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Abstract
For α ∈ [0, 1], let Aα(G) = αD(G)+(1−α)A(G) be Aα-matrix, where A(G) is the adjacent
matrix and D(G) is the diagonal matrix of the degrees of a graph G. Clearly, A0(G) is the
adjacent matrix and 2A 1

2
is the signless Laplacian matrix. A connected graph is a cactus

graph if any two cycles of G have at most one common vertex. We first propose the result
for subdivision graphs, and determine the cacti maximizing Aα-spectral radius subject to
fixed pendant vertices. In addition, the corresponding extremal graphs are provided. As
consequences, we determine the graph with the Aα-spectral radius among all the cacti
with n vertices; we also characterize the n-vertex cacti with a perfect matching having the
largest Aα-spectral radius.
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1. Introduction
Throughout this paper, we consider finite simple connected graph G with vertex set

V (G) and edge set E(G). The order of a graph is the number of vertices |V (G)| = n and
the size is the number of edges |E(G)|. Let v ∈ V (G) be a vertex of G, N(v) = NG(v) =
{w ∈ V (G), vw ∈ E(G)} be the neighborhood of v , and dG(v) (or briefly dv) be the degree
of v with dG(v) = |N(v)|. If e is an edge of G and G−e contains at least two components,
then e is a cut edge of G. If Pk = v1v2 · · · vk is a subgraph of G such that v1 is a cut vertex
of degree at least 3, d(vk) = 1 and d(vi) = 2 for i ∈ [2, k − 1], then Pk is called a pendant
path in G. For other undefined notations and terminologies, refer to [2].

It’s known that A(G) is the adjacency matrix and D(G) is the diagonal matrix of the
degrees of G. The signless Laplacian matrix of G is Q(G) = D(G) + A(G). For α ∈ [0, 1],
the Aα-matrix

Aα(G) = αD(G) + (1 − α)A(G)
is given by Nikiforov [15]. Clearly, A0(G) is the adjacent matrix and 2A 1

2
is the signless

Laplacian matrix of G, respectively.
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The studies of the (adjacency, signless Laplacian) spectral radius are interesting and
meaningful [7, 10–12, 19–23]. As examples, the spectral radius of trees are proposed by
Lovász and J. Pelikán [14]. Feng et al.[10] studied the minimal Laplacian spectral radius
of trees with given matching number. Chen [4] found the properties of spectra of graphs
and their line graphs. Cvetković [8] explored the signless Laplacian spectra of graphs
and a spectral theory in graphs. The bounds of signless Laplacian spectral radius and
its hamiltonicity are studied by Zhou [24]. Lin and Zhou [13] obtained graphs with at
most one signless Laplacian eigenvalue larger than three. In addition to the successful
considerations of these spectral radius, Aα-spectral radius is provided as a general version
of adjacency and signless Laplacian radius, and this area would be challenging. For the
Aα-spectral radius, Nikiforov et al. [15, 16]introduced some properties of this spectral
radius and provided the upper bounds on trees.

It is known that a tree is a noncyclic graph. If some vertices in a tree are replaced by
cycles, then this graph has some cycles. The trees are extended as the definition that a
cactus graph is a connected graph such that any two cycles have at most one common
vertex. Denoted by Ck

n the set of all cacti with n vertices and k pendant vertices.
The cactus graphs have attracted many interests among the mathematical literature

including algebra and graph theory. For instance, the properties of cacti with n vertices
[3] are explored by Borovićanin and Petrović. Chen and Zhou [5] investigated some upper
bounds of the signless Laplacian spectral radius of cactus graphs. The signless Laplacian
spectral radius of cacti with given matching number are obtained by Shen et al. [17].
Some results for spectral radius on cacti with k pendant vertices are studied Wu et al.
[18]. Ye et al. [22] gave the maximal adjacency or signless Laplacian spectral radius of
graphs subject to fixed connectivity.

