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Highlights 
 

• USW and FWD are capable to locate damaged areas 

• USW detect 53% of the debonded areas 

• FWD detect 46% of the debonded areas 

 

Abstract  Information 

Timely and cost effective maintenance activities are required to perform well under changing 
climatic conditions during service life of a hot mix asphalt (HMA) pavement. Pavement 
maintenance and rehabilitation process plays an important role for cost-effective pavement life 
cycle. Nondestructive testing methods provide to getting significant and rapidly information 
about the pavement without causing any damage on the surface of the pavement. In this paper, 
for early detection of delamination of asphalt surface layers, the results of extensive tests 
performed with deflection-based and seismic-based nondestructive devices are presented. The 
technologies in this field are briefly overviewed and obtained results are compared from various 
aspects. 
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 Introduction 

Hot mix asphalt pavements which are paved on runways 
and major highways are composed of several different 
layers. Transferring the load uniformly through the 
pavement system is expected from a fully-bonded 
pavement structure [1-5]. If a complete bond between 
the layers cannot obtained, the bearing capacity of 
pavement decreases and, in some cases, slippage may 
occur.  

One of the consequences of poor bonding is the 
formation of delamination.  Undetected delamination 
leads to the deterioration of HMA overlays on the surface 
of the roadway [6]. 

Debonding or delamination can occur in three modes [7]. 
delamination between two HMA layers, debonding 
between asphalt overlay and rigid pavement (PCC) slab, 
and debonding between asphalt layer and base course. 
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These debonding or delamination types effect the both 
structural and functional capacity of pavements. The 
most important delamination form is the shallow 
delamination of between two asphalt layers and 
debonding of thin asphalt overlays over rigid concrete 
slabs. In order to increase the bonding at the interfaces 
between layers of pavement, tack coat can be 
implemented. Thus, pavement functions as a monolithic 
system under traffic and environmental effects. Previous 
studies performed on the strength of HMA interface have 
demonstrated that being strong of tack coat bonding 
between the layers of a pavement has high level of 
importance in terms of transfer the radial tensile and 
shear stresses into the whole structure of pavement. On 
the other hand, existing of unbound layers or insufficient 
bonding of layers decreases the bearing capacity of 
pavement and may cause slippage. Insufficient bonding 
may also cause to concentrating of the tensile stresses at 
the bottom of the wearing course [8-10].  

The assessment of the debonding or potential of 
delamination is typically carried out with bond strength 
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tests [11, 12].  The effectiveness of the tack coat varies 
depending on the aggregate gradation. Tack coats are 
generally more effective in fine-grained mixes than 
coarse-grained ones. The bond strength is also sensitive 
to the temperature of the tack coat during the test.  

Study about the interface adhesion properties of hot mix 
asphalt layers based on the laboratory shear tests was 
conducted by Uzan et al [13]. Asphalt concrete specimens 
with different tack coats were tested at ambient 
temperature and elevated temperature under different 
normal stresses. 

For determining the debonding or potential delamination 
occurred during or shortly after construction, using of a 
practical nondestructive testing (NDT) tool which is 
capable of detecting them is preferred. The impulse 
response (IR) method was used for determining the 
bonding condition within asphalt layers under controlled 
laboratory conditions [14]. In order to compare the 
responses from bonded, debonded and partially bonded 
interface conditions, thicknesses of different HMA surface 
layers were considered. As well as the transfer function 
between the applied load and measured deflection time 
histories (quantitative measure), the characteristics of the 
response (qualitative measure) were used to differentiate 
the different interface conditions, too. Cores taken from 
the tested locations showed that there is a good 
agreement between the interface condition predicted by 
using IR method and the interface shear strength 
obtained from laboratory test results. 

Seismic Pavement Analyzer (SPA) and Portable Seismic 
Pavement Analyzer (PSPA) testing devices were firstly 
developed by Nazarian et al [15]. After this important 
progress, the SPA technology was mounted in a portable 
hand-held testing device called as the modulus of the 
surface layers can rapidly be measured by using the PSPA 
in the field conditions. The operating procedure of the 
PSPA is based on generating and detecting stress waves in 
a layer.  Due to the sensitivity to thin near-surface layers, 
the PSPA can be used for the detection of the 
delamination within asphalt pavement layers.  

