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Abstract
In this study, we analyze the performance of a numerical scheme based on 3-scale Haar
wavelets for dynamic Euler-Bernoulli equation, which is a fourth order time dependent
partial differential equation. This type of equations governs the behaviour of a vibrating
beam and have many applications in elasticity. For its solution, we first rewrite the
fourth order time dependent partial differential equation as a system of partial differential
equations by introducing a new variable, and then use finite difference approximations
to discretize in time, as well as 3-scale Haar wavelets to discretize in space. By doing
so, we obtain a system of algebraic equations whose solution gives wavelet coefficients
for constructing the numerical solution of the partial differential equation. To test the
accuracy and reliability of the numerical scheme based on 3-scale Haar wavelets, we apply
it to five test problems including variable and constant coefficient, as well as homogeneous
and non-homogeneous partial differential equations. The obtained results are compared
wherever possible with those from previous studies. Numerical results are tabulated and
depicted graphically. In the applications of the proposed method, we achieve high accuracy
even with small number of collocation points.
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1. Introduction
The fourth-order problem considered in this paper is

µ(x)∂
2u

∂t2
+ EI(x)∂

4u

∂x4 = F (x, t), a ≤ x ≤ b, 0 ≤ t ≤ T, (1.1)
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subject to the initial conditions
u(x, 0) = ξ(x),
ut(x, 0) = η(x), a ≤ x ≤ b,

and the boundary conditions of the form
u(a, t) = f1(t), u(b, t) = f2(t),

uxx(a, t) = f3(t), uxx(b, t) = f4(t), 0 ≤ t ≤ T.

Such problems occur in the study of the transverse displacements of a flexible beam hinged
at both ends. Here u = u(x, t) is the transverse displacement of the beam, t and x are
time and spatial variables, µ(x) > 0 is the density of the beam, EI(x) > 0 is the beam
bending stiffness and F (x, t) is dynamic driving force per unit mass. Such an equation
is also called dynamic Euler-Bernoulli equation, and its solution is important in many
applications such as control of large flexible space structures or the development of robotics
designs [3, 28,41,50].

The analytic solutions of variable coefficient nonhomogeneous Euler–Bernoulli equation
are obtained by Wazwaz [52] using the Adomian decomposition method. Some exact solu-
tions of variable coefficient homogeneous and nonhomogeneous Euler–Bernoulli equation
are obtained by Adomian method in [14]. Analytical solutions of partial differential equa-
tions are very useful. However, it is not always possible to obtain the analytical solutions
or it is possible only for limited initial and boundary conditions. So it is crucial to develop
efficient numerical methods. For obtaining numerical solutions of Eq. (1.1), finite differ-
ence methods are employed in [1,7–13,20,25,47,51]. A fully Sinc-Galerkin method is used
in [49] by Smith et al. for solving fourth-order partial differential equations. A three level
scheme based on parametric quintic spline is proposed by Aziz et al. [2] for the solution
of fourth-order parabolic partial differential equations with constant coefficients. Khan et
al. used sextic splines for solving a fourth-order parabolic partial differential equation in
[26].

Caglar and Caglar [4] have developed a fifth degree B-spline method to obtain the
numerical solution of constant coefficient fourth-order parabolic partial differential equa-
tions. Free vibration of an Euler–Bernoulli beam is obtained by Liu and Gurram [32] using
He’s variational iteration method. For variable coefficient fourth order parabolic partial
differential equations a new three level implicit method based on sextic spline is proposed
by Rashidinia and Mohammadi [46]. Mittal and Jain [36] used cubic and quintic B-spline
method with redefined basis functions for obtaining numerical solutions of fourth-order
parabolic partial differential equations with constant coefficients. Recently, Mohammadi
[41] developed a numerical method based on sextic B-splines to solve the fourth-order
time dependent partial differential equations subjected to fixed and cantilever boundary
conditions.

Due to attractiveness of Haar wavelets for their simplicity, accuracy, computational
cost, and so on, in recent years they have got much attention in numerical solutions of
differential equations. A brief review of the literature can be given as follows. Chen and
Hsiao[5] used Haar wavelet method for solving lumped and distributed parameter systems.
In [6], they also discussed an optimal control problem. Hsiao and Wang [16,17] used Haar
wavelets for solving singular bilinear and nonlinear systems and [18] investigated nonlinear
stiff systems. Hsiao [15] showed that the Haar wavelet approach is also effective for solving
variational problems. Lepik applied this method to some well known problems [29–31]. Zhi
Shi et al. [48] applied Haar wavelets to solve 2D and 3D Poisson equations and biharmonic
equations.

