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Abstract
Motivated by their importance and potential for applications in a variety of research
fields, recently, numerous polynomials and their extensions have been introduced and
investigated. In this paper, we modify the known generating functions of polynomials,
due to both Milne-Thomsons and Dere-Simsek, to introduce a new class of polynomials
and present some involved properties. As obvious special cases of the newly introduced
polynomials, we also introduce power sum-Laguerre-Hermite polynomials and generalized
Laguerre and Euler polynomials and give certain involved identities and formulas. We
point out that our main results, being very general, are specialised to yield a number of
known and new identities involving relatively simple and familiar polynomials.
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1. Introduction and preliminaries
The two variable Laguerre polynomials Ln(x, y) are generated by (see [8, 18])

1
1 − yt

exp
( −xt

1 − yt

)
=

∞∑
n=0

Ln(x, y) tn (|yt| < 1). (1.1)

Also, equivalently, the polynomials Ln(x, y) are given by (see [9, 18])

eyt C0(xt) =
∞∑

n=0
Ln(x, y) tn

n!
, (1.2)
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where C0(x) denotes the 0th order Tricomi function. The nth order Tricomi functions
Cn(x) are generated by

exp
(

t − x

t

)
=

∞∑
n=0

Cn(x) tn (t ∈ C \ {0}, x ∈ C) . (1.3)

We have

Cn(x) =
∞∑

r=0

(−1)rxr

r!(n + r)!
(n ∈ N0) . (1.4)

The Tricomi functions Cn(x) are connected with the Bessel function of the first kind Jn(x)
(see [7]):

Cn(x) = x− n
2 Jn(2

√
x). (1.5)

Here and throughout, we denote C, R, R+, Z, and N by the sets of complex numbers,
real numbers, positive real numbers, integers, and positive integers, respectively, and let
N0 := N ∪ {0}.

From (1.2) and (1.4), we find

Ln(x, y) = n!
n∑

s=0

(−1)sxsyn−s

(s!)2(n − s)!
= ynLn(x/y), (1.6)

where Ln(x) are the ordinary Laguerre polynomials (see, e.g., [1, 26]). We thus have

Ln(x, 0) = (−1)nxn

n!
, Ln(0, y) = yn, Ln(x, 1) = Ln(x). (1.7)

Milne-Thomson [22] defined polynomials Φ(α)
n (x) of degree n and order α by the follow-

ing generating function

f(t, α) ext+g(t) =
∞∑

n=0
Φ(α)

n (x) tn

n!
, (1.8)

where f(t, α) is a function of t and α ∈ Z and g(t) is a function of t. Then, by choosing some
explicit functions of f(t, α) and g(t), Milne-Thomsons [22] presented several interesting
properties for polynomials such as Bernoulli polynomials and Hermite polynomials.

Derre and Simsek [10] made a slight modification of the Milne-Thomson’s polynomials
Φ(α)

n (x) to give polynomials Φ(α)
n (x, ν) of degree n and order α by means of the following

generating function

G(t, x; α, ν) := f(t, α) ext+h(t,ν) =
∞∑

n=0
Φ(α)

n (x, ν) tn

n!
, (1.9)

where f(t, α) and h(t, ν) are functions of t and α ∈ Z and t and ν ∈ N0, respectively,
which are analytic in a neighborhood of t = 0. Observe that Φ(α)

n (x, 0) = Φ(α)
n (x) (see, for

details, [22]).
By setting f(t, α) =

(
t

et−1

)α
in (1.9), in [18], we introduced the polynomials B

(α)
n (x, ν)

defined by (
t

et − 1

)α

ext+h(t,ν) =
∞∑

n=0
B(α)

n (x, ν) tn

n!
. (1.10)

