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ABSTRACT 
 

The purpose of this study is to examine the vibration characteristics of a rotating blade whose material distribution varies in 

the spanwise direction. Formulations for functionally graded materials and beam structural models are carried out in detail and 

the results are displayed in several figures and tables which is a significant source of information for the authors working in 

this area. Different parameters such as angular speed, radius of the hub, material properties, power law index parameter, 

boundary conditions and slenderness ratio are considered in the formulation. Finite Element Method where the element matrices 

are obtained from potential and kinetic energy expressions is applied as the solution procedure. Results of the study are 

validated with open literature in several tables and figures.   
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1. INTRODUCTION 
 

Helicopters are subjected to vibration for various reasons during the flight. Determination of the 

frequency values and the normal modes is required to perform the vibration analysis in the rotor blade 

design process correctly. Many numerical and approximate calculation methods are used in the vibration 

and natural frequency calculations and the Finite Element Analysis (FEA) is among the most efficient 

methods.  

 

Air and space vehicles, wind turbines, helicopter blades, turbine rotors, defence and civil industries, ship 

and automotive sectors are among the engineering areas where composite materials have been mostly 

preferred due to their advantages, i.e. light weight and high strength/stiffness-to-weight ratios. However, 

composite materials have some limitations. For instance, stress concentration near interlayer surfaces is 

high because of the sudden changes in mechanical properties and this limitation may cause severe 

material failures. Moreover, the adhesive layer may get cracked when the temperature is low and it may 

creep at high temperature. Functionally graded materials, FGMs, are considered to be the new generation 

composite materials. The variation character of their material properties is continuous through the 

structure so stress concentrations do not occur. Survivability in high temperatures by maintaining 

structural integrity is among the outstanding properties of FGMs. Although many different material 

combinations have been studied for FGMs, the most widely used one is the ceramic-metal combination 

where the ceramic reduces heat transfer to protect metal from corrosion and oxidation, whereas metal 

provides strength, higher fracture toughness, etc.  

 

Structural components used in engineering are mostly beams and beam structures. Different material 

types, i.e. homogeneous, composite, functionally graded, etc. are used in these structural components to 

https://orcid.org/0000-0003-1290-5387
https://orcid.org/0000-0002-9775-6706
https://orcid.org/0000-0002-4755-2094


Kılıç et al. / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 22 (1) – 2021 

 

100 

meet different engineering design requirements. Both in conventional structural applications and in 

advanced structural applications, including electric-thermal-structural systems, FGMs are commonly 

used as harvesters, sensors and actuators. Therefore, many researchers have been studying these 

materials for different application areas. Due to the increasing application trend of FGMs, their vibration 

properties have been examined by applying different beam theories.  

 
The concept of FGMs was originated from a team of material scientists working on thermal barrier 

materials [1] and nowadays, production areas and application fields are increasing day by day with the 

development of additive manufacturing technology and powder metallurgy of the material properties. 

Sankar [2] studied FGM beams with simply-simply supported end conditions under the effect of 

transverse loading where the beam elasticity modulus changes through the beam thickness. Aydogdu 

and Taskin [3] studied FGM beams with simply supported end conditions where Modulus of Elasticity 

changes with respect to a power and an exponential rule in the transverse direction. Chakraborty et al. 

[4] developed a new beam element to study the thermoelastic behavior of functionally graded beam 

structures. Goupee and Senthil [5] optimized the natural frequencies of FGM beams by changing the 

material distribution via a genetic algorithm methodology. Xiang and Yang [6] analysed a thermally 

presetressed nonuniform FGM beam in the free and forced vibration cases. Piovan and Sampoia [7] 

employed formulas considering shear-deformation and nonlinear relationship between strain and 

displacement to study the dynamic behavior of rotating FGM beams. Both the free vibration and the 

harmonically forced vibration of FGM Euler-Bernoulli beams are studied by Simsek and Kocaturk [8]. 

Free vibration of curved beams made of FGM in the out of plane direction is analysed by Malekzadeh 

et al. [9] where temperature dependent material properties are considered. Huang and Li [10] studied 

free vibration of nonuniform axially functionally graded beams with variable flexural rigidity and mass 

density. Free vibration and stability analyses of Timoshenko beams with nonuniform cross-sections was 

studied by Shahba et al [11] by employing an energy based finite element solution. Additionally, several 

review papers have been published in recent years about the modelling, buckling, stability and vibration 

characteristics of FGM structures [12, 13].  