Motivated by the above results, in this paper, we generalize the results of Aα-spectra
from the trees to the cacti subject to fixed pendant vertices. For α ∈ [0, 1], we first propose
the result for subdivision graphs, and determine the cacti maximizing Aα-spectral radius
subject to fixed pendant vertices. In addition, the corresponding extremal graphs are
determined. As consequences, we determine the graph with the Aα-spectral radius among
all the cacti with n vertices; we also characterize the n-vertex cacti with a perfect matching
having the largest Aα-spectral radius.

2. Preliminary
In this section, we provide some important concepts and lemmas that will be used in

the main proofs.
If G is a graph with vertex set V (G) = {v1, v2, · · · , vn} and edge set E(G), then the

Aα−matrix Aα(G) of G has the (i, j)-entry of Aα(G) is 1 − α if vivj ∈ E(G); αd(vi) if
i = j, and otherwise 0. For α ∈ [0, 1], let λ1(Aα(G)) ≥ λ2(Aα(G)) ≥ · · · ≥ λn(Aα(G))
be the eigenvalues of Aα(G). The Aα-spectral radius of G is considered as the maximal
eigenvalue ρ(G) := λ1(Aα(G)). Let X = (xv1 , xv2 , · · · , xvn)T be a real vector of ρ(G). By
Aα(G) = αD(G) + (1 − α)A(G), we have the quadratic formula of XT Aα(G)X can be
expressed that

XT Aα(G)X = α
∑

vi∈V (G)
x2

vi
dvi + 2(1 − α)

∑
vivj∈E(G)

xvixvj .

Because Aα(G) is a real symmetric matrix, and by Rayleigh principle, we have the formula
ρ(G) = maxX ̸=0

XT Aα(G)X
XT X

. Furthermore, if X is a unit eigenvector ofAα(G) corresponding
to ρ(G), then we have the formula ρ(G) = XT Aα(G)X.
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As we know that once X is an eigenvector of ρ(G) for a connected graph G, X should
be unique and positive. The corresponding eigenequations for Aα(G) is rewritten as

ρ(G)xvi = αdvixvi + (1 − α)
∑

vivj∈E(G)
xvj . (2.1)

As A1(G) = D(G), we study the Aα−matrix for α ∈ [0, 1) below. Based on the
definition of Aα-spectral radius, we have

Lemma 2.1 ([16, 21]). Denote by Aα(G) the Aα-matrix of a connected graph G with
α ∈ [0, 1), v, w ∈ V (G), u ∈ S ⊂ V (G) such that S ⊂ N(v) \ (N(w) ∪ {w}). Let H be a
graph with vertex set V (G) and edge set E(G) \ {uv, u ∈ S} ∪ {uw, u ∈ S}, and X a unit
eigenvector to ρ(Aα(G)). If xw ≥ xv and |S| ̸= 0, then ρ(H) ≥ ρ(G).

Lemma 2.2 ([22]). Let Aα(G) the Aα-matrix of a connected graph G with α ∈ [0, 1),
s, t, u, v ∈ V (G), st, uv ∈ E(G), sv, tu /∈ E(G). Let H be a graph with vertex set
V (G) and edge set E(G) \ {uv, st} ∪ {sv, ut}, and X a unit eigenvector to ρ(Aα(G)). If
(xs − xu)(xv − xt) ≥ 0, then ρ(H) ≥ ρ(G).

If G is a connected graph, then Aα(G) is a nonnegative irreducible symmetric matrix.
By the results of [1, 6, 15], if we add some edges to a connected graph, then Aα-spectral
radius will increase and the following lemma is straightforward.

Lemma 2.3. If H is a proper subgraph of a connected graph G, and ρ is the Aα-spectral
radius, then ρ(H) < ρ(G).

Let Pt = v0v1v2 · · · vt be a subgraph of G. If v0 is a cut vertex of degree at least 3,
d(vt) = 1 and d(vj) = 2 with j ∈ [1, t − 1], then Pt is called a pendant path in G. The
following lemma is useful below.