Here, by choosing f(t, α) =
(

2
et+1

)α
in (1.9), we introduce the following polynomials

E
(α)
n (x, ν) defined by ( 2

et + 1

)α

ext+h(t,ν) :=
∞∑

n=0
E(α)

n (x, ν) tn

n!
. (1.11)
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We find that the polynomials E
(α)
n (x, ν) are related to not only Euler polynomials but also

the Hermite polynomials. For example, if h(t, 0) = 0 in (1.11), we have

E(α)
n (x, 0) = E(α)

n (x)

where E
(α)
n (x) denote the Euler polynomials of higher order defined by means of the

following generating function (see, e.g., [27, p. 88])

FE(t, x; α) :=
( 2

et + 1

)α

ext =
∞∑

n=0
E(α)

n (x) tn

n!
. (1.12)

We find

FE(t, 0; α) := FE(t; α) =
( 2

et + 1

)α

=
∞∑

n=0
E(α)

n

tn

n!
, (1.13)

where E
(α)
n are generalized Euler numbers. For more information about Euler numbers

and Euler polynomials, we refer the reader, for example, to [3, 20,21,27].
Taking h(t, y) = yt2 in (1.11), we get the generalized Hermite-Euler polynomials of two

variables HE
(α)
n (x, y) introduced by Pathan [23]:( 2

et + 1

)α

ext+yt2 =
∞∑

n=0
HE(α)

n (x, y) tn

n!
. (1.14)

Note that the polynomials HE
(α)
n (x, y) generalize Euler numbers, Euler polynomials, Her-

mite polynomials, and Hermite-Euler polynomials HEn(x, y) introduced by Dattoli et al.
[6, p. 386, Eq. (1.6)]:

2
et + 1

ext+yt2 =
∞∑

n=0
HEn(x, y) tn

n!
. (1.15)

The sum of integer power (simply, power sum)

Sk(n) :=
n∑

j=0
jk (k ∈ N0; n ∈ N)

is generated by
∞∑

k=0
Sk(n) tk

k!
= 1 + et + e2t + · · · + ent = e(n+1)t − 1

et − 1
. (1.16)

Luo et al. [20, 21] introduced the generalized Euler numbers En(a, b) generated by

Φ(t; a, b) = 2
at + bt

=
∞∑

n=0
En(a, b) tn

n!
(1.17)

(
|t| < 2π; n ∈ N0; a, b ∈ R+ with a ̸= b

)
.

Also, Luo et al. [20] introduced the generalized Euler polynomials En(x; a, b, e) generated
by

Φ(x, t; a, b, e) = 2ext

at + bt
=

∞∑
n=0

En(x; a, b, e) tn

n!
(1.18)

(
|t| < 2π; n ∈ N0; a, b ∈ R+ with a ̸= b

)
.

The 2-variable Hermite-Kampé de Fériet polynomials Hn(x, y) (see [2,6]) are generated
by

ext+yt2 =
∞∑

n=0
Hn(x, y) tn

n!
. (1.19)
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Note that

Hn(x, y) = n!
[ n

2 ]∑
r=0

yrxn−2r

r!(n − 2r)!
(1.20)

and Hn(2x, −1) = Hn(x) are the ordinary Hermite polynomials (see, e.g., [2]; see also
[26, Chapter 11]). Dere and Simsek [10] generalized the polynomials Hn(x, y) in (1.19) to
define two variable Hermite polynomials H

(ℓ)
n (x, y) by the following generating function

ext+ytℓ =
∞∑

n=0
H(ℓ)

n (x, y) tn

n!
(ℓ ∈ N \ {1}). (1.21)

Very recently, Khan et al. [18, Eq. (20)] have introduced and investigated the following
generalized Laguerre-Bernoulli polynomials(

t

at − bt

)α

eyt+zt2
C0(xt) =

∞∑
n=0

LB(α)
n (x, y, z; a, b, e) tn

n!
(1.22)

(
α, x, y, z ∈ C, a, b ∈ R+, a ̸= b, |t| <

2π

| ln a − ln b|

)
.