 

In this study, FG blades whose material distribution changes in the spanwise direction are modeled and 

vibration analyses are performed. In these studies, beam models with fixed-free and fixed-fixed 

boundary conditions and different material distribution properties are investigated. For developing the 

mathematical models and for the solution, finite element method (FEM) is used. The blade formulations 

are derived for both Euler-Bernoulli and Timoshenko beam theories to inspect the effect of different 

parameters on the vibration characteristics. For each beam theory, both the stiffness matrix and the mass 

matrix are derived from the energy expressions. In the solution part, effects of different parameters such 

as hub rotating speed, material properties, power law index parameter, different boundary conditions, 

rotary inertia and shear deformation are investigated. Results of the study are validated with open 

literature in several tables and figures.   

 

2. MATERIAL and METHOD 

 

2.1. Functionally Graded Nonuniform Blade Model 

 

In this study, vibration analysis is carried out for an Axially Functionally Graded nonuniform blade 

model which is shown in Figure 1.   
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Figure 1. Rotating, axially functionally graded nonuniform beam model 

 

Here a blade having a constant rotational velocity, Ω, is fixed to a rigid hub of radius R at point O. The 

origin of the right-handed Cartesian coordinate system is located at the root of the blade and the x-axis 

is directed along the blade while the rotational axis and the z-axis are parallel.   

 

The blade is modeled as a beam structure with variable cross sectional dimensions and material 

properties along the x-axis. The beam model has two different material properties, i.e. ceramic and 

metal, in different compositions from the fixed to the free end. Additionally, the beam tapers linearly 

from a height of h0 at the root to h at the free end in the xz plane and from a breadth b0 to b in the xy 

plane.  

 

Beam material properties vary continuously in the longitudinal direction, i.e. x-axis, via a simple power 

law. The rule of mixture states that T(x), i.e. the effective material property such as the Elasticity 

modulus and material density. The other properties can be expressed as given by Equations (1a)-(1e) 

where α is the power law index parameter that is a positive number and that defines the material variation 

characteristic along the x-axis. 

 

T(x)=(T
R
-TL) (

x

L
)
𝛼

+TL    ,        𝛼 ≥ 0 (1a) 

𝐸(𝑥) = (𝐸𝑅 − 𝐸𝐿) (
𝑥

𝐿
)
𝛼

+ 𝐸𝐿 (1b) 

𝐺(𝑥) = (𝐺𝑅 − 𝐺𝐿) (
𝑥

𝐿
)
𝛼

+ 𝐺𝐿 (1c) 

𝜈(𝑥) = (𝜈𝑅 − 𝜈𝐿) (
𝑥

𝐿
)
𝛼

+ 𝜈𝐿 (1d) 

𝜌(𝑥) = (𝜌𝑅 − 𝜌𝐿) (
𝑥

𝐿
)
𝛼

+ 𝜌𝐿 (1e) 
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where ( )𝑅 and ( )𝐿 are the material properties , i.e. elasticity modulus E, shear modulus G, Poisson’s 

ratio, ʋ and material density, ρ at the right hand side and left hand side of the beam, respectively as given 

in Figure 2. 

 

 
Figure 2. Material variation in an axially functionally graded beam model 

 

The expressions for the geometrical dimensions and the cross-sectional preoperties of a beam that is 

double tapered are 

         

𝑏(𝑥) = 𝑏0 (1 − 𝑐𝑏
𝑥

𝐿
)
𝑚

 (2a) 

ℎ(𝑥) = ℎ0 (1 − 𝑐ℎ
𝑥

𝐿
)
𝑛

 (2b) 

𝐴(𝑥) = 𝐴0 (1 − 𝑐ℎ
𝑥

𝐿
)
𝑛

(1 − 𝑐𝑏
𝑥

𝐿
)
𝑚

𝑤ℎ𝑒𝑟𝑒  𝐴0 = 𝑏0ℎ0 (2c) 

𝐼𝑦(𝑥) = 𝐼𝑦0 (1 − 𝑐ℎ
𝑥

𝐿
)
3𝑛

(1 − 𝑐𝑏
𝑥

𝐿
)
𝑚

𝑤ℎ𝑒𝑟𝑒  𝐼𝑦0 =
1

12
𝑏0ℎ0

3 (2d) 

 

Equation (3a) expresses the breadth taper ratio, 𝑐𝑏 while Equation (3b) expresses the height taper ratio, 

𝑐ℎ . The beam formulation is achieved in a way to let the beam get different taper ratio values in different 

planes so 𝑐𝑏 and 𝑐ℎ do not have to be the same. 