Jiwari [21] used a hybrid numerical scheme based on implicit Euler method, quasi-
linearization and uniform Haar wavelets for the numerical solutions of Burgers’ equa-
tion. Kaur et al. [24] solved Lane-Emden equations arising in astrophysics with Haar



Numerical investigation of dynamic Euler-Bernoulli equation ... 161

Wavelets. Pandit et al. [45] solved second-order hyperbolic telegraph type equations by
Haar wavelets. Majak et al. [33–35] studied functionally graded material (FGM) beams
by means of Haar wavelet discretization method and convergence of Haar wavelet method.
An efficient numerical scheme based on uniform Haar wavelets and the quasilinearization
process is proposed for the numerical simulation of time dependent nonlinear Burgers’
equation by Jiwari [22].

Oruç et al. [42–44] solved modified Burgers’ equation, coupled Schrödinger-KdV equa-
tions and regularized long wave equation with the help of a Haar wavelet based method.
Vibration analysis of nanobeams is investigated by Haar wavelets in [27]. A new type of
solutions was obtained for the MHD Falkner–Skan boundary layer flow problem using the
Haar wavelet quasilinearization approach via Lie symmetric analysis by Jiwari et. al. [23].
Mittal and Pandit [38] used Haar wavelet operational matrix along with quasi-linearization
to detect the spin flow of fractional Bloch equations. Mittal and Pandit [40] developed
a novel algorithm based on Scale-3 Haar wavelets and quasilinearization for numerical
solution of a dynamical system of ordinary differential equations. Recently, Scale-3 Haar
wavelet-based algorithm has been extended to find numerical approximations of second
order initial and boundary value problems by Mittal and Pandit [39]. Most of the papers
mentioned above are based on classical Haar wavelets (2-scale Haar wavelets).

In this study our aim is to analyze the performance of the 3-scale Haar wavelet colloca-
tion method (HWCM), recently introduced by Mittal and Pandit in their paper [37], for
fourth order partial differential equations with variable and constant coefficients. As far
as we know, the 3-scale Haar wavelets have not been employed to solve high order partial
differential equations such as Euler-Bernoulli problems, which motivates us for conducting
this study. This paper is organized as follows. In Section 2, 3-scale Haar wavelets and
their integrals are introduced. In Section 3, a method based on discretization of time
and space variables is described. Numerical results and discussion are given in Section 4.
Finally, we summarize our findings in Section 5.

2. 3-Scale Haar wavelets and their integrals
The 3-scale Haar wavelets are constructed from two wavelet functions, namely sym-

metric and antisymmetric wavelet functions. This is the main difference with the 2-scale
Haar wavelets, which employ only one wavelet function. The 3-scale Haar wavelets have
advantages over the 2-scale ones: they converge rapidly, they can be represented by sparse
matrices, in numerical applications solutions can be found at any point in the range, and
they can easily detect singularity and discontinuity [37].

Using the orthogonality properties of 3-scale Haar wavelets, one can express any square
integrable function f(x) on the interval [0, 1) as an infinite series in the following form
[37,39]:

f(x) ≈ c1ϕ1(x) +
∞∑

even index i, i≥2
ciψ

(1)
i (x) +

∞∑
odd index i, i≥3

ciψ
(2)
i (x). (2.1)

Herein, ϕ1, ψ
(1)
i and ψ

(2)
i are given by

ϕ1(x) =
{

1
0

a ≤ x ≤ b,

elsewhere,
(2.2)

ψ
(1)
i (x) = 1√

2


−1
2
−1

α(i) ≤ x < β(i),
β(i) ≤ x < γ(i),
γ(i) ≤ x < δ(i),

(2.3)
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ψ
(2)
i (x) =

√
3
2


1
0
−1

α(i) ≤ x < β(i),
β(i) ≤ x < γ(i),
γ(i) ≤ x < δ(i),

(2.4)

and

α(i) = a+ (b− a) k
m
,

β(i) = a+ (b− a)k + 1/3
m

,

γ(i) = a+ (b− a)k + 2/3
m

,

δ(i) = a+ (b− a)k + 1
m

,

where m is defined as 3j (j = 0, 1, ...), and integer k = 0, 1, ..,m − 1 is the translation
parameter. The index i in α(i), β(i), γ(i) and δ(i) shows the relation between wavelet
level m and translation parameter k. If i = 1, then we get scaling function ϕ1(x) which
is defined in (2.2) and shown in Fig. 1 for [a, b] = [0, 1]. In case of i > 1, the index i is
calculated according to formulae i = m+ 2k or i = m+ 2k + 1. If i is even then consider
ψ

(1)
i , if i is odd then consider ψ(2)

i . In Figs. 2 and 3, first wavelets ψ(1)
i and ψ(2)

i are plotted
for [a, b] = [0, 1].

Figure 1. 3-scale Haar wavelet scaling function ϕ1(x)
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Figure 2. First symmetric wavelet ψ(1)
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Figure 3. First anti-symmetric wavelet ψ(2)
1 (x)

Eq. (2.1) is an infinite series. We truncate this series to 3-scale Haar wavelets as [37]:

f(x) ≈ c1ϕ1(x) +
3m∑

even index i, i≥2
ciψ

(1)
i (x) +

3m∑
odd index i, i≥3

ciψ
(2)
i (x) = cTH3m.

where cT = [c1, ..., c3m] and H3m = [ϕ1(x), ψ(1)
2 (x), ψ(2)

3 (x), ..., ψ(1)
3m−1(x), ψ(2)

3m(x)]T are in
size of 1 × 3m.