Motivated by their importance and potential for applications in certain problems in
number theory, combinatorics, classical and numerical analysis and other fields of applied
mathematics, a number of certain numbers and polynomials, and their generalizations
have recently been extensively investigated (see, e.g., [1–30]). Here, we also make a slight
modification of Milne-Thomson polynomials Φ(α)

n (x) in (1.8) and Derre and Simsek poly-
nomials Φ(α)

n (x, ν) in (1.9) to define polynomials Φ(α)
n,ℓ (x, y, ν) by the following generating

function

H(t, x, y; α, ν) := f(t, α) ext+ytℓ+h(t,ν) =
∞∑

n=0
Φ(α,ℓ)

n (x, y, ν) tn

n!
(1.23)

(x, y ∈ C; ℓ ∈ N \ {1}) ,

where f(t, α) and h(t, ν) are functions of t and α ∈ Z and t and ν ∈ N0, respectively, which
are analytic in a neighborhood of t = 0. Obviously Φ(α,ℓ)

n (x, 0, ν) = Φ(α)
n (x, ν). Then we

establish various identities involving the polynomials Φ(α,ℓ)
n (x, y, ν). Also, as special cases

of the generalized generating function in (1.23), we introduce two new polynomials: power
sum-Laguerre-Hermite polynomials and generalized Laguerre-Euler polynomials and in-
vestigate some involved properties.

Some of the results presented here will include certain known identities and formulas
involving relatively simple and familiar numbers and polynomials as particular cases, which
are easy for the interested reader to check (see, e.g., [8, 12–17,21,23,24,29,30]).

Remark 1.1. The substitution

f(t, α) =
(

t

at − bt

)α

C0(xt), h(t, ν) = 0, and ℓ = 2

in (1.23) yields (1.22). So it may imply that the polynomials in (1.23) are more general
than those in (1.22). The process and methods used in this paper follow from those
employed in such works as [5,13,15–17] including, in particular, the very recent work [18].

2. Some formulas involving the polynomials Φ(α)
n,ℓ (x, y, ν)

Here, we present certain formulas associated with the polynomials Φ(α)
n,ℓ (x, y, ν). To do

this, we recall some formal manipulations of double series in the following lemma (see,
e.g., [4], [17], [26, pp. 56-57], and [28, p. 52]).
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Lemma 2.1. The following identities hold:
∞∑

n=0

∞∑
k=0

Ak,n =
∞∑

n=0

[n/p]∑
k=0

Ak,n−pk (p ∈ N); (2.1)

∞∑
n=0

[n/p]∑
k=0

Ak,n =
∞∑

n=0

∞∑
k=0

Ak,n+pk (p ∈ N); (2.2)

∞∑
N=0

f(N)(x + y)N

N !
=

∞∑
n,m=0

f(m + n)xn

n!
ym

m!
. (2.3)

Here, the Ak,n and f(N) (k, n, N ∈ N0) are real or complex valued functions indexed
by the k, n and N , respectively, and x and y are real or complex numbers. Also, for
possible rearrangements of the involved double series, all the associated series should be
absolutely convergent.

Theorem 2.2. Let α ∈ Z, ν ∈ N0, and ℓ ∈ N \ {1}. Then

Φ(α,ℓ)
n (x1 + x2, y, ν) =

n∑
k=0

(
n

k

)
xk

1 Φ(α,ℓ)
n−k (x2, y, ν)

=
n∑

k=0

(
n

k

)
xk

2 Φ(α,ℓ)
n−k (x1, y, ν) (n ∈ N0, x1, x2, y ∈ C) ;

(2.4)

Φ(α,ℓ)
n (x, y1 + y2, ν) =

[ n
ℓ ]∑

k=0

n! yk
1

(n − ℓk)! k!
Φ(α,ℓ)

n−ℓk (x, y2, ν)

=
[ n

ℓ ]∑
k=0

n! yk
2

(n − ℓk)! k!
Φ(α,ℓ)

n−ℓk (x, y1, ν)

(2.5)

(n ∈ N0, x, y1, y2 ∈ C) ;