Lemma 2.4. Let G ∈ Ck
n. If ρ(G) is maximal, then all pendant paths share a common

vertex.

Proof. Assume that G is a cactus graph with k pendant vertices and contains at least two
pendant paths Pt = v0v1 · · · vt and Ps = u0u1 · · · us. Note that d(u0), d(v0) ≥ 3. Without
loss of generality, let xv0 ≥ xu0 . Suppose that u0 is a vertex in a cycle and this cycle
contains at least one edge of the shortest path P [u0, v0] between u0 and v0. Set G1 to be
a new graph with vertex set V (G) and edge set E(G)\{u0v, v ∈ N} ∪ {v0v, v ∈ N} with
N = N(u0) \ {w1, w2}, where w1 is in P [u0, v0], and v0, w1, w2 are in the same cycle; if
u0 is not in any cycle, then let G2 be a new graph with vertex set V (G) and edge set
E(G) − {u0v, v ∈ N} ∪ {v0v, v ∈ N} with N = N(u0) \ {w1, w2}, where w1 is in the
shortest path between v0 and u0, and w2 is another neighbor of u0.

Note that both G1 and G2 are cacti with k pendant vertices. By Lemma 2.1, we have
ρ(G1) ≥ ρ(G) and ρ(G2) ≥ ρ(G). We can continue this process and move all pendant
paths to a common vertex such that ρ(G) is increasing. Then this lemma is proved. �
Lemma 2.5. Let G ∈ Ck

n. If ρ(G) is maximal, then the length of any pendant path is at
most 2, and there is at most one pendant path of the length 2.

Proof. First we prove the length of any pendant path is at most 2. We prove it by a
contradiction. Assume there are have a pendent path P , P = v0v1 · · · vm, m ≥ 3. Let
G1 be a new graph with vertex set V (G) and E(G) + v1vm−1, then G1 is a cactus with
k pendent vertices and ρ(G1) > ρ(G) (by Lemma 2.3). Then there exists a contradicted
graph. Thus, if ρ(G) is maximal, then the length of any pendant path is at most 2. Next we
prove there is at most one pendant path of length 2. Suppose there are r, (r > 1) pendent
path of the length 2. Without loss of generality Pi = v0vi1vi2; (i = 1, 2, · · · , r). Let G2
be a new graph with vertex set V (G) and E(G) ∪ {v11v21, v31v41, · · · , v(2⌊ r

2 ⌋−1)1v(2⌊ r
2 ⌋)1},
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then G2 is a cactus with k pendent vertices and ρ(G2) > ρ(G) (by Lemma 2.3). Then
there exists a contradicted graph. Thus, if ρ(G) is maximal, there is at most one pendant
path of the length 2. This completes the proof. �
Lemma 2.6. Let G ∈ Ck

n. If ρ(G) is maximal, then there does not exist an internal path
such that it is built by cut edges.

Proof. We prove it by a contradiction. Note that d(v0), d(vt) ≥ 3. Let Pt = v0v1 · · · vt

be an internal path of G such that every edge of Pt is an cut edge. If t ≥ 2, then let
G1 = G + v0vt. Then G1 is a cactus with k pendant vertices and G is a proper subgraph
of G1. By Lemma 2.3, we have ρ(G1) > ρ(G), which is a contradiction. Next we consider
t = 1. Without loss of generality, let x0 ≥ x1 and w ∈ N(v1) \ {v0, v′

1} such that v′
1 is

a neighbor except for v0. Denote a new graph G2 with vertex set V (G2) = V (G) and
edge set E(G2) = E(G) \ {v1w, w ∈ N(v1) \ {v0, v′

1}} ∪ {v0w, w ∈ N(v1) \ {v0, v′
1}}. Then

G2 is a cactus with k pendant vertices and ρ(G2) ≥ ρ(G) (by Lemma 2.1). These are
contradictions and this lemma is proved. �
Lemma 2.7. Let G ∈ Ck

n. If ρ(G) is maximal, then all cycles share a common vertex.