 

𝑐ℎ = 1 −
ℎ0
ℎ

 (3a) 

𝑐𝑏 = 1 −
𝑏0
𝑏

 (3b) 

 

The exponents n and m get values depending on the taper type of the beam. In this study, a beam 

structure that tapers in two planes in a linear manner is considered so n  = 1 and m = 1 for this study.  

 

2.2. Energy Expressions 

 

In this section, energy expressions are given both for rotating, nonuniform AFG Euler-Bernoulli and 

Timoshenko beam models. Details of the derivation can be found in Ref. [14-16] in great detail by using 

several explanatory figures and tables.  

 

The potential energy expressions are given for Euler-Bernoulli and Timoshenko beam models in 

Equation (4a) and Equation (4b), respectively.   
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𝑈𝐸𝑢𝑙𝑒𝑟 =
1

2
[𝐸(𝑥)𝐼𝑦(𝑥)(𝜃

′)2 + 𝐹𝐶𝐹(𝑥)(𝑤
′)2]𝑑𝑥 + 𝐶1 (4a) 

𝑈𝑇𝑖𝑚𝑜𝑠ℎ𝑒𝑛𝑘𝑜 =
1

2
∫ [𝐸(𝑥)𝐼𝑦(𝑥)(𝜃

′)2 + 𝑘𝐴(𝑥)𝐺(𝑥)(𝑤′ − 𝜃)2 + 𝐹𝐶𝐹(𝑥)(𝑤
′)2]𝑑𝑥 +

𝐿𝑒

0

𝐶2 (4b) 

 

where the centrifugal force is 

 

𝐹𝐶𝐹(𝑥) = ∫ 𝜌𝐴Ω2(𝑅 + 𝑥)𝑑𝑥
𝐿

𝑥

 (5) 

 

In Equation (4b), the first term is the strain energy due to transverse displacement while the second term 

is the strain energy due to shear which is a result of the Timoshenko beam formulation.  

 

The kinetic energy expressions are given for Euler-Bernoulli and Timoshenko beam models in Equation 

(6a) and Equation (6b), respectively.   

 

𝑇𝐸𝑢𝑙𝑒𝑟 =
1

2
∫(𝜌𝐴�̇�2

𝐿

0

+ 𝜌𝐼𝑦(�̇�
′)2 + 𝜌𝐼𝑦𝛺

2(𝑤′)2)𝑑𝑥 + 𝐷1 (6a) 

𝑇𝑇𝑖𝑚𝑜𝑠ℎ𝑒𝑛𝑘𝑜 =
1

2
∫(𝜌𝐴�̇�2 + 𝜌𝐼𝑦�̇�

2 + 𝜌𝐼𝑦𝛺
2𝜃2)

𝐿𝑒

0

𝑑𝑥 + 𝐷2 (6b) 

 

In the Equations (4a)-(6b), C1, C2, D1 and D2 are the integration constants. 

 

2.3. Finite Element Modeling 
 

Finite element representation of the functionally graded and nonuniform rotating beam model is shown 

in Figure 3. 

 

 

Figure 3. FE model of a FG nonuniform rotating beam 
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where Li is the offset of each element from the rotational axis and  Le is the element length. 

Depending on the analysis, Le may get different values for each element but in this study, the 

beam model is divided into elements of the same length. Here XYZ and 𝑥′𝑦′𝑧′ are the global and 

local coordinates, respectively. 

 

When a beam that rotates about a fixed axis is studied, new terms are added to the element stiffness 

matrices resulting from the centrifugal force. Considering the finite element model, given in Figure 3, 

the centrifugal force, i.e. Equation (5), can be expressed as follows where Ne is the number of elements 

used in the FE formulation. 

 

𝐹𝐶𝐹(𝑥) = 𝜌𝐴Ω
2[𝑅(𝐿 − 𝐿𝑖 − 𝑥

′) +
1

2
(𝐿 − 𝐿𝑖 − 𝑥

′)(𝐿 − 𝐿𝑖 + 𝑥
′)] (7a) 

𝐿𝑖 = (𝑖 − 1)
𝐿

𝑁𝑒
 ,                𝑖 = 1, 2, … . , 𝑁𝑒 (7b) 

 

Euler Bernoulli beam finite element modeling 

 

In Figure 4, an Euler Bernoulli beam finite element model which has four degrees of freedom is shown. 

Due to the Euler beam theory, shear effects are not considered and the degree of freedom is two, i.e. 

transverse displacement, w and rotation θ at each node. The rotation angle is defined as the slope at each 

node, so θ=𝑤′. 