Φ(α,ℓ)
n (x, y, ν) =

n∑
k=0

(
n

k

)
xk Φ(α,ℓ)

n−k (0, y, ν) ; (n ∈ N0, x, y ∈ C) ; (2.6)

Φ(α,ℓ)
n (x, y, ν) =

[ n
ℓ ]∑

k=0

n! yk

(n − ℓk)! k!
Φ(α,ℓ)

n−ℓk (x, 0, ν) (2.7)

(n ∈ N0, x, y ∈ C) ;

∂

∂x
Φ(α,ℓ)

n (x, y, ν) = n Φ(α,ℓ)
n−1 (x, y, ν) (n ∈ N, x, y ∈ C) ; (2.8)

∂r

∂xr
Φ(α,ℓ)

n (x, y, ν) = n!
(n − r)!

Φ(α,ℓ)
n−r (x, y, ν) (2.9)

(n, r ∈ N with 1 ≤ r ≤ n; x, y ∈ C) ;

∂

∂y
Φ(α,ℓ)

n (x, y, ν) = n!
(n − ℓ)!

Φ(α,ℓ)
n−ℓ (x, y, ν) (2.10)

(n, ℓ ∈ N with 1 ≤ ℓ ≤ n; x, y ∈ C) ;

∫ x

a
Φ(α,ℓ)

n (u, y, ν) du =
Φ(α,ℓ)

n+1 (x, y, ν) − Φ(α,ℓ)
n+1 (a, y, ν)

n + 1
(2.11)

(n ∈ N0, a, x ∈ R, y ∈ C) .
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∫ y

a
Φ(α,ℓ)

n (x, u, ν) du = n!
(n + ℓ)!

{
Φ(α,ℓ)

n+ℓ (x, y, ν) − Φ(α,ℓ)
n+ℓ (x, a, ν)

}
(2.12)

(n ∈ N0, x ∈ C, a, y ∈ R) .

Proof. From (1.23), we write
∞∑

n=0
Φ(α,ℓ)

n (x1 + x2, y, ν) tn

n!
= ex1t · f(t, α) ex2t+ytℓ+h(t,ν).

Expanding ex1t as the Maclaurin series and using (1.23) to expand the second factor, with
the aid of (2.1) with p = 1, we find

∞∑
n=0

Φ(α,ℓ)
n (x1 + x2, y, ν) tn

n!
=

∞∑
n=0

n∑
k=0

xk
1

(n − k)!k!
Φ(α,ℓ)

n−k (x2, y, ν) tn,

which, upon equating the coefficients of tn, yields the first equality of (2.4). For the second
equality of (2.4), we just change the role of x1 and x2 in the above proof.

Similarly as in the proof of (2.4), with the aid of (2.1) with p = ℓ, we prove (2.5).

Setting x1 = x and x2 = 0 in the first equality in (2.4), we obtain (2.6). Similarly,
setting y1 = y and y2 = 0 in the first equality in (2.5), we get (2.7).

Differentiating both sides of (2.6) with respect to the variable x, we have

∂

∂x
Φ(α,ℓ)

n (x, y, ν) =
n∑

k=1
k

(
n

k

)
xk−1 Φ(α,ℓ)

n−k (0, y, ν)

= n
n−1∑
k=0

(
n − 1

k

)
xk Φ(α,ℓ)

n−1−k (0, y, ν)

= n Φ(α,ℓ)
n−1 (x, y, ν) ,

(2.13)

where the identity (2.6) is used for the last equality. This proves (2.8).

Then, differentiating both sides of (2.8) with respect to the variable x by using the
identity (2.8) on the right side of each resulting identity, consecutively, r − 1 times, we
obtain (2.9).

Differentiating both sides of (2.7) with respect to the variable y, we have

∂

∂y
Φ(α,ℓ)

n (x, y, ν) =
[ n

ℓ ]∑
k=1

n! yk−1

(n − ℓk)! (k − 1)!
Φ(α,ℓ)

n−ℓk (x, 0, ν) . (2.14)

Taking k − 1 = k′ on the right side of (2.14) and considering[
n

ℓ

]
− 1 =

[
n

ℓ
− 1

]
=
[

n − ℓ

ℓ

]
,

we get

∂

∂y
Φ(α,ℓ)

n (x, y, ν) = n!
(n − ℓ)!