Proof. Suppose that there are two cut vertices v0, v1 in G such that not all cycles contain
them. If there are only two cycles, then it is proved by Lemma 2.6: there does not exist an
internal path such that it is built by cut edges. If there are more 3 cycles, then choose such
v0 and v1 having the longest distance. Then d(v0), d(v1) ≥ 4. Without loss of generality,
let xv0 ≥ xv1 and w ∈ N(v1)\{v0}. Denote a new graph G1 with vertex set V (G1) = V (G)
and edge set E(G1) = E(G) \ {v1w, w ∈ N(v1) \ {vl, v′

l}} ∪ {v0w, w ∈ N(v1) \ {vl, v′
l}},

where vl, v′
l are neighbors of v1 and on a same cycle. Then G2 is a cactus with k pendant

vertices and ρ(G1) ≥ ρ(G) (by Lemma 2.1). We can continue this method to increase ρ(G)
until there exist a unique cut vertex sharing with all cycles. So, the result is proved. �
Lemma 2.8. Let G ∈ Ck

n. If ρ(G) is maximal, then the length of any cycle is at most 4,
and there is at most one cycle of length 4.

Proof. Let Ct = v1v2 · · · vtv1 be a cycle of length t in G and v1 is a cut vertex. If xv1 ≥ xv3 ,
we build a new graph G1 such that V (G1) = V (G) and E(G1) = E(G) \ {v3v4} ∪ {v1v4}.
Then ρ(G) ≤ ρ(G1) (by Lemma 2.1). In addition, G1 is a subgraph of G2 = G1 ∪ {v1v3},
which yields that ρ(G1) < ρ(G2) (by Lemma 2.3). If xv1 ≤ xv3 , then we set up a graph
G3 such that V (G3) = V (G) and E(G3) = E(G) \ {vtv1} ∪ {vtv3}. We have ρ(G) ≤ ρ(G3)
(by Lemma 2.1). G4 is a graph by connecting v1 and v3 from G3. So, G3 is a subgraph of
G4. By Lemma 2.3, we have ρ(G4) > ρ(G3). Thus, if G contains a cycle of length at least
5, then there exists a contradicted graph.

Next we show that there is at most one cycle of length 4. Suppose that there at at
least two 4-cycles C1 and C2 in G. By Lemma 2.7, these two cycles share a common
cut vertex. Let C1 = v0v1v2v3v0 and C2 = v0u1u2u3v0. If xv0 ≥ min{xv1 , xv3} and
xv0 ≥ min{xu1 , xu3}, say xv0 ≥ xv1 , xv0 ≥ xu1 , then we set a new graph H1 such that
V (H1) = V (G) and E(H1) = E(G) \ {v2v1, u2u1} ∪ {v2v0, u2v0}. By Lemma 2.1, we have
ρ(G) ≤ ρ(H1). Let H2 be a graph from H1 by connecting u1v1. Since H2 is a proper
subgraph of H1, then ρ(H1) < ρ(H2). This is a contradiction to the assumption that ρ(G)
is maximal.

If xv0 ≤ min{xv1 , xv3} and xv0 ≤ min{xu1 , xu3}, say xv0 ≤ xv1 , xv0 ≤ xu1 , then we
set new graphs H3 with vertex set V (H3) = V (G) and E(H3) = E(G) \ {v3v0, u3u0} ∪
{v3v1, u3u1}, H4 from H3 by connecting v1u1. By Lemmas 2.1,2.3, we have ρ(G) <
ρ(H3) < ρ(H4). We can use Lemma 2.7 to find a graph in Ck

n with only one common
vertex among cycles. This is a contradiction to the choice of G.