In the solution process of a differential equation of any order, we need to integrate
3-scale Haar wavelets, that is we employ the integrals

ϕ1,1(x) =
∫ x

0
ϕ1(t)dt =

{
x

0
[a, b),
elsewhere,

ψ
(1)
i,1 (x) =

∫ x

0
ψ

(1)
i (t)dt = 1√

2


α(i) − x

2x− 3β(i) + α(i)
α(i) + 3γ(i) − 3β(i) − x

α(i) ≤ x < β(i),
β(i) ≤ x < γ(i),
γ(i) ≤ x < δ(i),

ψ
(2)
i,1 (x) =

∫ x

0
ψ

(2)
i (t)dt =

√
3
2


x− α(i)
β(i) − α(i)
γ(i) + β(i) − α(i) − x

α(i) ≤ x < β(i),
β(i) ≤ x < γ(i),
γ(i) ≤ x < δ(i).

Moreover, we introduce

ϕ1,n+1(x) =
∫ x

0
ϕ1,n(t)dt, ψ

(1)
1,n+1 =

∫ x

0
ψ

(1)
1,n(t)dt, ψ

(2)
1,n+1 =

∫ x

0
ψ

(2)
1,n(t)dt

which can explicitly be written as

ϕ1,n+1(x) =
{

xn+1

(n+1)!
0

[a, b),
elsewhere,

ψ
(1)
i,n+1(x) = 1√

2



−(x−α(i))n+1

(n+1)! α(i) ≤ x < β(i),
3(x−β(i))n+1−(x−α(i))n+1

(n+1)! β(i) ≤ x < γ(i),
3(x−β(i))n+1−3(x−γ(i))n+1−(x−α(i))n+1

(n+1)! γ(i) ≤ x < δ(i),
3(x−β(i))n+1−3(x−γ(i))n+1−(x−α(i))n+1+(x−δ(i))n+1

(n+1)! δ(i) ≤ x < 1,
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ψ
(2)
i,n+1(x) =

√
3
2



(x−α(i))n+1

(n+1)! α(i) ≤ x < β(i),
(x−α(i))n+1−(x−β(i))n+1

(n+1)! β(i) ≤ x < γ(i),
(x−α(i))n+1−(x−β(i))n+1−(x−γ(i))n+1

(n+1)! γ(i) ≤ x < δ(i),
(x−α(i))n+1−(x−β(i))n+1−(x−γ(i))n+1+(x−δ(i))n+1

(n+1)! δ(i) ≤ x < 1.

3. Discretization scheme for fourth order partial differential equations
To solve Eq. (1.1) we introduce a new variable, namely

v =∂u

∂t
.

Now Eq. (1.1) can be rewritten as the system of partial differential equations that is first
order in time given below.

ut − v = 0,
µ(x)vt + EI(x)uxxxx = F (x, t). (3.1)

We describe the discretization process of the equations above in the subsequent sections.

3.1. Time discretization
We use explicit finite difference schemes for time derivatives, as well as the time average

for v and uxxxx in Eq. (3.1). By doing so, we get

uj+1 − uj

∆t
− vj+1 + vj

2
= 0,

µ(x)v
j+1 − vj

∆t
+ EI(x)u

j+1
xxxx + uj

xxxx

2
= F (x, tj+1).

The equations above can be rearranged as

uj+1 − ∆t
2
vj+1 = uj + ∆t

2
vj ,

µ(x)vj+1 + ∆tEI(x)
2

uj+1
xxxx = µ(x)vj − ∆t · EI(x)

2
uj

xxxx + ∆tF (x, tj+1), (3.2)

with initial conditions

u0(x) = ξ(x),
v0(x) = η(x), a ≤ x ≤ b (3.3)

and with the boundary conditions

uj+1(a) = f1(tj+1), uj+1(b) = f2(tj+1),
uj+1

xx (a) = f3(tj+1), uj+1
xx (b) = f4(tj+1), (3.4)

where uj+1 and vj+1 are the solutions of Eq. (3.2) at the (j + 1)th time step and tj+1 =
∆t(j + 1), j = 0, 1, ..., N − 1, ∆t ·N = T .
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3.2. Space discretization by Haar wavelets
Since Haar wavelets are generally defined for [0, 1]. We have to transform the domain

into unit interval. By introducing y = (x−a)/L , L = b−a, the interval a ≤ x ≤ b can be
transformed into the unit interval 0 ≤ y ≤ 1. Using this transformation, we can reduce a
problem defined on [a, b] to a problem defined on [0, 1]. Hence, without loss of generality,
the PDE we have at hand is defined over [0, 1] in space.