[ n−ℓ
ℓ ]∑

k=0

(n − ℓ)! yk

(n − ℓ − ℓk)! k!
Φ(α,ℓ)

n−ℓ−ℓk (x, 0, ν) ,

which, upon using (2.7), proves (2.10).

Replacing x by u in (2.8) and integrating both sides of the resulting identity with
respect to the variable u from a to x by using the fundamental theorem of calculus, and
substituting n + 1 for n in the last resulting identity, we obtain (2.11).

Similarly as in getting (2.11), using (2.10), we get (2.12). �
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3. Power sum-Laguerre-Hermite polynomials
Here, replacing x by y and ν by z in (1.9) and setting h(t, z) = z t2 and

f(x; t, n) = e(n+1)t − 1
et − 1

C0(xt),

we introduce a new class of power sum-Laguerre-Hermite polynomials S
HLn(x, y, z; n) by

the following generating function:

e(n+1)t − 1
et − 1

eyt+z t2
C0(xt) =

∞∑
n=0

S
HLn(x, y, z; n) tn

n!
(|t| < 2π). (3.1)

Now, we present various implicit summation formulae for the power sum-Laguerre-
Hermite polynomials.

Theorem 3.1. The following implicit summation formulas for the power sum-Laguerre-
Hermite polynomials hold.

S
HLn(x, y, 0; n) =

n∑
k=0

(
n

k

)
Ln−k(x, y) Sk(n) (n ∈ N0; n ∈ N) ; (3.2)

S
HLn(x, y, z; n) = n!

n∑
r=0

n−r∑
k=0

(−1)r xr Hn−k−r(y, z) Sk(n)
(r!)2 k! (n − k − r)!

(n ∈ N0; n ∈ N) ; (3.3)

S
HLn(x, u + v, z; n) =

n∑
k=0

(
n

k

)
uk S

HLn−k(x, v, z; n) (n ∈ N0; n ∈ N) ; (3.4)

S
HLn(x, y, a + b; n) =

[ n
2 ]∑

k=0

n!
k!(n − 2k)!

bk S
HLn−2k(x, y, a; n) (n ∈ N0; n ∈ N) . (3.5)

Proof. Setting z = 0 in (3.1) and using (1.2) and (1.16) with the aid of (2.1) with p = 1,
we obtain

∞∑
n=0

S
HLn(x, y, z; n) tn

n!
=

∞∑
n=0

n∑
k=0

Ln−k(x, y) Sk(n) tn

(n − k)!k!
,

which, upon equating the coefficients of tn, yields the desired result (3.2).

The other identities can be proved as in the proof of (3.2). We omit the details. �

4. Generalized Laguerre-Euler polynomials

Here, replacing x by y and ν by z in (1.9) and f(x; t, α) =
(

2
at+bt

)α
C0(xt), we introduce

a new class of the generalized Laguerre-Euler polynomials.

Let α ∈ R or C be a parameter. Also, let a, b ∈ R+ with a ̸= b. The generalized Euler
polynomials E

(α)
n (x, y, z; a, b, e) are defined by the following generating function( 2

at + bt

)α

eyt+h(t,z)C0(xt) =
∞∑

n=0
E(α)

n (x, y, z; a, b, e) tn

n!
(4.1)

(
x ∈ R; |t| <

2π

| ln a − ln b|

)
.

In particular, setting h(t, z) = zt2 in (4.1), we get
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Let α ∈ R or C be a parameter. Also, let a, b ∈ R+ with a ̸= b. The generalized
Laguerre-Euler polynomials LE

(α)
n (x, y, z; a, b, e) are defined by( 2

at + bt

)α

eyt+zt2
C0(xt) =

∞∑
n=0

LE(α)
n (x, y, z; a, b, e) tn

n!
(4.2)

(
x ∈ R; |t| <

2π

| ln a − ln b|

)
.