 
Figure 4: FE model of an Euler Bernoulli beam 

Polynomials are defined to express the displacement field of the Euler-Bernoulli beam [17]  

 

2 3

0 1 2 3w a a x a x a x     (8a) 

2

1 2 32 3w a a x a x      (8b) 

 

Considering the displacement field polynomials given by Equation (8a) and Equation (8b), the nodal 

displacements are defined at the 1st node and at the 2nd node, respectively as follows  
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01

1 1

2 3

2 2

2

2 3

1 0 0 0

0 1 0 0

1

0 1 2 3

e e e

e e

aw

a

L L Lw a

L L a





    
    

       
    
        

 (9) 

 

Here, ( )1 are the displacement values of the 1st node while ( )2 are the displacements on the 2nd 

node.  

The displacement field vector,  q  and the nodal displacement vector,  eq are related to each other by 

the matrix of shape functions, [N].  

 

    eq N q  (10) 

 

where  

 

   
T

q w   (11a) 

   1 1 2 2

T

eq w w   (11b) 

   
T

wN N N  (11c) 

 

Here the expressions of the shape functions are 

 

[𝑁𝑤] = {1 −
3𝑥2

𝐿2
−
2𝑥3

𝐿3
𝑥 −

2𝑥2

𝐿
+
𝑥3

𝐿2
3𝑥2

𝐿2
−
2𝑥3

𝐿3
−
𝑥2

𝐿
+
𝑥3

𝐿2
} (12a) 

[𝑁𝜃] = {−
6𝑥

𝐿2
+
6𝑥2

𝐿3
1 −

4𝑥

𝐿
+
3𝑥2

𝐿2
6𝑥

𝐿2
−
6𝑥2

𝐿3
−
2𝑥

𝐿
+
3𝑥2

𝐿2
} (12b) 

 

Here, [𝑁𝑤] and [𝑁𝜃] are the normal modes associated with the transverse motion w and the rotation 

angle, θ, respectively and [ ]𝑇 is the transpose of a matrix. 

 

Considering the effect of the centrifugal force and substituting the shape functions, i.e. Equation (12a) 

and Equation (12b), into the energy expressions the element stiffness and mass matrices, i.e. [𝐾𝑒] and 
[𝑀𝑒], are obtained as follows 

 

[𝐾𝑒] =
1

2
∫ (𝐸(𝑥)𝐼𝑦(𝑥) [

𝑑𝑁𝜃
𝑑𝑥

]
𝑇

[
𝑑𝑁𝜃
𝑑𝑥

] + 𝐹𝑀𝐾(𝑥) [
𝑑𝑁𝑤
𝑑𝑥

]
𝑇

[
𝑑𝑁𝑤
𝑑𝑥

])

𝐿𝑒

0

𝑑𝑥 (13a) 
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[𝑀𝑒] =
1

2
∫(𝜌(𝑥)𝐴(𝑥)[𝑁𝑤]

𝑇[𝑁𝑤] + 𝜌(𝑥)𝐼𝑦(𝑥)[𝑁𝜃]
𝑇[𝑁𝜃])

𝐿𝑒

0

𝑑𝑥 (13b) 

 

Timoshenko beam finite element modeling 

 

In Figure 5, a Timoshenko beam finite element model which has six degrees of freedom is shown. Due 

to the Timoshenko beam theory, shear effects are considered and the degree of freedom is three, i.e. 

transverse displacement, w, rotation angle θ and shear angle, φ at each node.  

 
 

Figure 5: FE model of a Timoshenko beam 

 

Polynomials are defined to express the displacement field of the Timoshenko beam [17] 

 

𝑤 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 (14a) 

𝜑 = 𝑎4 + 𝑎5𝑥 (14b) 

𝜃 = 𝑤′ −𝜑 = 𝑎1 − 𝑎4 + (2𝑎2 − 𝑎5)𝑥 + 3𝑎3𝑥
2 (14c) 

 

Considering the displacement field polynomials given by Equations (14a)-(14c), the nodal 

displacements are defined at the 1st node and at the 2nd node, respectively as follows.  