There exists a lot of research regarding the usage of the 
Falling Weight Deflectometer (FWD) to detect the 
delamination between interfaces of asphalt pavement 
layers. According to the past experience, complicated 
results were seen in the detecting of delamination with 
FWD [16]. In the large part of the literature, a decrease 
seen in stiffness of bituminous or unexpected decline of 
backcalculated HMA modules are pointed out as an 
indication of debonding [10, 16-22].  

In this paper, in detection of delamination and debonding, 
the results obtained from the evaluation of the 
weaknesses and strengths of the FWD and PSPA are 
presented.  The two technologies are briefly overviewed 
and their results are compared.  More information and 

the details about other NDT techniques that can 
potentially be used for detection of debonding can be 
found in Celaya et al [23].  

 NDT Methods  

As well as maximum deflections up to nine and the 
maximum load applied, the FWD readily provides 
deflection values for detailed analysis (Figure 1). In the 
study, 4.45 kN loading and the deflections measured by 
seven sensors (placed at 30.5 equally cm intervals) were 
used. After a comprehensive study, the most reliable 
analysis of debonding by using deflection data obtained 
from FWD was found to be provided by either the 
deflection under the load or the modulus of the asphalt 
layer after backcalculation process [23, 24].  

 
Figure 1. Falling Weight Deflectometer on Small Scale Study; (A) 
FWD, (B) Loading Plate 

Unlike the FWD that measures the response of the 
pavement system, working principle of the PSPA based on 
the wave propagation in layered systems. Specifically, the 
Ultrasonic Surface Wave (USW) method [25] 
implemented to the PSPA was used.  The USW method is 
a seismic-based method. The stripping in HMA has been 
detected successfully by using this method [26]. The PSPA 
(see Figure 2), consists of two ultrasonic transducers and 
a source packaged into a hand-portable system to 
perform the USW tests [27]. In order to predict an average 
modulus and the variation in modulus based on depth, 
the outputs of the two transducers are subjected to signal 
processing and spectral analysis procedures. 

 Case Study 

Ten different asphalt pavement sections were 
constructed specifically for the study as seen in Figure 3. 
Each section was 2.7 m long by 3 m wide. During the 
construction, three transition zones were constructed to 
minimize the variability of the asphalt mixture. The 
pavement cross-section for all sections consisted of a 
prepared sandy silt subgrade and about 200 mm thickness 
of asphalt layer placed in three lifts. The bottom lift 
consisted of about 75 mm of a coarse (P-403 mix as per 
US Federal Aviation Administration Standards for 
Specifying Construction of Airports) mix and the middle 
lift 63 mm of a fine (P-401) mix. The top lift (63 mm thick) 
of Sections 1 to 5 is formed of a coarse P- 403 mix and a 
fine P-401 mix forms the top lift of Sections 6 to 10. 

Load Plate and 

Geophone 1
Geophone 2

(A) (B) 
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Figure 2. Portable Seismic Pavement Analyzer 

Test locations are depicted in Figure 4. A 1.2 m by 3 m 
area for each section was intentionally debonded. Besides 
that, smaller debonded areas were constructed to 
perform the testing the detectability threshold of the 
methods. The effect of temperature on the test methods 
was evaluated by conducting tests in “cool” early spring 
temperatures (range of 15°C to 29°C) and  “hot” summer 
temperatures (range of 24°C to 49°C). 

 
Figure 3. Schematic of small scale section 
 

 
Figure 4. Location of test points 

Several debonding agents were used to simulate different 
levels of debonding. Bond strengths were measured in 
the laboratory by conducting direct shear tests on 

prepared specimens as discussed by Celaya et al [23]. Clay 
slurry, talcum powder, grease, and thin paper soaked in 
motor oil were considered as debonding agents. A tack 
coat in compliance with Item P-603 of FAA Standards for 
Specifying Construction of Airports [28] at a rate of 0.7 
lit/m2 was used as the control bonding agent. While the 
highest bond strength was associated with the tack coat, 
the lowest one was associated with a thin paper soaked 
in motor oil. Based on the shear strength results, it was 
considered that sections constructed with the tack coat 
are fully-bonded. Sections with the clay slurry, talcum 
powder and grease were considered as partially-
debonded, and those with oily paper as fully-debonded. A 
severely debonded area was created in the transition area 
by laying a piece of thick corrugated cardboard and a thick 
layer of clay slurry. 

