skew Hurwitz
polynomials over a ring R is a subring of (HR, α) that consist elements of the form
f ∈ (HR, α) such that 4(f) < ∞.

Recall that a ring R is called reduced if it has no nonzero nilpotent elements. In [5],
Cohn introduced the notion of a reversible ring as a generalization of commutativity. A
ring R is called reversible, if whenever a, b ∈ R satisfy ab = 0, then ba = 0. Anderson and
Camillo [2] used the notation ZC2 for reversible rings, while Krempa and Niewieczerzal
[18] used the term C0 for it. Cohn showed that the Köthe Conjecture is true for the class
of reversible rings.

For a ring R equipped with an endomorphism α : R → R, a skew polynomial ring
R[x; α] over the coefficient ring R (also called an Ore extension of endomorphism type)
is the ring obtained by giving the polynomial ring over R with the new multiplication
xr = α(r)x for all r ∈ R. For any skew polynomial ring R[x; α] of R, we have α(1) = 1
since 1.x = x.1 = α(1)x.

According to Krempa [17], an endomorphism α of a ring R is called rigid if aα(a) = 0
implies a = 0 for a ∈ R. A ring R is called α-rigid if there exists a rigid endomorphism α
of R . Note that any rigid endomorphism of a ring is a monomorphism and α-rigid rings
are reduced by [9, Propositon 5]. Rege and Chhawchharia [22] introduced the notion of an
Armendariz ring which is a generalization of a reduced ring. A ring R is called Armendariz
if whenever any polynomials f(x) = a0+a1x+· · ·+amxm, g(x) = b0+b1x+· · ·+bnxn ∈ R[x]
satisfy f(x)g(x) = 0, then aibj = 0 for each i and j. Armendariz property of a ring is
extended to skew polynomial rings by considering the polynomials in R[x; σ] instead of
R[x] (see [11] and [10] for more details). For an endomorphism σ of a ring R, R is called
α-Armendariz (resp., α-skew Armendariz) if for p(x) =

∑m
i=0 aix

i and q(x) =
∑n

j=0 bjxj

in R[x; α], p(x)q(x) = 0 implies aibj = 0 (resp., aiα
i(bj) = 0) for all 0 ≤ i ≤ m and

0 ≤ j ≤ n.
Kim and Lee showed in [16, Example 2.1] that polynomial rings over reversible rings

need not be reversible. By [16, Proposition 2.4], if R is an Armendariz ring, then R
is reversible if and only if R[x] is reversible. Based on this result Yang and Liu [24]
considered reversible rings over which polynomial rings are reversible and called them
strongly reversible. By [12, Example 2.1], if R is reversible, then R[x; α] is not reversible.
Therefore Jin et. al. [12] called a ring R strongly α-skew reversible if the skew polynomial
ring R[x; α] is reversible. Another generalization of reversible rings are α-reversible rings
introduced by Başer et. al. in [3]. An endomorphism α of a ring R is called right (resp.,
left) reversible if whenever ab = 0 for a, b ∈ R, then bα(a) = 0 (resp., α(b)a = 0). A
ring R is called right (resp., left) α-reversible if there exists a right (resp., left) reversible
endomorphism α of R. R is α-reversible if it is both right and left α-reversible.

Motivated by the above, in this paper, we introduce the notion of a skew Hurwitz
reversible ring (SH-reversible, shortly) (see Definition 2.2), which is a generalization of
α-rigid rings for an endomorphism α of a ring R and an extension of reversible rings,
and study SH-reversible rings and their related properties. We examine the relationships
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between several classes of rings and SH-reversible rings and investigate some extensions
of SH-reversible rings.

2. SH-reversible rings
In this section we introduce a class of rings, called SH-reversible rings. We give

relations between SH-reversible rings and some related rings, such as, α-rigid, reversible,
α-reversible, mat-reversible, abelian, SHA-ring, etc. Firstly, we begin with the following
example which illustrates the need to introduce the reversibility property of skew Hurwitz
series rings.

Example 2.1. Consider the ring R = Z2 ⊕Z2 with the usual addition and multiplication.
Then we know that R is reversible since R is reduced. Let α : R → R be an endomorphism
of R defined by α((a, b)) = (b, a). For f = h(1,0) and g = h(0,1)+h(0,1)h

′
2 in (HR, α), fg = 0

but gf = h(0,1)h
′
2 6= 0. Thus (HR, α) is not reversible (and hence not reduced).