 

{
 
 

 
 
𝑤1
𝜃1
𝜑1
𝑤2
𝜃2
𝜑2}
 
 

 
 

=

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 −1 0
0 0 0 0 1 0
1 𝐿𝑒 𝐿𝑒

2 𝐿𝑒
3 0 0

0 1 2𝐿𝑒 3𝐿𝑒
2 −1 −𝐿𝑒

0 0 0 0 1 𝐿𝑒 ]
 
 
 
 
 

{
 
 

 
 
𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5}
 
 

 
 

 (15) 

 

From Equation (10), 

  

{𝑞} = {𝑤 𝜃 𝜑}𝑇 (16a) 

{𝑞𝑒} = {𝑤1 𝜃1 𝜑1 𝑤2 𝜃2 𝜑2}
𝑇 (16b) 

[𝑁] = [𝑁𝑤 𝑁𝜃 𝑁𝜑]𝑇 (16c) 
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Here [𝑁𝑤], [𝑁𝜃] and [𝑁𝜑] are the shape functions associated with the transverse displacement, w, 

rotation angle due to transverse displacement, θ and shear angle, φ, respectively. 

 

[𝑁𝑤] = {1 −
3𝑥2

𝐿𝑒
2 +

2𝑥3

𝐿𝑒
3 𝑥 −

2𝑥2

𝐿𝑒
+
𝑥3

𝐿𝑒
2 𝑥 −

2𝑥2

𝐿𝑒
+
𝑥3

𝐿𝑒
2 

3𝑥2

𝐿𝑒
2 −

2𝑥3

𝐿𝑒
3 −

𝑥2

𝐿𝑒
+
𝑥3

𝐿𝑒
2 −

𝑥2

𝐿𝑒
+
𝑥3

𝐿𝑒
2} 

(17a) 

[𝑁𝜃] = {−
6𝑥

𝐿𝑒
2 +

6𝑥2

𝐿𝑒
3 1 −

4𝑥

𝐿𝑒
+
3𝑥2

𝐿𝑒
2 −

3𝑥

𝐿𝑒
+
3𝑥2

𝐿𝑒
2  

6𝑥

𝐿𝑒
2 −

6𝑥2

𝐿𝑒
3 −

2𝑥

𝐿𝑒
+
3𝑥2

𝐿𝑒
2 −

3𝑥

𝐿𝑒
+
3𝑥2

𝐿𝑒
2} 

(17b) 

[𝑁𝜑] = {0 0 1 −
𝑥

𝐿𝑒
0 0

𝑥

𝐿𝑒
} (17c) 

 

Considering the effect of the centrifugal force and substituting the shape functions into the potential and 

kinetic energy expressions, the element stiffness matrix, [𝐾𝑒], and element mass matrix, [𝑀𝑒], are 

obtained as follows 

 

[𝐾𝑒] =
1

2
∫(𝐸(𝑥)𝐼𝑦(𝑥) [

𝑑𝑁𝜃
𝑑𝑥

]
𝑇

[
𝑑𝑁𝜃
𝑑𝑥

]

𝐿

0

+ 𝑘𝐴(𝑥)𝐺(𝑥) ([
𝑑𝑁𝑤
𝑑𝑥

] − 𝑁𝜃)
𝑇

([
𝑑𝑁𝑤
𝑑𝑥

] − 𝑁𝜃)+𝐹𝐶𝐹(𝑥) [
𝑑𝑁𝑤
𝑑𝑥

]
𝑇

[
𝑑𝑁𝑤
𝑑𝑥

]) 𝑑𝑥 

(18a) 

[𝑀𝑒] =
1

2
∫(𝜌(𝑥)𝐴(𝑥)[𝑁𝑤]

𝑇[𝑁𝑤] + 𝜌(𝑥)𝐼𝑦(𝑥)[𝑁𝜃]
𝑇[𝑁𝜃])

𝐿

0

𝑑𝑥 (18b) 

 

Reduced global matrices and modal analysis 

 

Depending on the element number used in the FE modeling, all the element matrices are assembled by 

considering the finite element rules to get the global matrices. The BC’s are applied to the global 

matrices to get the reduced matrix system of equations  

[𝑀]{�̈�} + [𝐾]{𝑞} = {0} (19) 

 

where [𝑀] and [𝐾] are the reduced global mass and reduced global stiffness matrices, respectively. 

 

Modal analysis is applied to Equation (19) to calculate the natural frequencies, ω as follows.  

 

det[[𝐾] − 𝜔2[𝑀]] = 0 (20) 
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3. THE RESEARCH FINDINGS AND DISCUSSION 

 

In this section, flapwise bending vibration analysis of both Euler-Bernoulli and Timoshenko beams that 

taper in both planes and that have material variation in the axial direction are carried out. Several 

parameters, i.e. taper ratios for nonuniformity, power law index parameter for material distribution, 

slenderness ratio, rotational speed, hub radius parameter, etc. are considered for the vibration analysis.  