Shallow and deep debonding was simulated by placing 
the debonding agent between the top two lifts (at a depth 
of 63 mm) and bottom two lifts (a depth of 125 mm), 
respectively.  The characteristics of all sections are fully 
described in Celaya et al [7] and Ertem [24].  

In this study, at that time, testing location temperature 
greatly affected the outcomes of the methods. Therefore, 
a lot of tests were performed were tested repeatedly at 
different times and different structural points 
corresponding to different temperature values. Then, 
relationships which are specific to site were developed for 
each method to be used.  

 Falling Weight Deflectometer (FWD) 

In the study, we used the FWD. An impact loading system 
and seven geophones were mounted on the device to 
determine vertical surface deflections. Geophones were 
firstly placed right underneath the load and then at 300 
mm intervals, respectively. Measurements were taken at 
selected locations of each section with the loading device 
which has a 300 mm diameter load plate and about 27 kN 
equivalent load. A seating drop was firstly applied for 
each test, followed by three additional drops. The average 
vertical displacement of the last three drops was 
measured with each geophone which was operated for 
every test location.   

Deflections measured for the study the at the site 
locations are shown in Figure 5. Deflections measured 
with Geophones 1 and 2 (labeled as SD1 and SD2) are 
noticeably greater at the severly debonded location.  For 
the others, small differences were measured between 
intact and debonded deflections. 

25 points on each section (at 40 points on the transition 
zone) were chosen for the FWD test applications. After 
temperature adjustment, the resulting values were 
compared using color-coding in Figures 6. The average 
and standard deviation of each control section (1 and 6) 
were used as reference. One half and one standard 
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deviation were used to evaluate the results (deflections 
measured above the average minus one-half standard 
deviation are colored as green, which ones between 
average minus one-half and average minus one standard 
deviation are colored as yellow and which ones less than 
average minus one standard deviation are colored as red).  

 
Figure 5. Typical deflections basins from FWD Tests 

Since the FWD deflections are strongly affected by the 
subgrade modulus value, the next step was to test the 
variation in the asphalt layer modulus value as a means of 
detecting debonded sites. The asphalt layer moduli were 
backcalculated by using MODULUS 6.0 software [29]. A 
two-layered analysis that considered the entire asphalt 
layer thickness (200 mm) as one layer over a subgrade 
was used. The temperature adjusted modulus contour 
maps are shown in Figure 7.   

 Ultrasonic Surface Wave (USW) Method 

USW tests were conducted by using PSPA device. For an 
intact and a severely debonded area, examples of the 
typical voltage outputs of the three PSPA sensors as seen 
by the operator in the field are shown in Figure 8. The 
time records obtained from the two receivers (the black 
and green traces) are considerably different from the two 
tests. The pulses are wider for the debonded record, and 
when the minima of the records between intact and 
damaged areas were compared, it can be seen that the 
intact areas are closer to one another. 

The USW analysis page seen by the operator in the field is 
shown in Figure 9. The top graphs indicate the variation in 
modulus depending on wavelength (called dispersion 
curves). The dispersion curve for the intact area is fairly 
uniform; whereas for the damaged point, there is a sharp 
decrease in the modulus below a wavelength of 63 mm 
(the location of the damage). The vertical red lines in the 
graphs indicate the average moduli of the asphalt layer 
from close to surface (25 mm to 200 mm nominal 
thickness of the layer). As reflected in the left-hand side 
of the two graphs, these average moduli values are about 
10 GPa for the intact areas and 7.8 GPa for the damaged 
areas. 