Inspired by this example, we can give the following definition.

Definition 2.2. Let R be a commutative ring and α be an endomorphism of R. Then R
is called SH-reversible if (HR, α) is reversible.

Any α-rigid ring (i.e. R[x; α] is reduced) is SH-reversible by Theorem 2.6. However,
there exists a SH-reversible ring which is not α-rigid (see Example 2.7). It is clear that
any domain R with a monomorphism α is SH-reversible since R is α-rigid. Note that
every subring S with α(S) ⊆ S of an SH-reversible ring is also SH-reversible. We will
freely use this fact without references.

Lemma 2.3. Let R be an SH-reversible ring which is torsion free as a Z-module. Then
we have the following results.

(1) R is reversible and α-reversible.
(2) α is a monomorphism of R.
(3) For any a, b ∈ R and nonnegative integer m and n, aαm(b) = 0 ⇔ ab = 0 ⇔ ba =

0 ⇔ bαn(a) = 0
(4) α(e) = e for any e2 = e ∈ R.

Proof. (1) This is clear by the definition of an SH-reversible ring.
(2) Assume that α(a) = 0. Then h′

2ha = 0 in (HR, α). Since R is SH-reversible, we have
hah′

2 = 0 and so a = 0.
(3) Let aαm(b) = 0. We have fg = 0 for skew Hurwitz series f and g in (HR, α) such
that f ’s mth component is a and g’s first component is b. Since R is SH-reversible, then
gf = ba = 0 and hence ab = 0. We get fg = 0 for skew Hurwitz series f and g in
(HR, α) such that f ’s first component is a and g’s nth component is b, so bαn(a) = 0 by
assumption.
(4) Suppose f, g ∈ (HR, α) are defined as f = h1−e + hα(e−1)h

′
2 and g = he + heh′

2. Then
fg = 0 and so gf = 0 since R is SH-reversible, hence we have eα(e) = e since R is torsion
free as a Z-module. Now suppose f ′, g′ ∈ (HR, α) are defined as f ′ = he + hα(e)h

′
2 and

g′ = he−1 + he−1h′
2. Then f ′g′ = 0 and since R is SH-reversible, we have g′f ′ = 0, and R

is torsion free as a Z-module imply that eα(e) = α(e). Therefore α(e) = e. �

Skew Hurwitz series rings over reversible rings need not be reversible by Example 2.1.
However this property of such rings with the Armendariz condition of skew Hurwitz series
ring can be extended to their skew Hurwitz series rings. In [1] Ahmadi et. al., commutative
ring R is called skew Hurwitz serieswise Armendariz (or an SHA-ring), if for every skew
Hurwitz series f = (ai), g = (bj) ∈ (HR, α) for all i ∈ N, fg = 0 if and only if aibj = 0 for
all i, j. The converse of Lemma 2.3(1) is shown in the following proposition.
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Proposition 2.4. Let R be an SHA-ring. Then R is reversible and α-reversible if and
only if R is SH-reversible.
Proof. It is enough to show the neccessity by Lemma 2.3(1). Let fg = 0 for f = (ai), g =
(bj) ∈ (HR, α). Since R is an SHA-ring, then aibj = 0 for each i and j. We obtain
that bjai = 0 and bjα(ai) = 0 by the assumption. Therefore gf = 0 and so R is SH-
reversible. �

We recall the following properties of α-rigid rings.
Lemma 2.5. [6, Lemma 3.2] Let R be an α-rigid ring and a, b ∈ R, then

(1) If aαn(a) = 0 then a = 0, for each n ∈ N.
(2) If ab = 0 then aα(b) = 0.

Theorem 2.6. Let R be a ring which is torsion free as a Z-module and α be an endo-
morphism of R. Then R is α-rigid if and only if R is SH-reversible and R is reduced.
Proof. Suppose that R is α-rigid. It is clear that R is reduced. Let fg = 0 for f =
(ai), g = (bj) ∈ (HR, α) for all i ∈ N. Then we have the following equivalences

a0b0 = 0 (2.1)
a0b1 + a1α(b0) = 0 (2.2)

a0b2 + 2a1α(b1) + a2α2(b0) = 0 (2.3)
a0b3 + 3a1α(b2) + 3a2α2(b1) + a3α3(b0) = 0 (2.4)

... =
...

a0bn +
(

n

1

)
a1α(bn−1) + · · · +

(
n

n

)
anαn(b0) = 0 (n)