Lastly, without loss of generality, we consider the case of max{xu1 , xu3} ≤ xv0 ≤
min{xv1 , xv3}, say xu1 ≤ xv0 and xv0 ≤ xv1 . Let H5 be a graph with V (H5) = V (G)



Sharp upper bounds of Aα-spectral radius of cacti with given pendant vertices 37

and E(H5) = E(G) \ {u2u1, v3v0} ∪ {u2v0, v3v1}. By Lemma 2.1, ρ(G) ≤ ρ(H5). We build
a new graph H6 by adding v1u1. Then H5 is a proper subgraph of H6 and ρ(H5) < ρ(H6).
We can use Lemma 2.7 to find a graph in Ck

n with only one common vertex among cycles.
This is a contradiction to the choice of G. So, this lemma is true. �

3. Main results
In this section, we determine the cacti maximizing Aα-spectral radius subject to fixed

pendant vertices. In addition, we find the graph with the Aα-spectral radius among all the
cacti with n vertices, and we also characterize the n-vertex cacti with a perfect matching
having the largest Aα-spectral radius.

Since Ck
n is the set of all cacti with n > 0 vertices and k > 0 pendant vertices, then let

Ce be a cactus graph in Ck
n such that n − k − 1 is even and all cycles (if any) have length

3, that is, Ce contains n−k−1
2 cycles vv1v′

1v, vv2v′
2v, · · · ,

vv n−k−1
2

v′
n−k−1

2
v and k pendant edges (if any) vu1, vu2, · · · , vuk. Similarly, let Co be a

cactus graph in Ck
n such that n − k − 1 is odd and all cycles (if any) have length 3, that

is Co contains n−k−2
2 cycles vv1v′

1v, vv2v′
2v, · · · , vv n−k−2

2
v′

n−k−2
2

v, k − 1 pendant edges (if
any) vu1, vu2, · · · , vuk−1 and 1 pendant path vu′

kuk.

Figure 1. Ce: n − k − 1 is even, contains n−k−1
2 cycles and k pendant edges (if

any); Co: n − k − 1 is odd, contains n−k−2
2 cycles,k − 1 pendant edges (if any)

and 1 pendant path.

Theorem 3.1. (i) If n − k is odd and G is a graph with the maximum Aα−spectral
radius in Ck

n, then G ∼= Ce;
(ii) If n − k is even and G is a graph with the maximum Aα−spectral radius in Ck

n,
then G ∼= Co.

