
Manoj Bhardwaj
Department of Mathematics, University of Delhi, New Delhi-110007, India

Abstract
In this addendum we give an example to show that there is an error in Theorem 3.7 in “Ideal Rothberger spaces” [Hacet. J. Math. Stat. 47(1), 69-75, 2018]. We also prove the theorem with different hypothesis.

Mathematics Subject Classification (2010). 54D20, 54B20

Keywords. Rothberger modulo ideal spaces, perfect maps

We use notation and terminology from [2]. In [2], the author gave the following theorem for inverse invariant.

A function \(f \) from a topological space \(X \) to a space \(Y \) is said to be perfect map [1] if

1. \(f \) is onto
2. \(f \) is continuous
3. \(f \) is closed map
4. \(f^{-1}(y) \) is compact in \(X \) for each \(y \in Y \).

Theorem 1 ([2]). Let \(f : X \to Y \) be a perfect map and \(I \) be an ideal in \(Y \). If \(Y \) is Rothberger modulo \(I \), then \(X \) is Rothberger modulo \(f^{-1}(I) \).

Here we give an example which contradicts the Theorem 1 given in [2].

Example 2. Let \(\mathbb{R} \) be set of real numbers with usual topology and \(J = \{ \phi \} \) be an ideal in \(\{ a \} \). Take a constant function \(f \) from \([0, 1] \) to one point Rothberger space or \(\{ a \} \), where \([0, 1] \) is compact closed subspace of \(\mathbb{R} \). Then \(f \) is closed, open, onto and continuous map. Also \(f^{-1}(a) = [0, 1] \) is compact but \([0, 1] \) is not Rothberger [3] since \(\{ a \} \) is Rothberger.

Now we give positive result regarding this and provide maps under which Rothberger modulo an ideal spaces are inverse invariant.

Theorem 3. Let \(f \) be an open bijective map from a space \(X \) to \(Y \) and \(I \) be an ideal in \(Y \). If \(Y \) is Rothberger modulo \(J \), then \(X \) is Rothberger modulo \(f^{-1}(J) \).

Proof. Let \(\langle U_n : n \in \omega > \) be a sequence of open covers of \(X \). Then for each \(n \),

\[V_n = \{ f(U) : U \in U_n \} \]

is an open cover of \(Y \). Since \(Y \) is Rothberger modulo \(J \), there are \(\tilde{J} \in J \) and a sequence \(\langle W_n : n \in \omega > \) such that for each \(n \), \(W_n \) is a singleton subset of \(U_n \) and for each \(y \in Y \setminus \tilde{J} \), belongs to \(\bigcup W_n \) for some \(n \). Now assume that for each \(n \),

Email address: manojmnj27@gmail.com
Received: 14.01.2020; Accepted: 20.05.2020
\[W_n = \{ f(U_{n,1}) \} \] and \[S_n = \{ U_{n,1} \}. \]

Then \(f^{-1}(J) \in f^{-1}(J) \) and sequence \(< S_n : n \in \omega > \) witnesses Rothberger modulo \(f^{-1}(J) \) property of \(X \) for the sequence \(< U_n : n \in \omega > \). Let \(x \in X \setminus f^{-1}(J) \). Then

\[y = f(x) \in Y \setminus J \] and \(y \in \bigcup W_n \) for some \(n \).

This implies that \(y \in f(U_{n,1}) \). Since \(f \) is one-to-one, \(x \in U_{n,1} \). So \(x \in \bigcup S_n \) for some \(n \).

This completes the proof. \(\square \)

References