The normalized parameters used in the tables and graphics are given by  

�̅� = 𝜔√𝜌𝐴0𝐿
4 𝐸𝐼𝑦0⁄  (21a) 

𝑟 = √𝐼𝑦0 𝐴0𝐿
2⁄  (21b) 

𝜎 = 𝑅 𝐿⁄  (21c) 

where the properties given in the paranthesis  (… )0 are the ones defined at the root of the blade where 

x=0. Here, �̅� is the normalized natural frequency, r is the slenderness ratio and σ is the normalized hub 

radius. 

Several tables and figures which are expected to be a good source for the researchers who study in this 

field to analyse the initial models for helicopter blades are presented in this study. When the results are 

compared with the ones in open literature, it is noticed that there is a very good agreement between the 

results which proves the correctness and accuracy of the studies in this paper.  

3.1. Homogeneous Nonuniform Beams  

 

In this section, vibration characteristics are examined for both Euler Bernoulli and Timoshenko beams 

that have taper effects and homogeneous material properties.   

 

Euler-Bernoulli beam results 

In this case, vibration characterics of a rotating/nonrotating, tapered Euler-Bernoulli beam having 

clamped free boundary conditions is examined. The geometrical and material properties of the beam 

model are given in Table 1. 

 

Table 1. Geometrical and material properties of the homogeneous tapered Euler Bernoulli beam 

 

𝐁𝐞𝐚𝐦 𝐇𝐞𝐢𝐠𝐡𝐭, 𝐡𝟎 = 𝟎. 𝟎𝟏 𝐦 Material Density, 𝛒 = 𝟕𝟖𝟓𝟎 𝐤𝐠/ 𝐦𝟑 

𝐁𝐞𝐚𝐦 𝐁𝐫𝐞𝐚𝐝𝐭𝐡 , 𝐛𝟎 = 𝟎. 𝟏 𝐦 Elasticity Modulus, 𝐄 = 𝟐𝟎𝟔. 𝟖 𝐆𝐏𝐚 

Beam Length, 𝐋 = 𝟐 𝐦 Poisson’s Ratio, 𝛖 = 𝟎. 𝟑 

Hub radius, R=0 m (Clamped beam) 

 

Variation of the normalized natural frequencies with respect to taper ratios, ch and cb is introduced in 

Table 2 and Table 3 for homogeneous Euler-Bernoulli beams model with fixed-free end conditions. The 

calculated results are compared with the ones in open literature and a very good agreement between the 

results is observed.  
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Table 2. Effects of taper ratios on the natural frequencies of a nonrotating Euler-Bernoulli beam  

ch 

 0 0.3 0.6 0.8 

cb Present Ref.[18] Present Ref.[18] Present Ref.[18] Present  Ref.[18]) 

0 

3.5160 3.5160 3.6656 3.6667 3.9258 3.9343 4.2631 4.2925 

22.0338 22.0345 19.8903 19.8806 17.5318 17.4879 15.8180 15.7427 

61.6924 61.6972 53.3599 53.3222 44.2046 44.0248 37.2405 36.8846 

120.8850 120.9020 103.3440 103.2670 83.9397 83.5541 68.9108 68.1164 

0.3 

3.9135 3.9160 4.0632 4.0669 4.3250 4.3362 4.6665 4.6991 

22.7801 22.7860 20.5609 20.5555 18.1217 18.0803 16.3487 16.2744 

62.4253 62.4361 54.0474 54.0152 44.8340 44.6583 37.8171 37.4635 

121.6240 121.6480 104.0450 103.9750 84.5900 84.2101 69.5110 68.7209 

0.6 

4.5670 4.5853 4.7175 4.7372 4.9929 5.0090 5.3471 5.3761 

23.9833 24.0211 21.6466 21.6699 19.1775 19.0649 17.2032 17.1657 

63.6990 63.7515 55.2170 55.2224 45.8302 45.7384 38.6497 38.4392 

122.9480 123.0250 105.2630 105.2410 85.5567 85.3438 70.2244 69.7438 

0.8 

5.3625 5.3976 5.5170 5.5529 5.7882 5.8288 6.1431 6.1964 

25.5754 25.6558 23.0914 23.1578 20.3607 20.3952 18.3800 18.3855 

65.6300 65.7470 56.9379 57.0157 47.3322 47.3051 39.9876 39.8336 

125.1050 125.2640 107.1490 107.2310 87.1879 87.0561 71.6519 71.2418 

In Table 2, it is noticed that increasing taper ratios have increasing effects on the natural frequencies 

and the effect of the breadth taper ratio, cb, is more dominant. 