 

 
Sections 1 – 5  

 
Sections 6 – 10 

Figure 6. Temperature-Adjusted Contour Maps of FWD Deflection  

P4

   6.9    

   9.1    

 18.8    

 16.8    

 18.3    

P3

   6.5    

   9.0    

 19.9    

 18.7    

 19.5    

P2

   6.3    

   6.6    

   7.3    

   7.7    

   9.4    

P1

   6.2    

   6.5    

   6.2    

   6.9    

   8.7    

P5

  6.2    

  6.6    

  6.9    

  7.4    

  9.0    

P4

 6.1    

 7.1    

 7.3    

 7.7    

 8.6    

P3

 5.2    

 5.7    

 7.3    

 7.2    

 8.5    

P2

   5.1    

   5.3    

   7.9    

   8.3    

   9.8    

P1

   5.1    

   5.1    

   7.3    

   7.7    

   9.4    

P5

   5.2    

   5.3    

   6.9    

   7.2    

   8.5    

P4

 5.7    

 6.4    

 7.6    

 7.9    

 9.1    

P3

   6.6    

   7.7    

   8.3    

   8.3    

   9.9    

P2

   7.0    

   7.2    

   9.7    

 10.0    

 14.0    

P1

   6.8    

   6.9    

 10.3    

 10.9    

 15.3    

P5

   6.5    

   7.7    

 12.1    

 12.8    

 15.4    

P4

  6.7    

  7.6    

#####

#####

#####

P3

   7.3    

   8.1    

 10.7    

 12.2    

 15.0    

P2

   7.5    

   6.7    

 10.6    

 11.3    

 15.4    

P1

   7.4    

   6.3    

   9.7    

 10.8    

 14.0    

P5

   7.0    

   6.6    

   8.6    

   9.8    

 12.7    

P4

  6.4    

  6.8    

  8.2    

  9.2    

#####

P3

   6.4    

   6.5    

   8.1    

   8.8    

 12.4    

P2

   6.5    

   6.3    

   8.3    

   9.6    

 12.6    

P1

   6.1    

   6.1    

   8.2    

   9.6    

 12.0    

P5

   5.6    

   6.1    

   7.8    

   9.1    

 11.2    

P4

   5.8    

   6.1    

   8.1    

   9.5    

 12.0    

P3

   6.1    

   6.3    

   8.3    

   9.6    

 12.7    

P2

   6.6    

   7.2    

   8.8    

 10.7    

 13.4    

P1

   7.3    

   8.0    

   9.1    

 10.8    

 13.7    

N/A

Line 1

Line 2

Line 3

Line 4

Line 5

N/A

S3, Shallow Partial/FullS2, Shallow PartialS1, Intact S4, Deep Partial S5, Deep Partial/Full TRANSITIONTRANSITION