We have

LE(α)
n (x, y, z; a, b, e) =

n∑
m=0

[ m
2 ]∑

k=0

E
(α)
n−m Lm−2k(x, y)zkn!
(m − 2k)!k!(n − m)!

. (4.3)

Remark 4.1. Consider some special cases of (4.2).
(i) The case x = 0 of (4.2) reduces to the known generalized Hermite-Bernoulli poly-

nomials defined by (see [24])( 2
at + bt

)α

eyt+zt2 =
∞∑

n=0
HE(α)

n (y, z; a, b, e) tn

n!
(4.4)

(
|t| <

2π

| ln a − ln b|

)
.

(ii) The case x = z = 0 of (4.2) reduces to the known generalized Euler polynomials
defined by (see [20])( 2

at + bt

)α

eyt =
∞∑

n=0
E(α)

n (y; a, b, e) tn

n!
(4.5)

(
|t| <

2π

| ln a − ln b|

)
.

(iii) The case x = y = z = 0 of (4.2) reduces to the generalized Euler number E
(α)
n (a, b)

defined by ( 2
at + bt

)α

=
∞∑

n=0
E(α)

n (a, b) tn

n!
(4.6)(

|t| <
2π

| ln a − ln b|

)
.

We find that E
(1)
n (a, b) = En(a, b) in (1.17) and

E(α+β)
n (a, b) =

n∑
k=0

(
n

k

)
E

(α)
k (a, b) E

(β)
n−k(a, b) (n ∈ N0) . (4.7)

Here, we present various implicit summation formulae for the generalized Laguerre-Euler
polynomials.

Theorem 4.2. Let α, β ∈ R or C be parameters. Also, let a, b ∈ R+ with a ̸= b. Further,
let u, v, w, x, y, z ∈ R, and n ∈ N0. Then the following implicit summation formulas for
the generalized Laguerre-Euler polynomials in (4.2) hold:

LE
(α)
m+n(x, w, z; a, b, e)

=
m∑

s=0

n∑
k=0

(
m

s

)(
n

k

)
(w − y)s+k

LE
(α)
m+n−s−k(x, y, z; a, b, e);

(4.8)
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LE(α)
n (x, y + α, z; a, b, e) = n!

[ n
2 ]∑

j=0

n−2j∑
k=0

(−1)kxkzjE
(α)
n−2j−k(y; a

e , b
e , e)

(n − 2j − k)! j! (k!)2 ; (4.9)

LE(α+β)
n (x, y + v, z; a, b, e)

=
n∑

k=0

(
n

k

)
LE

(α)
n−k(x, y, z; a, b, e)E(β)

k (v; a, b, e);
(4.10)

LE(α+β)
n (x, y + z, v + u; a, b, e)

=
n∑

k=0

(
n

k

)
E

(α)
n−k(x, z, v; a, b, e)HE

(β)
k (y, u; a, b, e);

(4.11)

LE(α)
n (x, y, z; a, b, e) = n!

[ n
2 ]∑

j=0

n−2j∑
k=0

E
(α)
k (a, b, e) Ln−k−2j(x, y) zj

k! j! (n − k − 2j)!
. (4.12)

Proof. For (4.8), replacing t by t + u in (4.2) and using the binomial theorem, we have( 2
at+u + bt+u

)α

ey(t+u)+z(t+u)2
C0(x(t + u))

=
∞∑

n=0
LE(α)

n (x, y, z; a, b, e)(t + u)n

n!

=
∞∑

n=0

n∑
m=0

LE(α)
n (x, y, z; a, b, e) tn−mum

(n − m)! m!
.

(4.13)

Using (2.2) with p = 1 in the last double summation in (4.13), we obtain( 2
at+u + bt+u

)α

ez(t+u)2
C0(x(t + u))

= e−y(t+u)
∞∑

n=0

∞∑
m=0

LE
(α)
n+m(x, y, z; a, b, e) tnum

n! m!
.