Use the condition that R is α-rigid and the fact that α-rigid rings are reduced and so
reversible, we obtain that b0a0 = 0 by Eq. (2.1). Multiply Eq. (2.2) on the left hand
side by b0 and on the right hand side by α(a1), then b0a1α(b0a1) = 0 and so b0a1 = 0;
hence a1b0 = 0 implies a1α(b0) = 0 by Lemma 2.5. From Eq. (2.2) we obtain a0b1 = 0.
Next multiply Eq. (2.3) on the left hand side by b0 and on the right hand side by α2(a2),
then b0a2α2(b0a2) = 0 and so b0a2 = 0; hence a2α2(b0) = 0 by Lemma 2.5. We have an
equation

a0b2 + 2a1α(b1) = 0. (2.5)
Multiply Eq. (2.5) on the left side by b1 and on the right side α(a1), then 2b1a1α(b1a1) = 0.
Since R is torsion free as a Z-module and R is α-rigid, we have b1a1 = 0 and so a1α(b1) = 0
by Lemma 2.5; hence a0b2 = 0. Continuing in this way, we get aibj = 0 for each i, j. By
assumption and using the Lemma 2.5, we obtain that gf = 0, as reguired.
Conversely, assume that aα(a) = 0 for a ∈ R. Then we have fg = 0 for the skew Hurwitz
series f = hah′

2 and g = ha in (HR, α). By the assumption we obtain that gf = ha2 = 0
and so a2 = 0; hence a = 0 since R is reduced. �

By Theorem 2.6, every α-rigid ring is SH-reversible. The following is an example of a
non α-rigid ring which is SH-reversible.
Example 2.7. Let Z be the ring of integers. Consider the ring

R =
{(

a b
0 a

)
| a, b ∈ Z

}
Let α : R → R be an automorphism defined by

α

((
a b
0 a

))
=
(

a −b
0 a

)
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Suppose that fg = 0 for f =
((

ai bi

0 ai

))
and g =

((
ci di

0 ci

))
in (HR, α), where(

ai bi

0 ai

)
,

(
ci di

0 ci

)
∈ R for all i, j. From fg = 0, we have the following systems of

equations:

a0c0 =0...(∗) (2.6)
a0d0 + b0c0 =0...(∗∗)

a0c1 + a1c0 =0...(∗) (2.7)
a0d1 + b0c1 + a1d0 + b1c0 =0...(∗∗)

a0c2 + 2a1c1 + a2c0 =0...(∗) (2.8)
a0d2 + b0c2 − 2a1d1 + 2b1c1 + a2d0 + b2c0 =0...(∗∗)

...
Suppose that a0 6= 0. From Eq. 2.6(∗), we have c0 = 0 since Z is a integral domain.

Then we obtain that d0 = 0 from Eq. 2.6(∗∗). In Eq. 2.7(∗), we have a0c1 = 0 and so
c1 = 0 since a0 6= 0. We obtain that d1 = 0 by using these facts from Eq. 2.7(∗∗). From
Eq. 2.8(∗), we get c2 = 0 and so d2 = 0 from Eq. 2.8(∗∗). Continuing this process, we
obtain ci = di = 0 for all i. This yields gf = 0. Therefore R is SH-reversible. However,

for 0 6= A =
(

0 1
0 0

)
∈ R, we have Aα(A) =

(
0 1
0 0

)(
0 −1
0 0

)
= 0 and thus R is

not α-rigid.

Let R be a ring and let RVR be an R-R-bimodule which is an arbitrary ring in which
(vw)r = v(wr), (vr)w = v(rw) and (rv)w = r(vw) holds for all v, w ∈ V and r ∈ R. Then
the ideal extension I(R; V ) of R by V is defined to be the additive abelian group I(R; V ) =
R ⊕ V with multiplication (r, v)(s, w) = (rs, rw + vs + vw). Note that (HR, α) ∼= I(R; A)
where A = {f ∈ (HR, α) | f(0) = 0} by [8, Proposition 2.1]. We can give the following
corollary as a result of Theorem 2.6.

Corollary 2.8. Let R be a ring which is torsion free as a Z-module and α be an endo-
morphism of R. If R is α-rigid, then the ideal extension I(R, A) of R is reversible, where
A = {f ∈ (HR, α) | f(0) = 0}.

If we take α = idR, we can give the following corollary, by using the fact that reduced
rings are reversible, as a consequence of Theorem 2.6.