For the description of space discretization, we introduce notations

3m∑
i=1

cihi(x) := c1ϕ1(x) +
3m∑

even index i, i≥2
ciψ

(1)
i (x) +

3m∑
odd index i, i≥3

ciψ
(2)
i (x)

3m∑
i=1

cipi,j(x) := c1ϕ1,j(x) +
3m∑

even index i, i≥2
ciψ

(1)
i,j (x) +

3m∑
odd index i, i≥3

ciψ
(2)
i,j (x)

for j = 1, 2, 3, 4. Now we expand uj+1
xxxx(x) term in (3.2) into Haar wavelets, that is

uj+1
xxxx(x) =

3m∑
i=1

cihi(x). (3.5)

By integrating the equation above from 0 to x, we get

uj+1
xxx(x) = uj+1

xxx(0) +
3m∑
i=1

cipi,1(x) (3.6)

We do not know the value of uj+1
xxx(0) term in Eq. (3.6), but we can calculate it by

integrating Eq. (3.6) from 0 to 1 and using boundary conditions from Eq. (3.4) as follows:

uj+1
xxx(0) = f4(tj+1) − f3(tj+1) −

3m∑
i=1

cipi,2(1).

Now by integrating Eq. (3.6) from 0 to x we obtain the second derivative uj+1
xx (x) as

uj+1
xx (x) =

3m∑
i=1

cipi,2(x) + f3(tj+1) +
[
f4(tj+1) − f3(tj+1)

]
x− x

3m∑
i=1

cipi,2(1). (3.7)

By integrating Eq. (3.7) once again from 0 to x, we deduce

uj+1
x (x) − uj+1

x (0) =
3m∑
i=1

cipi,3(x) + xf3(tj+1)

+
[
f4(tj+1) − f3(tj+1)

] x2

2
− x2

2

3m∑
i=1

cipi,2(1), (3.8)

which we integrate again from 0 to 1 to obtain

uj+1(1) − uj+1(0) − uj+1
x (0) =

3m∑
i=1

cipi,4(1) + 1
2
f3(tj+1)

+
[
f4(tj+1) − f3(tj+1)

] 1
6

− 1
6

3m∑
i=1

cipi,2(1). (3.9)
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By exploiting the boundary conditions uj+1(1) = f2(tj+1) and uj+1(0) = f1(tj+1) in the
equation above, we retrieve

uj+1
x (0) =f2(tj+1) − f1(tj+1) −

3m∑
i=1

cipi,4(1)

− 1
2
f3(tj+1) −

[
f4(tj+1) − f3(tj+1)

] 1
6

+ 1
6

3m∑
i=1

cipi,2(1).

Plugging the right-hand side of the equation above for uj+1
x (0) in Eq.(3.8), we have

uj+1
x (x) =

3m∑
i=1

cipi,3(x) + f2(tj+1) − f1(tj+1) − 1
3
f3(tj+1)

− 1
6
f4(tj+1) −

3m∑
i=1

ci

[
pi,4(1) − 1

6
pi,2(1)

]
(3.10)

+ f3(tj+1)x+ x2

2

[
f4(tj+1) − f3(tj+1)

]
− x2

2

3m∑
i=1

cipi,2(1), (3.11)

which in turn yields

uj+1(x) =
3m∑
i=1

cipi,4(x) + f1(tj+1) +
[
f2(tj+1) − f1(tj+1) − 1

3
f3(tj+1) − 1

6
f4(tj+1)

]
x

− x
3m∑
i=1

ci

[
pi,4(1) − 1

6
pi,2(1)

]

+ f3(tj+1)x
2

2
+ x3

6

[
f4(tj+1) − f3(tj+1)

]
− x3

6

3m∑
i=1

cipi,2(1). (3.12)

Additionally we express vj+1(x) in terms of Haar wavelets in the form

vj+1(x) =
3m∑
i=1

dihi(x). (3.13)

By plugging Eqs. (3.5), (3.12) and (3.13) into Eq. (3.2) and discretizing at collocation
points xl = l−0.5

3m , l = 1, 2, ..., 3m yields a system of linear equations whose solution gives
the wavelet coefficients ci and di. Then by plugging these wavelet coefficients into Eqs.
(3.12) and (3.13) we can obtain the numerical solutions uj+1(x) and vj+1(x).

3.3. Convergence analysis of Haar wavelets
Let

u(x) = c1ϕ1(x) +
∞∑

even index i, i≥2
ciψ

(1)
i (x) +

∞∑
odd index i, i≥3

ciψ
(2)
i (x)

and

u3m(x) = c1ϕ1(x) +
3m∑

even index i, i≥2
ciψ

(1)
i (x) +

3m∑
odd index i, i≥3

ciψ
(2)
i (x)

be exact and numerical solutions of Eq. (1.1) with a = 0 and b = 1. Furthermore,
EJ = u(x) − u3m(x) with J = 3m and

∥∥∥u(x)
∥∥∥ =

(∫ 1
0 |u(x)|2dx

)1/2
.
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Theorem 3.1. [37] Let the exact solution u(x) be square integrable on [0, 1] with bounded
derivatives on (0, 1). Then the error EJ satisfies

∥EJ∥ ≤ M√
24

1
3J

for some constant M independent of J .