(4.14)

Since the left side of (4.14) is independent of the variable y, we introduce another variable
w for the variable y in the right side of (4.14) and equate the two resulting identities to
find

∞∑
n=0

∞∑
m=0

LE
(α)
n+m(x, w, z; a, b, e) tnum

n! m!

= e(w−y)(t+u)
∞∑

n=0

∞∑
m=0

LE
(α)
n+m(x, y, z; a, b, e) tnum

n! m!
.

(4.15)

We use (2.3) to find

e(w−y)(t+u) =
∞∑

N=0
(w − y)N (t + u)N

N !
=

∞∑
k,s=0

(w − y)k+s tk us

k! s!
. (4.16)

Using (4.16) in the right side of (4.15) and applying (2.1) with p = 1 in the resulting
quadruple series, two times, we get

∞∑
n=0

∞∑
m=0

LE
(α)
n+m(x, w, z; a, b, e) tnum

n! m!

=
∞∑

n=0

∞∑
m=0

n∑
k=0

m∑
s=0

LE
(α)
n+m−s−k(x, y, z; a, b, e) (w − y)k+s tn um

(n − k)! k! (m − s)! s!
.

(4.17)
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Finally, equating the coefficients of tn and um in both sides of (4.17), consecutively, we
obtain the identity (4.8).

For (4.9), we find from (4.2) that
∞∑

n=0
LE(α)

n (x, y + α, z; a, b, e) tn

n!
=
(

2
(a

e )t + ( b
e)t

)α

eyt · ezt2 · C0(xt) (4.18)

By using (4.5) and (2.1) with p = 2, we have(
2

(a
e )t + ( b

e)t

)α

eyt · ezt2 =
∞∑

n=0
E(α)

n

(
y; a

e
,

b

e
, e
)

tn

n!
·

∞∑
j=0

zj t2j

j!

=
∞∑

n=0

[ n
2 ]∑

j=0
E

(α)
n−2j

(
y; a

e
,

b

e
, e
)

zj tn

(n − 2j)! j!
.

(4.19)

Setting the result (4.19) in (4.18) and using (1.4) with n = 0, with the help of (2.1) with
p = 1, we obtain

∞∑
n=0

LE(α)
n (x, y + α, z; a, b, e) tn

n!

=
∞∑

n=0


[ n

2 ]∑
j=0

n−2j∑
k=0

E
(α)
n−2j−k

(
y; a

e
,

b

e
, e
)

zjxk(−1)k

(n − 2j − k)! j!(k!)2

 tn.

(4.20)

Finally, equating the coefficients of tn on both sides of (4.20), we get the identity (4.9).

Similarly as above, we can prove the other identities. We omit the details. �

5. Symmetry identities for the generalized Laguerre-Euler polynomials
A number of interesting symmetry identities for various polynomials have been pre-

sented (see, e.g., [12–18, 29, 30]). Here, we give symmetry identities for the generalized
Laguerre-Euler polynomials LE

(α)
n (x, y, z; a, b, e) in (4.2). To do this, we consider the

following function:

g(t) :=
{ 4

(cat + dat)(cbt + dbt)

}α { 4
(cat + dat)(cbt + dbt)

}β

× e(a+b)(y1+y2)t+(a2+b2)(z1+z2)t2

× C0(x1at) C0(x1bt) C0(x2at) C0(x2bt).

(5.1)

We see that the function g(t) in (5.1) is symmetric with respect to α and β, a and b, c and
d, x1 and x2, y1 and y2, z1 and z2, respectively. So, to make the generalized Laguerre-Euler
polynomials in (4.2), we have 16 combinations. Then we will get 15 symmetry identities
for the generalized Laguerre-Euler polynomials in (4.2), two of which will be asserted in
the following theorem and the other 13 of which are left to the interested reader.