Variation of the normalized natural frequencies with respect to the taper ratios and the rotational speed 

parameter is given in Table 3.  

 

Table 3. Effects of taper ratios and rotational speed on the natural frequencies of a rotating Euler-Bernoulli beam 

 Ω 

2 4 6 8 

Present Ref.[19] Present Ref.[19] Present Ref.[19] Present Ref.[19] 

cb=0 

ch=0.5 

4.527 4.4368 6.1826 5.8788 8.1936 7.6551 10.3337 9.5539 

19.109 18.9366 21.1283 20.6851 24.1151 23.3093 27.7481 26.5437 

48.3031 47.8717 50.4098 49.6456 53.7245 52.4632 58.0238 56.1595 

91.9318 91.0625 94.1133 92.873 97.6306 95.809 102.332 99.7638 

cb=0.5 

ch=0.5 

5.3099 5.1564 7.054 6.4726 9.2283 8.1663 11.5754 10.0192 

20.2771 20.0733 22.283 21.5749 25.2655 23.8684 28.9117 26.7454 

49.5292 49.0906 51.6321 50.5938 54.9446 53.0018 59.2468 56.1941 

93.1673 92.3243 95.345 93.8415 98.8577 96.3142 103.555 99.6673 

 

Here Table 3 reveals that as the rotational speed Ω, increases, the natural frequencies increase because 

the centrifugal force, i.e. Equation (5), which is proportional to the square of the rotational speed makes 

the beam stiffer. 

 

Timoshenko beam results 

 

Table 4 gives the material and geometrical properties of the homogeneous nonuniform Timoshenko 

beam model. In Table 5, variation of the Timoshenko beam natural frequencies with respect to the taper 

ratio parameters are tabulated. The case, given in Table 5, demonstrates a beam that has the same taper 

in both planes; i.e. ch=cb. and that has fixed-free boundary conditions. 
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Table 4. Geometrical and material properties of homogeneous Timoshenko beam 

 

𝐁𝐞𝐚𝐦 𝐇𝐞𝐢𝐠𝐡𝐭, 𝐡 = 𝟎. 𝟎𝟑𝟕 𝐦 Material Density, 𝛒 = 𝟕𝟖𝟔𝟎 𝐤𝐠/ 𝐦𝟑 

Beam Length, 𝐋 = 𝟎. 𝟐𝟒 𝐦 Elasticity Modulus, 𝐄 = 𝟐𝟏𝟎 𝐆𝐏𝐚 

Slenderness Ratio, r=0.01  Poisson’s Ratio, 𝛖 = 𝟎. 𝟑 

Shear Correction Factor, k = 5/6 

 

Table 5. Effects of taper ratios on the natural frequencies of a Timoshenko beam (fixed-free) 

 

ch 

Experimental 

Study 

Ref.[20]  

Mathematical 

Modelling 

Ref.[20] 

Present  

0.1 

3.4821 3.4956 3.4976 

18.941 19.1962 19.2561 

46.8812 47.5057 47.8338 

80.8891 82.0774 82.9644 

0.3 

3.5962 3.6076 3.6068 

17.9951 18.2044 18.2602 

43.861 44.3941 44.6912 

76.1284 77.1983 78.0033 

0.5 

3.7462 3.7665 3.7606 

16.9821 17.0617 17.1278 

39.9951 40.7118 41.0235 

69.7561 71.1402 71.9314 

 

Variation of the first four natural frequencies of homogeneous Euler-Bernoulli and Timoshenko 

beams with respect to the height taper ratio, ch and the breadth taper ratio, cb are displayed in Figure 

6 and Figure 7, respectively. Here, R=0, r=0.08,  =0.3, k=0.85. The dashed lines show the variation 

of the Euler-Bernoulli beam natural frequencies while the solid lines show the variation of the 

Timoshenko beam natural frequencies.  

 
Figure 6. Effect of the height taper ratio, ch,on the natural frequencies (cb=0.2) 
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Figure 7. Effect of the breadth taper ratio, cb,on the natural frequencies (ch=0.2) 

 

Here Figure 6 and Figure 7 reveal that cb has less effect on the variation of the natural frequencies while 

ch is more dominant. Especially, this difference is more obvious on higher modes. Moreover, Euler-

Bernoulli beam frequencies are higher than the Timoshenko beam frequencies due to the decreasing 

effect of the inverse of the slenderness ratio. 