Proof. See [37]. �

Theorem 3.1 implies that the error bound is inverse proportional to the level of resolution
of scale-3 Haar wavelets. Therefore the error decreases as we increase J .

4. Numerical examples
Numerical computations have been done with python programming language and graph-

ical outputs were generated by Matplotlib package [19].
In problem 1, we calculate the maximal absolute relative errors which are defined as

follows:

E =maxi=1,...,3m

∣∣∣∣∣uexact
i − unum

i

uexact
i

∣∣∣∣∣ .
In problems 2, 3, 4 and 5, for the sake of comparison with earlier studies, we calculate the
absolute errors |u(x) − unum(x)| at the points x = 0.1, 0.2, 0.3, 0.4, 0.5, where u(x) and
unum(x) denote the exact and numerical solutions at x. Here we should note that, uexact

i and
unum

i denote exact and numerical solutions at collocation points xi at a certain final time t.
Since in the solution process we took the collocation points as xi = i−0.5

3m , i = 1, 2, ..., 3m,
for calculating numerical results at the points x = 0.1, 0.2, 0.3, 0.4, 0.5 we have used
interpolation techniques.

Also for every problem, at the bottom of the tables, we provide the error norm L∞
which is defined by

L∞(u, .) = max
i

∣∣∣uexact
i − unum

i

∣∣∣ , i = 1, 2, ..., 3m.

Convergence rates are calculated according to the formula

Rate =
log

(
L∞(u,3∆x)
L∞(u,∆x)

)
log

(
3∆x
∆x

) (4.1)

where ∆x = 1
3m is the step size of spatial variable x.

4.1. Problem 1
We consider

120x∂
2u

∂t2
+
(
120 + x5

) ∂4u

∂x4 = 0

subject to the initial conditions

u(x, 0) = 0, ut(x, 0) = 1 + x5

120
,

1
2

≤ x ≤ 1

and with the boundary conditions at x = 1/2 and x = 1 of the form

u(1
2
, t) = 3841

3840
sin t, u(1, t) = 121

120
sin t,

uxx(1
2
, t) = 1

48
sin t, uxx(1, t) = 1

6
sin t, t ≥ 0.
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This equation is also studied by [46], [1] and [25]. The exact solution of this problem is

u(x, t) =
(

1 + x5

120

)
sin t.

In Table 1, to see convergence in time variable we set 3m = 27 and compute the errors
at t = 0.01 for decreasing values of ∆t. From Table 1, it is obvious that as the values of
∆t are diminished, the error also decreases. Also to see convergence in space variable we
fix ∆t = 0.00025 and compute the errors at t = 0.01 for increasing values of collocation
points in Table 2. It is clearly seen from Table 2 that the errors get smaller by increasing
the number of collocation points. Using various values of ∆t and t = 0.01 we compared
the maximum absolute relative errors of the present method with the results from existing
methods in the literature in Table 3. We choose the number of collocation points as
3m = 9 for the present method for comparison. Table 3 shows that the obtained results
from the present method, are more accurate in comparison to the sextic spline method
[46], A.D.I methods [1] and difference scheme method [25] for this problem. Numerical
and exact solutions are plotted for 3m = 9, ∆t = 0.0025 at t = 1 in Fig. 4.

Table 1. Maximum absolute relative errors for different values of ∆t and 3m = 27
at t = 0.01 for Problem 1

∆t E
0.001 4.5780e-09
0.0005 1.2246e-09

3m = 27 0.00025 2.8163e-10
0.000125 6.7723e-11
6.25e-05 1.9763e-11
3.125e-05 3.5833e-13

Table 2. Maximum absolute relative errors for different values of 3m and ∆t =
0.00025 at t = 0.01 for Problem 1

3m E
3 3.4277e-09
9 8.8387e-10

∆t = 0.00025 27 2.8162e-10
81 9.4109e-11
243 3.1088e-11
729 1.0436e-11

Table 3. Maximum absolute relative errors at t = 0.01 in Problem 1

Methods
Rashidinia and Andrade and Khaliq and

HWCM Mohammadi [46] Mckee [1] Twizell [25]
Parameters 3m = 9 h = 0.05 h = 0.05 h = 0.05

∆t = 0.000625 5.8883e-009 3.51e-08 4.10e-07 3.30e-07
E ∆t = 0.00025 8.8387e-010 9.97e-08 7.20e-07 3.30e-07

∆t = 0.000125 2.2098e-010 5.33e-08 1.90e-06 3.30e-07
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Figure 4. Exact solution versus numerical solution for 3m = 9, ∆t = 0.0025 at
t = 1 in Problem 1

4.2. Problem 2
We consider

sin x∂
2u

∂t2
+ (x− sin x) ∂

4u

∂x4 = 0

subject to the initial conditions
u(x, 0) = x− sin x, ut(x, 0) = − (x− sin x) , 0 ≤ x ≤ 1

and with the boundary conditions
u(0, t) = 0, u(1, t) = e−t (1 − sin 1) ,

uxx(0, t) = 0, uxx(1, t) = e−t sin 1, t ≥ 0.