Corollary 2.9. [4, Corollary 2.7] The following assertions are equivalent:
(1) The ring R is reduced and is torsion free as a Z-module.
(2) The Hurwitz series ring HR is reduced.
(3) The Hurwitz polynomial ring hR is reduced.

A ring R is called abelian if every idempotent is central, that is, ae = ea for any
e2 = e ∈ R and a ∈ R.

Proposition 2.10. Let R be an SH-reversible ring and α is an endomorphism of R.
Then R is abelian and if f = (ai) ∈ (HR, α) is an idempotent for all i ∈ N, then a0 ∈ R
is an idempotent and f = ha0.

Proof. Let e2 = e ∈ R. Then heh1−e = 0 and h1−ehe = 0 in (HR, α) and so heh1−ehr = 0
and hrh1−ehe = 0 in (HR, α) for any r ∈ R. Since R is SH-reversible, we have h1−ehrhe =
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0 and hehrh1−e = 0 hence re = ere and er = ere. These imply that R is abelian. Now
let f2 = f , where f = (ai) ∈ (HR, α) and ai ∈ R for all i. Then we have the following
equations:

a2
0 = a0 (0)

a0a1 + a1α(a0) = a1 (1)
a0a2 + 2a1α(a1) + a2α2(a0) = a2 (2)

...(
n

0

)
a0an +

(
n

1

)
a1α(an−1) + · · · +

(
n

n

)
anαn(a0) = an (n)

...

Note that from Eq.(0), a0 is an idempotent of R and so it is central and α(a0) = a0 from
Lemma 2.3(iv). Then we get the following:

2a1a0 = a1 (1’)
a2a0 + 2a1α(a1) + a2a0 = a2 (2’)

...(
n

0

)
ana0 +

(
n

1

)
a1α(an−1) + · · · +

(
n

n

)
ana0 = an (n’)

...

Multiplying Eq.(1’) on the right hand side by 1−a0, we obtain a1(1−a0) = 0, so a1a0 = a1
and hence a1 = 0. Thus, Eq.(2’) becomes 2a2a0 = a2. Similarly, 2a2a0(1−a0) = a2(1−a0)
implies a2 = 0. Continuing this procedure yields that ai = 0 for i ≥ 1. Furthermore
(HR, α) is abelian since R is abelian. �

3. Extensions of SH-reversible rings
Recall that for a ring R and an endomorphism σ of R, an ideal I of R is called a σ-ideal

if σ(I) ⊆ I. If I is a σ-ideal of R, then σ̄ : R/I → R/I defined by σ̄(a + I) = σ(a) + I
for a ∈ R is an endomorphism of R/I. Following [7, Remark 3.1], every right (resp. left)
ideal I of R corresponds a right (resp. left) ideal (HI, α) in (HR, α) where (HI, α) =
{f ∈ (HR, α) | an ∈ I for all n ∈ N}.

Proposition 3.1. Let R be a ring which is torsion free as a Z-module, α be an automor-
phism of R and I be an α-ideal of R. If R/I is an SH-reversible ring and I is an α-rigid
ring without identity, then R is SH-reversible.

Proof. Let fg = 0 for f = (ai), g = (bj) ∈ (HR, α). Then we have f̄ ḡ = 0̄ in (H(R/I), ᾱ)
where f̄ = (ai + I), ḡ = (bj + I). By assumption since R/I is SH-reversible, we obtain
that ḡf̄ = 0̄, i.e., gf ∈ I. Since I is α-rigid, then (HI, α) is reduced by [7, Proposition
2.11]. Hence (gf)2 = 0 in (HI, α) and so gf = 0. �

Let αi be an endomorphism of a ring Ri for each i ∈ I. Then the map α :
∏

i∈I Ri →∏
i∈I Ri defined by α((ai)) = (αi(ai)) for (ai) ∈

∏
i∈I Ri is endomorphism of

∏
i∈I Ri. The

proof of the following lemma is obtained by routine computations.

Lemma 3.2. Let Ri be a ring with an endomorphism αi for each i ∈ I. Then the following
statements are equivalent:

(1) Ri is SH-reversible for each i ∈ I.
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(2) The direct product
∏

i∈I Ri is SH-reversible.
(3) The direct sum

⊕
i∈I Ri is SH-reversible.