Proof. Choose a cactus graph G ∈ Ck
n such that ρ(G) is maximal. Assume V (G) =

{v0, v2, · · · , vn−1}. By Lemma 2.4, we have all pendant paths share a common vertex. By
Lemma 2.5 implies that the length of any pendant path is at most 2 and there is at most
one pendant path of length 2. By Lemma 2.6 yields that there does not exist an internal
path such that it is built by cut edges. By Lemma 2.8 all cycles share a common vertex.
By Lemma 2.8 we have the length of any cycle is at most 4, and there is at most one cycle
of length 4. In order to find the main results, we need the following two claims.
Claim 1. The pendant paths and cycles share a common vertex.
Proof. Suppose that all cycles share a vertex v and all pendant paths share a vertex u,
u, v ∈ {v0, v1, · · · , vn−1}. Clearly, u and v is in a same cycle C ′. Let N ′(u) = N(u)\V (C ′)
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and N ′(v) = N(v) \ V (C ′). If xu ≥ xv, then set a new graph G1 with vertex set V (G1) =
V (G) \ {wv, ∈ w ∈ N ′(v)} ∪ {wu, ∈ w ∈ N ′(v)}; Otherwise, if xu ≤ xv, let a new graph
G2 with vertex set V (G2) = V (G) \ {wu, ∈ w ∈ N ′(u)} ∪ {wv, ∈ w ∈ N ′(u)}. By Lemma
2.1, we have ρ(G) ≤ ρ(G1) or ρ(G) ≤ ρ(G2). A contradiction yields this claim.
Claim 2. If there is a pendant path P with the length at most 2, then there is no cycle
of length 4.
Proof. Let v0v1v2v3v0 be a cycle of length 4 and P is a pendant path in G. By lemma 2.5 we
know the length of P is 1 or 2. Next we prove xv0 ≥ max{xv1 , xv2 , xv3}. Assume xv1 > xv0 .
Let S = N(v0) \ {v1, v3}, set a new graph H with vertex set V (G), E(G) \ {wv0, w ∈
S} ∪ {wv1, w ∈ S}. Note that H is a cactus graph with k pendent vertices. By Lemma
2.1, we have ρ(G) < ρ(H). It contradicts that ρ(G) is maximal, thus, xv0 ≥ xv1 . Similarity,
we have xv0 ≥ xv2 and xv0 ≥ xv3 . Thus, xv0 ≥ max{xv1 , xv2 , xv3}.
Case 1. |P | = 2. Assume P = v0v4v5.
Let H1 be a new graph with vertex set V (G), E(G)\{v2v3} ∪ {v0v2}. Since xv0 ≥ xv3 ,
then ρ(G) ≤ ρ(H1) (by Lemma 2.1). Let H2 be a new graph with vertex set V (G),
E(H1) + v3v4. H1 is proper subgraph of H2 . By Lemma 2.3, we have ρ(H1) < ρ(H2).
Then, ρ(G) < ρ(H2). Note that H2 is a cactus graph with k pendent vertices.
Case 2. |P | = 1. Assume P = v0v6.
Subcase 2.1. xv2 ≤ xv6 .
Let H3 be a new graph with vertex set V (G), E(G)\{v2v3} ∪ {v3v6}. Note that H3 is a
cactus graph with k pendent vertices. By Lemma 2.1, we have ρ(G) ≤ ρ(H3).
Subcase 2.2. xv2 > xv6 .
Let H4 be a new graph with vertex set V (G), E(G)\{v2v3, v0v6} ∪ {v0v2, v3v6}. Note
that H4 is a cactus graph with k pendent vertices. Since xv0 ≥ xv3 and xv2 > xv6 , then
(xv2 − xv6)(xv0 − xv3) ≥ 0. By Lemma 2.2, we have ρ(G) ≤ ρ(H4). Note that H4 is a
cactus graph with k pendent vertices. It is a contradiction and this claim is proved.

Therefore, if n − k is odd, then ρ(G) ≤ ρ(Ce); if n − k is even, then ρ(G) ≤ ρ(Co). So,
this theorem is proved. �
Lemma 3.2 ([9]). Given a partition {1, 2, · · · , n} =∆1 ∪∆2 ∪· · ·∪∆m with |∆i| = ni > 0,
A be any matrix partitioned into blocks Aij , where Aij is an ni × nj block. Suppose that
the block Aij has constant row sums bij , and let B = (bij). Then the spectrum of B is
contained in the spectrum of A (taking into account the multiplicities of the eigenvalues).

Next we provide all eigenvalues of Ce and Co in the proposition.

Proposition 3.3. Let α ∈ [0, 1). The following statements hold. (i) The maximum
eigenvalues of Aα(Ce) satisfy the equation: f(ρ) = (α − ρ)3 + (nα − 2α + 1)(α − ρ)2 +
[(1 − n)α2 + (3n − 4)α + 1 − n](α − ρ) − k(1 − α)2 = 0. (ii) The maximum eigenvalues
of Aα(Co) satisfy the equation: g(ρ) = (nα − 2α − ρ)(α − ρ)(α − ρ + 1)(ρ2 − 3αρ + α2 +
2α − 1) − (k − 1)(1 − α)2(α − ρ + 1)(ρ2 − 3αρ + α2 + 2α − 1) − (n − k − 2)(1 − α)2(α −
ρ)(ρ2 − 3αρ + α2 + 2α − 1) − (1 − α)2(α − ρ)2(α − ρ + 1) = 0.