This problem is also also studied in [46]. The exact solution for this problem is

u(x, t) = (x− sin x) e−t.

We solve the problem for 3m = 27 and ∆t = 0.05 with 10 and 16 time steps. We
compared the approximate solutions obtained by the present method with exact solutions
and tabulated the absolute errors for the present method and for the sextic spline method
by Rashidinia and Mohammadi [46] at the points x = 0.1, 0.2, 0.3, 0.4, 0.5 and at times
t = 0.5 and t = 0.8 in Table 4. It can be seen from the Table 4 that the present method
gives more accurate results in comparison to [46] for all points. We plot the error with
respect to ∆t in Fig. 5 for 3m = 27 at t = 1. Also a plot of the error with respect to the
number of collocation points is given in Fig. 6 for ∆t = 0.0025 at t = 1. From Figs. 5-6
we can deduce that, for fixed 3m, lowering the value of ∆t also reduces the error, and,
for fixed ∆t, increasing 3m decreases the error. Finally graphical representation of the
exact solution and numerical solution are illustrated in Fig. 7 for 3m = 27, ∆t = 0.005 at
t = 0.08. In Table 5 we tabulated the convergence rates in view of the errors calculated
according to Eq. (4.1).
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Table 4. L∞ and Absolute errors for Problem 2

Methods Time Steps Parameters x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5
HWCM 10 3m = 27 6.17e-11 3.55e-11 1.12e-09 8.03e-10 2.81e-10
HWCM 16 3m = 27 5.77e-11 1.41e-10 1.31e-09 1.85e-09 6.58e-10

[46] 10 h = 0.05 8.35e-08 4.51e-08 8.25e-08 2.33e-08 4.52e-08
[46] 16 h = 0.05 8.42e-08 2.62e-08 5.32e-08 1.45e-08 2.89e-08

HWCM 10 3m = 27 L∞ = 3.0466e− 09
HWCM 16 3m = 27 L∞ = 4.2367e− 09
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Figure 5. Error versus ∆t for 3m = 27 at t = 1 in Problem 2
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Table 5. Convergence rates for ∆t = 0.005 at time t = 1 in Problem 2

L∞ Rate
3m = 3 1.0535e-05 -
3m = 9 1.3257e-06 1.887
3m = 27 1.5933e-07 1.928
3m = 81 2.7831e-08 1.588

4.3. Problem 3
We consider a constant coefficient (µ(x) = EI(x) = 1) fourth order non-homogeneous

parabolic partial differential equation given by
∂2u

∂t2
+ ∂4u

∂x4 =
(
π4 − 1

)
sin(πx) cos t

subject to the initial conditions
u(x, 0) = sin(πx), ut(x, 0) = 0, 0 ≤ x ≤ 1

and with the boundary conditions
u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, t ≥ 0.

The exact solution for this problem is [12]
u(x, t) = sin(πx) cos t.

In Table 6, we give absolute errors at the points x = 0.1, 0.2, 0.3, 0.4, 0.5 using
3m = 27, 81 and ∆t = 0.00125, 0.005 at t = 0.02, 0.05. Also we give results from the
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previous studies for comparison. It can be seen from Table 6 that the present method
gives more accurate results than AGE method [12], Fifth degree B-spline method [4], B-
spline methods with redefined basis functions [36] and gives comparable results with other
methods studied in [2,26,41,46]. Note that n stands for the number of collocation points
in Table 6. Figure 8 shows the evolution of numerical solution in time during simulation
for 3m = 81 and ∆t = 0.05.

Table 6. L∞ and Absolute errors for Problem 3

Methods Time Parameters x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5

HWCM

t = 0.02 3m = 81, ∆t = 0.00125 3.80e-07 7.22e-07 9.92e-07 1.16e-06 1.22e-06
t = 0.05 3m = 81, ∆t = 0.005 3.63e-06 6.91e-06 9.51e-06 1.12e-05 1.18e-05

t = 0.02 3m = 27, ∆t = 0.00125 3.23e-06 6.13e-05 8.75e-06 1.02e-05 1.04e-05
t = 0.05 3m = 27, ∆t = 0.005 2.04e-05 3.88e-05 5.37e-05 6.31e-05 6.60e-05

Evans and
Yousif [12]

t = 0.02 h = 0.05, ∆t = 0.00125 2.50e- 05 4.70e- 05 6.60e- 05 7.80e- 05 8.20e- 05
t = 0.05 h = 0.05, ∆t = 0.005 2.20e- 04 4.10e- 04 5.40e- 04 6.20e- 04 6.50e- 04