Proof. It is enough to show that (1) ⇒ (2). Suppose that Ri is SH-reversible for each
i ∈ Γ. Let fg = 0 for f = (fn), g = (gm) where fn = (a(n)

i ) and gm = (b(m)
i ) for all n, m

and for each i ∈ I. Since H(
∏

i∈I Ri) ∼=
∏

i∈I H(Ri), we have fg = 0 for f = ((a(i)
n )) and

g = ((b(i)
m )) in

∏
i∈I H(Ri). Then (a(i)

n )(b(i)
m ) = 0 in (HRi, αi). Since Ri is SH-reversible

for each i ∈ I, we have (b(i)
m )(a(i)

n ) = 0 and so gf = 0. Therefore the direct product of Ri

is SH-reversible. �

A ring R is called local if R/J(R) is a division ring, where J(R) denotes the Jacobson
radical of R. R is called semilocal if R/J(R) is semisimple Artinian and R is called
semiperfect if R is semilocal and idempotents can be lifted modulo J(R). Note that local
rings are abelian and semilocal (see [19] for details). In [20], Paykan showed that R is a
local ring iff (HR, α) is local, and R is semiperfect iff (HR, α) is semiperfect. We can give
the following proposition.

Proposition 3.3. Let R be a ring and α be an endomorphism of R. Then we have the
following.

(i) R is SH-reversible and semiperfect if and only if R =
⊕n

i=1 Ri such that each
Ri is local and an SH-reversible ring, where αi is an endomorphism of Ri for all
i = 0, 1, . . . n.

(ii) Let e be a central idempotent of R. Then eR and (1 − e)R are SH-reversible if
and only if R is SH-reversible.

Proof. (i) Suppose that R is SH-reversible and semiperfect. Since R is semiperfect, R has
a finite orthogonal set {e1, e2, . . . , en} of local idempotents whose sum is 1 by [?, Corollary
3.7.2]. Then R =

n∑
i=1

eiR such that eiRei is a local ring for all i = 1, . . . , n. Since R

is SH-reversible, then R is abelian from Proposition 2.10 and eiRei = eiR. Also, by
Lemma 2.3(iv), α(eiR) ⊆ eiR for all i = 1, . . . , n. Then eiR is SH-reversible and local
subring of R, where αi is an endomorphism of eiR induced by α. Conversely, let R be a
finite direct sum of SH-reversible local rings Ri for all i = 0, 1, . . . n. Then R is semiperfect
since local rings are semiperfect and R is SH-reversible by Lemma 3.2.
(ii) The proof is clear by Lemma 3.2 since R ∼= eR ⊕ (1 − e)R. �

Let R be a ring. Define Vn =
∑n−1

i=1 Ei,j+1, for n ≥ 2, where Ei,j is the matrix units for
all i, j. Consider the ring

T (R, n) =RIn + RVn + RV 2
n + · · · + RV n−1

n ;

T (R, n) =





a0 a1 a2 · · · an−2 an−1
0 a0 a1 · · · an−3 an−2
0 0 a0 · · · an−4 an−3
...

...
... . . . ...

...
0 0 0 · · · a0 a1
0 0 0 · · · 0 a0


| ai ∈ R


in [1]. If R is a commutative ring, then T (R, n) is also a commutative ring. Let α be an
endomorphism of R, then for each n, ᾱ : T (R, n) → T (R, n), given by ᾱ([aij ]) = [α(aij)] is
an endomorphism. On the other hand, Veldsman introduced mat-reversible rings in [23]
as follows: let R be an identity ring and Mk(R, xk) be the Barnett matrix ring over R

determinated by the polynomial h(x) = xk ∈ R[x], k ≥ 1. This means Mk(R, xk) ∼= R[x]
<xk>

is just the regular representation of the ring R[x]
<xk>

. In particular, Mk(R, xk) is the ring of
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all k × k matrices of the form

a0 a1 a2 · · · ak−2 ak−1
0 a0 a1 · · · ak−3 ak−2
0 0 a0 · · · ak−4 ak−3
...

...
... . . . ...

...
0 0 0 · · · a0 a1
0 0 0 · · · 0 a0


with entries ai in R. The ring Mk(R, xk) of k × k matrices over R can be defined without
requiring that R has an identity which we will henceforth do. For k ≥ 1, we then say a
ring R is mat-k-reversible provided the ring Mk(R, xk) is reversible, i.e.,

a0 a1 a2 · · · ak−1
0 a0 a1 · · · ak−2
0 0 a0 · · · ak−3
...

...
... . . . ...