N/A

Line 1

Line 2

Line 3

Line 4

Line 5

N/A

P5

 4.6    

 4.5    

 6.4    

 5.9    

 7.4    

P4

   4.5    

   4.7    

   6.9    

   6.7    

   8.5    

P3

   4.8    

   5.0    

   7.2    

   6.9    

   9.3    

P2

   5.1    

   5.1    

   7.7    

   7.4    

   9.6    

P1

   5.0    

   5.4    

   7.4    

   7.2    

   8.2    

P5

   4.9    

   5.6    

   6.7    

   6.7    

   7.9    

P4

 5.1    

 5.7    

 6.9    

 6.9    

 8.2    

P3

   4.8    

   5.5    

   7.1    

   7.1    

   8.8    

P2

   5.3    

   6.2    

   7.7    

   7.7    

   9.0    

P1

   5.6    

   6.3    

   8.2    

   7.4    

 10.1    

P5

   6.4    

   7.8    

 10.7    

 10.7    

 14.0    

P4

  7.3    

  8.6    

#####

#####

#####

P3

   7.5    

   7.7    

   9.8    

 10.3    

 13.5    

P2

   7.2    

   7.5    

   9.5    

 10.3    

 12.5    

P1

   7.0    

   7.5    

   8.9    

   9.2    

 11.2    

P5

   7.1    

   8.1    

   8.4    

   8.5    

   9.8    

P4

 7.2    

 8.4    

 8.3    

 8.5    

 9.7    

P3

   7.3    

   8.1    

   9.1    

   9.1    

 10.0    

P2

   7.5    

   8.0    

   9.4    

   9.4    

 10.7    

P1

   7.4    

   8.1    

   9.3    

   9.6    

 10.4    

P5

   8.1    

   8.2    

   8.8    

   9.1    

 10.4    

P4

   8.0    

   7.5    

   9.0    

   9.5    

 11.2    

P3

   8.0    

   7.8    

   9.0    

   9.9    

 11.4    

P2

   7.5    

   7.5    

   8.5    

   9.8    

 11.4    

P1

   7.4    

   7.3    

   8.1    

   8.9    

 10.5    

P8

   8.2    

   7.6    

   8.2    

   8.9    

   9.8    

P7

 8.4    

 7.5    

 8.0    

 8.5    

 9.6    

P6

   8.4    

   8.4    

   8.0    

   8.5    

   9.7    

P5

   8.0    

   7.5    

   8.3    

   9.0    

   9.9    

S7, Shallow PartialS6, Intact S9, Deep Partial S10, Deep Partial/FullS8, Shallow Partial/FullTRANSITIONTRANSITION



Ozen, Celaya, Nazarian & Saltan J Innov Trans, 1(1), 1103 

 
Sections 1 to 5 

 
Sections 6 to 10 

Figure 7. Temperature-Adjusted Contour Maps of FWD Moduli in Cool Weather based on Revised Statistical Criteria 
 

 
Figure 8. Time Records Results with PSPA on Small Scale Study: Intact (Left), Severe Debonding (Right) 
 

The variations in the average moduli along the ten 
sections after temperature adjustment are compared in 
Figure 10 by using the color-coding convention as 
described for FWD.  The contour plot of the average 
moduli of the top lift (top 63 mm) for the ten sections 
tested in cool weather is shown in Figure 11. It is observed 
that there are reduced moduli for particularly Sections 3 
and 8 (shallow and full debonding). Sections with the 
shallow and partial debonding also showed some 
reduction in the moduli. This pattern indicates that when 
the two adjacent layers are not bonded, quality of the 
asphalt layer (in terms of the stiffness) may be 
endangered.  

Detailed dispersion curves for Line 1 (intact) and Line 10 
(severly debonded) along the ten sections are presented 
in Figure 12.  The depths and the extent of the debonding 
areas are also depicted in the figures. Here, solid lines 
indicate the full debonding and the dashed lines mean 
partial debonding. It is seen that the reductions in the 
modulus can be observed in most debonded sections at 
or below the depths of defects, at least in identifying the 
fully debonded areas, the usefulness of the USW method 
is validated. One complicating (but perhaps beneficial) 
aspect of the dispersion curve is that in a dispersion curve, 
a low-quality but bonded lift may exhibit the same 
patterns with a partially debonded interface.  
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Figure 9. Dispersion Curve Results with PSPA on Small Scale Study: Intact (Left), Severe Debonding (Right) 
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Sections 6 to 10 

Figure 10. Temperature-Adjusted Contour Maps of PSPA Modulus 
 

 Conclusions 

The USW method and the FWD technique were 
extensively evaluated on a control pavement section 
which is specifically constructed by using different HMA 
mixes at different depths and have various levels of 
debonding. Both NDT methods detected a severely 
debonded section well. Based on the outcomes of the 
study, the following interpretations can be made: 

• In general, both methods were capable to locate 
damaged areas, with a high probability of success.  

• Both methods detected the shallow (less than 3 in. 
(75 mm) deep) and severely debonded areas with 
reasonable certainty. 

• The USW method as implemented in the PSPA could 
detect 53% of the debonded areas. PSPA could 
detect the best the shallow debonding (both partial 
and full). 

• The FWD could detect about 46% of the debonded 
areas based on the backcalculation of the modulus 
of the HMA layer. 

• The temperature adjustment is required for both FWD and 
USW methods to get success. For complex pavement 
sections, the FWD has slightly limited effectiveness. 
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Figure 11. Modulus Contour Plot of Top 6.4 cm  
 

 
Figure 12. Dispersion Curve Contour Plots for Lines 1 and 10 
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