Caglar and
Caglar [4]

t = 0.02 n = 121, ∆t = 0.005 4.80e-06 9.70e-06 1.40e-05 1.90e-05 2.40e-05
t = 0.02 n = 191, ∆t = 0.005 5.20e-06 2.10e-06 3.10e-06 4.20e-06 5.20e-06

Mittal and Jain
[36] Method 1

t = 0.02 n = 181, ∆t = 0.005 8.00e-06 1.52e-05 2.09e-05 2.46e-05 2.59e-05
t = 0.05 n = 181, ∆t = 0.005 8.97e-06 1.71e-05 2.35e-05 2.76e-05 2.90e-05

Mittal and Jain
[36] Method 2

t = 0.02 n = 181, ∆t = 0.005 1.50e-07 2.90e-07 3.90e-07 4.60e-07 4.90e-07
t = 0.05 n = 181, ∆t = 0.005 1.10e-06 2.09e-06 2.88e-06 3.38e-06 3.56e-06

Khan et al [26]
t = 0.02 h = 0.05, ∆t = 0.00125 9.07e-06 7.79e-06 2.75e-06 1.01e-06 2.59e-06
t = 0.05 h = 0.05, ∆t = 0.005 1.87e-06 2.13e-05 1.49e-05 8.60e-06 5.96e-06

Rashidinia and
Mohammadi [46]

t = 0.02 h = 0.05, ∆t = 0.00125 4.47e-07 2.66e-07 1.39e-07 1.55e-07 1.57e-07
t = 0.05 h = 0.05, ∆t = 0.005 2.91e-06 1.73e-06 1.60e-06 2.23e-06 2.60e-07

Aziz et al. [2]
t = 0.02 h = 0.05, ∆t = 0.00125 9.20e-06 7.90e-06 2.80e-06 9.80e-07 2.50e-06
t = 0.05 h = 0.05, ∆t = 0.005 9.30e-06 8.00e-06 2.80e-06 1.00e-06 2.70e-06

Mohammadi [41]
t = 0.02 h = 0.05, ∆t = 0.00125 4.29e-07 2.51e-07 1.24e-07 1.38e-07 1.40e-07
t = 0.05 h = 0.05, ∆t = 0.005 2.96e-06 1.77e-06 1.64e-06 2.28e-06 2.65e-07

HWCM
t = 0.02 3m = 81, ∆t = 0.00125 L∞ = 1.2239e − 06
t = 0.05 3m = 81, ∆t = 0.005 L∞ = 1.1752e − 05
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to t = 4 in Problem 3

4.4. Problem 4
We consider a constant coefficient (µ(x) = EI(x) = 1) fourth order homogeneous para-

bolic partial differential equation given by

∂2u

∂t2
+ ∂4u

∂x4 = 0

subject to the initial conditions

u(x, 0) = x

12

(
2x2 − x3 − 1

)
, ut(x, 0) = 0, 0 ≤ x ≤ 1

and boundary conditions

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, t ≥ 0.

The exact solution of this problem [11] is

u(x, t) =
∞∑

s=1
as sin(sπx) cos(s2π2t)

where

as = 4
s5π5 (cos(sπ) − 1).
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For the sake of comparing our results with existing results, we choose the number of
collocation points as 3m = 27 and 3m = 81. We observe from the Table 7 that for 3m = 27
the present method gives more accurate results in comparison to existing methods except
H.O.C.M. [13] at t = 0.02, and while at t = 1 the present method gives the best results
among other methods. When we increase the number of collocation points to 3m = 81,
we see from the Table 7 that none of the existing methods can reach to the performance
of the present method in terms of accuracy. In Fig. 9, evolution of numerical solution
for 3m = 81 and ∆t = 0.01 from t = 0 to t = 1 is given. In Table 8 we tabulated the
convergence rates in view of the errors calculated according to Eq. (4.1).

Table 7. L∞ and Absolute errors for Problem 4

Methods Time Parameters x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5

HWCM

t = 0.02 3m = 27, ∆t = 0.00125 3.33e-07 4.58e-07 1.45e-07 3.84e-07 1.97e-07
t = 1 3m = 27, ∆t = 0.005 2.04e-05 3.76e-05 2.16e-05 1.22e-05 2.45e-05

t = 0.02 3m = 81, ∆t = 0.00125 1.78e-07 1.35e-08 4.27e-07 4.07e-07 1.41e-07
t = 1 3m = 81, ∆t = 0.005 1.54e-05 1.06e-05 1.17e-05 3.13e-05 3.85e-05