0 0 0 · · · a0




b0 b1 b2 · · · bk−1
0 b0 b1 · · · bk−2
0 0 a0 · · · bk−3
...

...
... . . . ...

0 0 0 · · · b0

 = 0

implies 
b0 b1 b2 · · · bk−1
0 b0 b1 · · · bk−2
0 0 a0 · · · bk−3
...

...
... . . . ...

0 0 0 · · · b0




a0 a1 a2 · · · ak−1
0 a0 a1 · · · ak−2
0 0 a0 · · · ak−3
...

...
... . . . ...

0 0 0 · · · a0

 = 0

for any two matrices from Mk(R, xk). A ring R is called mat-reversible if it is mat-k-
reversible for all k ≥ 1. In the other words; a ring R is called mat-reversible if T (R, n) is
reversible for all n. Now we can give the following proposition.
Proposition 3.4. Let R be a commutative ring such that it is torsion free as a Z-module
and α an endomorphism of R. If R is α-rigid, then (HR, α) is mat-reversible.
Proof. Suppose that R is α-rigid. Let AB = 0 for

A =



(a(0)
i ) (a(1)

i ) (a(2)
i ) · · · (a(n−1)

i )
0 (a(0)

i ) (a(1)
i ) · · · (a(n−2)

i )
0 0 (a(0)

i ) · · · (a(n−3)
i )

...
...

... . . . ...
0 0 0 · · · (a(0)

i )


, B =



(b(0)
i ) (b(1)

i ) (b(2)
i ) · · · (b(n−1)

i )
0 (b(0)

i ) (b(1)
i ) · · · (b(n−2)

i )
0 0 (b(0)

i ) · · · (b(n−3)
i )

...
...

... . . . ...
0 0 0 · · · (b(0)

i )


in T ((HR, α), n). Then we have the following equalities:

(a(0)
i )(b(0)

i ) =0

(a(0)
i )(b(1)

i ) + (a(1)
i )(b(0)

i ) =0
...

(a(0)
i )(b(n−1)

i ) + (a(1)
i )(b(n−2)

i ) + · · · + (a(n−1)
i )(b(0)

i ) =0
in (HR, α). Since R is α-rigid, then (HR, α) is reduced by [1, Proposition 4.1], and so it
is reversible. By using the technique in Theorem 2.6, we obtain that BA = 0. Therefore
(HR, α) is mat-reversible. �
Theorem 3.5. Let R be a commutative ring such that it is torsion free as a Z-module and
α an endomorphism of R. If R is α-rigid, then T (R, n) is SH-reversible for each positive
integer n.
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Proof. Suppose that R is α-rigid. We take the map Ψ : (HT (R, n), ᾱ) → T ((HR, α), n),
given by Ψ(f) = [fij ], where f(m) = Am ∈ T (R, n) and fij(m) = (a(m)

ij ) and a
(m)
ij is

the (i, j)th entry of Am for each m is defined in [1]. It is easy to see that Ψ is an
isomorphism. We assume that fg = 0 for f, g ∈ (HT (R, n), ᾱ) where f(m) = Am = [am

ij ]
and g(m) = Bm = [bm

ij ] for each m. Hence, by the above isomorphism, we have [fij ][gij ] = 0
for some [fij ], [gij ] ∈ T ((HR, α), n). Thus [gij ][fij ] = 0 by Proposition 3.4 and so gf = 0.
Therefore T (R, n) is SH-reversible as required. �

Corollary 3.6. If R is α-rigid, then the ring R[x]
<xn> is SH-reversible.

Proof. Since T (R, n) ∼= R[x]
<xn> for each positive integer n, it is clear by Theorem 3.5. �

Given a ring R and a bimodule RMR, the trivial extension of R by M is the ring
T (R, M) = R ⊕ M with the usual addition and the following multiplication:

(r1, m1)(r2, m2) = (r1r2, r1m2 + r2m1).

This is isomorphic to the ring of all matrices
(

r m
0 r

)
, where r ∈ R and m ∈ M and the

usual matrix operations are used. Let α be an endomorphism of R. We can extend α to

an endomorphism ᾱ : T (R, R) → T (R, R) defined by ᾱ

((
r s
0 r

))
=
(

α(r) α(s)
0 α(r)

)
.

Since T (R, 2) = T (R, R) for n = 2, we can give the following corollary.

Corollary 3.7. If R is α-rigid, then the trivial extension T (R, R) of R is SH-reversible.
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