Proof. Since the matrix Aα = αD + (1 − α)A, where D has on the diagonal the vector
(n−1, 2, 1) and A consists of the following three row-vectors, in the order: (0, n−k −1, k);
(1, 1, 0); (1, 0, 0). By Lemma 3.2, thus, the eigenvector x of ρ(Aα(Ce)) ( Ce, see Figure
1)is a constant value β2 on the vertex set {v1, v′

1, v2, v′
2, · · · , v n−k−1

2
, v′

n−k−1
2

}, and constant
value β3 on the vertex set {u1, u2, · · · , uk}. Defining x(v) =: β1, ρ(Ce) =: ρ, also by (1),
we get (ρ − (n − 1)α)β1 = (1 − α)((n − k − 1)β2 + kβ3), (ρ − 2α)β2 = (1 − α)(β1 + β2) and
(ρ − α)β3 = (1 − α)β1).

Then we get:
f(ρ) = (α−ρ)3+(nα−2α+1)(α−ρ)2+[(1−n)α2+(3n−4)α+1−n](α−ρ)−k(1−α)2 = 0.
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Next we consider Aα(Co) ( Co, see Figure 1), since the matrix Aα = αD + (1 − α)A,
where D has on the diagonal the vector (n−2, 2, 1, 2, 1) and A consists of the following five
row-vectors, in the order: (0, n − k − 2, k − 1, 1, 0); (1, 1, 0, 0, 0); (1, 0, 0, 0, 0); (1, 0, 0, 0, 1)
(0, 0, 0, 1, 0). By Lemma 3.2, thus, the eigenvector x of ρ(Aα(Co)) is a constant value
β2 on the vertex set {v1, v′

1, · · · , v n−k−2
2

, v′
n−k−2

2
}, and constant value β3 on the vertex set

{u1, u2, · · · , uk−1}. Defining x(v) =: β1, and x(u′
k) =: β4, and x(uk) =: β5. ρ(Ce) =: ρ,

also by (1), similarly as above the computation of Aα(Ce), we obtain:
g(ρ) = (nα − 2α − ρ)(α − ρ)(α − ρ + 1)(ρ2 − 3αρ + α2 + 2α − 1) − (k − 1)(1 − α)2(α −

ρ + 1)(ρ2 − 3αρ + α2 + 2α − 1) − (n − k − 2)(1 − α)2(α − ρ)(ρ2 − 3αρ + α2 + 2α − 1) −
(1 − α)2(α − ρ)2(α − ρ + 1) = 0.

Thus, our proof is finished. �
Denote by C∗

n be the set of all cacti with n vertices. Let C∗1
n be a cactus graph in C∗

n

such that n is odd and C∗1
n contains n−1

2 cycles of length 3 (if any). Let C∗2
n be a cactus

graph in C∗
n such that n is even and C∗2

n contains n−2
2 cycles of length 3 (if any) and one

pendant edge.

Theorem 3.4. (i) If n is odd and G is a graph with the maximum Aα−spectral radius
in C∗

n, then G ∼= C∗1
n ;

(ii) If n is even and G is a graph with the maximum Aα−spectral radius in C∗
n, then

G ∼= C∗2
n .

Proof. By the proof of Theorem 3.1, we have the sharp upper bounds of Aα−spectral
radius attain at Ce and Co. We can set up a new graph by connecting any two pendant
vertices and the original graph is the proper subgraph of this new graph. By Lemma 2.2,
we have ρ(G) is increasing by this operation. Therefore, ρ(G) ≤ ρ(C∗1) if n is odd, and
ρ(G) ≤ ρ(C∗2) if n is even. Since C∗1 is the cactus graph Ce when k = 0, and C∗2 is the
cactus graph Co when k = 1. Thus, this theorem is proved.

By Proposition 3.3, and letting k = 0, 1, we can also obtain their corresponding eigen-
values. �

Based on the above outcomes, we can determine the sharp upper bound for the Aα-
spectral radius of cacti with a perfect matching. Let Cm

2k be the set of all 2k-vertex cacti
with a perfect matching.

Theorem 3.5. If G is a graph with the maximum Aα−spectral radius in Cm
2k, then G ∼=

C∗2
2k .
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