H.O.C.M. [13]
t = 0.02 h = 0.05, ∆t = 0.00125 1.40e-07 2.90e-07 5.60e-07 3.40e-07 1.70e-07

t = 1 h = 0.05, ∆t = 0.005 2.59e-03 1.91e-03 7.17e-04 2.20e-03 6.65e-04

Danea and Evans [10]
t = 0.02 h = 0.05, ∆t = 0.00125 2.50e-06 3.90e-06 1.37e-05 2.60e-06 9.80e-06

t = 1 h = 0.05, ∆t = 0.005 3.19e-03 2.73e-03 9.80e-03 1.25e-02 1.40e-02

Evans [11]
t = 0.02 h = 0.05, ∆t = 0.00125 8.44e-06 1.42e-05 1.74e-05 1.40e-06 1.20e-05

t = 1 h = 0.05, ∆t = 0.005 3.20e-03 2.73e-03 9.80e-03 1.25e-02 1.40e-02

Richtmyer [47]
t = 0.02 h = 0.05, ∆t = 0.00125 2.24e-04 3.67e-04 4.03e-04 3.64e-04 3.35e-04

t = 1 h = 0.05, ∆t = 0.005 2.73e-03 9.48e-03 1.74e-02 2.30e-02 2.24e-02

Semi-explicit [13]
t = 0.02 h = 0.05, ∆t = 0.00125 3.01e-05 6.19e-05 6.69e-05 5.10e-05 1.34e-05

t = 1 h = 0.05, ∆t = 0.005 2.74e-03 5.93e-03 4.48e-03 2.32e-03 6.51e-03

Mittal and Jain[36]
t = 0.02 n = 181, ∆t = 0.005 1.14e-05 1.41e-05 9.70e-06 8.02e-06 1.92e-05

t = 1 n = 181, ∆t = 0.005 7.33e-04 1.44e-03 2.04e-03 2.47e-03 2.63e-03

HWCM
t = 0.02 3m = 81, ∆t = 0.00125 L∞ = 4.4750e-07

t = 1 3m = 81, ∆t = 0.005 L∞ = 3.8503e-05
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Figure 9. Evolution of numerical solution for 3m = 81 and ∆t = 0.01 from t = 0
to t = 1 in Problem 4

Table 8. Convergence rates for ∆t = 0.0001 at final time t = 1 in Problem 4

L∞ Rate
3m = 9 4.693704e-04 -
3m = 27 4.495959e-05 2.135
3m = 81 4.810131e-06 2.034
3m = 243 6.716085e-07 1.792

4.5. Problem 5
We consider a constant coefficient (µ(x) = 1, EI(x) = −1) fourth order homogeneous

parabolic partial differential equation which is also studied in [36]

∂2u

∂t2
= ∂4u

∂x4

subject to the initial conditions

u(x, 0) = sin(πx), ut(x, 0) = −π2 sin(πx), 0 ≤ x ≤ 1
and with boundary conditions

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, t ≥ 0.
The exact solution of the problem is given by
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u(x, t) = sin(πx)e−π2t.

In Table 9, we give computed results by the present method for 3m = 27 and ∆t = 0.005
at t = 0.02, 0.05. We also give the results of [36] for comparison. We observe in Table 9
that the present method gives more accurate results than B-spline methods with redefined
basis functions [36].

Table 9. L∞ and Absolute errors for Problem 5

Methods Time Parameters x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5
HWCM t = 0.02 3m = 27, ∆t = 0.005 7.74e-06 1.47e-05 2.05e-05 2.40e-05 2.50e-05
HWCM t = 0.05 3m = 27, ∆t = 0.005 5.99e-05 3.07e-05 2.89e-05 6.52e-05 8.15e-06

Mittal and Jain[36] t = 0.02 n = 31, ∆t = 0.005 2.80e-04 5.33e-04 7.33e-04 8.62e-04 9.06e-04
Method 1 t = 0.05 n = 31, ∆t = 0.005 2.62e-04 4.98e-04 6.86e-04 8.07e-04 8.48e-04

Mittal and Jain [36] t = 0.02 n = 31, ∆t = 0.005 1.08e-04 2.06e-04 2.83e-04 3.33e-04 3.50e-04
Method 2 t = 0.05 n = 31, ∆t = 0.005 6.13e-04 1.35e-03 1.95e-03 2.18e-03 2.20e-03

HWCM t = 0.02 3m = 27, ∆t = 0.005 L∞ = 2.4987e − 05
HWCM t = 0.05 3m = 27, ∆t = 0.005 L∞ = 6.7356e − 05

5. Conclusion
Our main goal in this study is to propose a new 3-scale Haar wavelet based method to

high order partial differential equations and analyze the performance of the method. The
comparisons of numerical solutions with exact solutions and the results from the previous
studies that are based on numerical techniques such as finite differences, B-splines and high
order spline methods indicate the power of the new 3-scale Haar wavelet based method in
dealing with variable coefficient, constant coefficient, homogeneous and non-homogeneous
partial differential equations. The implementation of the method is straight-forward and
simpler than the existing methods. The advantages of the Haar wavelet based method
can be listed as follows.

• High accuracy is attained even with small number of collocation points.
• Small computational costs are required, and the implementation of the method in

computers is easy
• Coping with boundary conditions is very easy compared with other known meth-

ods.
We also note that the new 3-scale Haar wavelet based method introduced here with suitable
modifications can be easily applied to similar problems.
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