Theorem 5.1. Let α, β ∈ R or C be parameters. Also, let c, d ∈ R+ with c ̸= d. Further,
let a, b, x1, x2, y1, y2, z1, z2 ∈ R and n ∈ N0. Then

n∑
r=0

n−r∑
m=0

r∑
s=0

LE
(α)
n−m−r(x1, y1, z1; c, d, e) LE(α)

m (x1, y1, z1; c, d, e)

× LE
(β)
r−s(x2, y2, z2; c, d, e) LE(β)

s (x2, y2, z2; c, d, e) an−m−s bm+s

(n − m − r)! m! (r − s)! s!
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=
n∑

r=0

n−r∑
m=0

r∑
s=0

LE
(α)
n−m−r(x2, y2, z2; c, d, e) LE(α)

m (x2, y2, z2; c, d, e)

× LE
(β)
r−s(x1, y1, z1; c, d, e) LE(β)

s (x1, y1, z1; c, d, e) an−m−s bm+s

(n − m − r)! m! (r − s)! s!

(5.2)

=
n∑

r=0

n−r∑
m=0

r∑
s=0

E
(β)
n−m−r(x2, y1, z1; c, d, e) LE(β)

m (x2, y1, z1; c, d, e)

× LE
(α)
r−s(x1, y2, z2; c, d, e) LE(α)

s (x1, y2, z2; c, d, e) bn−m−s am+s

(n − m − r)! m! (r − s)! s!
.

(5.3)

Proof. We try to combine g(t) as follows:

g(t) =
{ 2

cat + dat

}α

eay1t+a2z1t C0(x1at)

×
{ 2

cbt + dbt

}α

eby1t+b2z1t C0(x1bt)

×
{ 2

cat + dat

}β

eay2t+a2z2t C0(x2at)

×
{ 2

cbt + dbt

}β

eby2t+b2z2t C0(x2bt),

(5.4)

which, upon using (4.2), gives

g(t) =
∞∑

n=0
LE(α)

n (x1, y1, z1; c, d, e)(at)n

n!

×
∞∑

m=0
LE(α)

m (x1, y1, z1; c, d, e)(bt)m

m!

×
∞∑

r=0
LE(β)

r (x2, y2, z2; c, d, e)(at)r

r!

×
∞∑

s=0
LE(β)

s (x2, y2, z2; c, d, e)(bt)s

s!

(5.5)

Now, we apply (2.1) with p = 1 to combine the first and second series into a single series
and the third and fourth series into another single series. Then we use (2.1) with p = 1
to combine the two resulting single series into one series to find

g(t) =
∞∑

n=0

{
n∑

r=0

n−r∑
m=0

r∑
s=0

LE
(α)
n−m−r(x1, y1, z1; c, d, e) LE(α)

m (x1, y1, z1; c, d, e)

× LE
(β)
r−s(x2, y2, z2; c, d, e) LE(β)

s (x2, y2, z2; c, d, e) an−m−s bm+s

(n − m − r)! m! (r − s)! s!

}
tn.

(5.6)

Considering another combination of g(t) as in (5.4), similarly as above, we can get another
single series of g(t) as in (5.6). Then, equating the coefficients of tn in both sides of the
two single series, we can find 15 identities, two of which are recorded. �
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6. Concluding remarks
The results presented here, being very general, can be specialised to yield a number

of known and new identities involving relatively simple and familiar polynomials. For
example, setting x = 0 in (4.8), we have

HE
(α)
m+n(w, z; a, b, e)

=
m∑

s=0

n∑
k=0

(
m

s

)(
n

k

)
(w − y)s+k

HE
(α)
m+n−s−k(y, z; a, b, e).

The power sum-Laguerre-Hermite polynomials S
HLn(x, y, z; n) in (3) and the generalized

Laguerre-Euler polynomials E
(α)
n (x, y, z; a, b, e) in (4.2) can be further extended and have

their differential and integral formulas as in Theorem 2.2.

Acknowledgment. The authors would like to express their deep thanks for the reviewer
whose useful comments improve this paper as it stands.
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