 

3.2. Axially Functionally Graded Beams  

 

In this section, vibration characteristics are examined for both Euler Bernoulli and Timoshenko beams 

that have axially functionally graded (AFG) material properties. The beam model used for the analysis 

is shown in Figure 8 where the beam material is pure ZrO2 at the fixed end and it is pure Al at the free 

end.  

 
Figure 8. Rotating, axially functionally graded, cantilevered beam 

 

In Table 6, the material properties of Aluminum and Zirconia are displayed.   

 
Table 6. Material properties of the AFG beam 

Material Property Zirconia (ZrO2) Aluminum (Al) 

Elasticity Modulus, 𝐄 200 GPa 70 GPa 

Material Density, 𝛒 𝟓𝟕𝟎𝟎 𝐤𝐠/ 𝐦𝟑 𝟐𝟕𝟎𝟐 𝐤𝐠/ 𝐦𝟑 

Poisson’s Ratio, 𝛖 0.3 0.3 
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Euler-Bernoulli beam results 

 

Vibration properties of an AFG Euler-Bernoulli beam is analyzed for hinged-hinged boundary 

conditions. In Table 7, effect of the taper ratio on the natural frequencies of homogeneous and AFG 

Timoshenko beam models are tabulated. The results are compared with the ones given by Ref. [21]. 

 
Table 7. Natural frequencies of Tapered AFG Euler-Bernoulli beam (hinged-hinged) 

cb 

Homogeneous Euler Beam AFG Euler Beam 

ch ch 

0 0.1 0.5 0.9 0 0.1 0.5 0.9 

0 

9.865 

9.8696* 
9.361 7.118 3.928 

9.569 

9.5994* 9.044 6.711 3.425 

39.401 37.409 28.912 18.216 38.265 36.329 28.090 17.833 

88.435 83.980 64.805 40.210 85.985 81.616 62.882 39.028 

156.682 148.833 114.831 70.561 152.736 144.948 111.408 68.141 

0.1 

9.861 9.354 7.095 3.892 9.550 9.022 6.678 3.386 

39.392 37.405 28.925 18.252 38.268 36.336 28.115 17.882 

88.414 83.966 64.820 40.257 85.986 81.624 62.915 39.089 

156.644 148.804 114.839 70.609 152.726 144.946 111.437 68.203 

0.5 

9.808 9.281 
6.946 

6.9566* 
3.676 9.413 8.870 

6.470 

6.5127* 3.155 

39.389 37.423 29.032 18.494 38.320 36.410 28.285 18.206 

88.388 83.974 64.969 40.582 86.075 81.743 63.162 39.491 

156.563 148.766 114.976 70.959 152.798 145.054 111.695 68.631 

0.9 

9.525 8.967 6.502 30.974 8.953 8.387 5.904 2.559 

39.397 37.469 29.259 19.115 38.350 36.492 28.614 19.060 

88.539 84.184 65.449 41.553 86.399 82.132 63.845 40.691 

156.810 149.081 115.610 72.137 153.337 145.661 112.605 70.037 

    * Ref.[21] 

 

Effect of the power law index parameter, α on the Modulus of Elasticity, E, of the beam is demonstrated 

in Figure 9. Here it is noticed that the percentage of Zirconia gets higher with the increasing value of 

the power law index parameter, α.  
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Figure 9. Effect of the power law index parameter, α on the Modulus of Elasticity, E 

 

Timoshenko beam results 

 

Vibration analysis of AFG Timoshenko beam is carried out for the hinged-hinged boundary condition. 

As an addition to the material properties given in Table 5, 𝑟 = 0.01 𝑚 is the slenderness ratio, L= 5 𝑚 

is the beam length and k=5/6 is the shear correction factor. 

 

In Table 8, effect of the power law index parameter, α on the normalized frequencies is tabulated. Here, 

it is noticed that the natural frequencies increase with the power law index parameter.    

 

Table 8. Natural frequencies of AFG Uniform Timoshenko beam (fixed-free) 

Power Law 

Index 

Parameter, α 

Dimensionless Natural Frequencies 

Clamped Free Clamped Clamped 

Ref.[22] Present Ref.[22] Present 

0.3 

3.500 3.522 12.870 13.065 

14.250 14.333 26.780 27.052 

30.059 30.059 43.300 43.283 

45.070 45.070 59.000 57.876 

0.9 

3.900 3.882 12.730 13.107 

15.000 15.114 26.700 27.460 

30.900 31.228 43.490 44.298 

46.000 46.807 59.500 59.599 

1.5 

3.940 3.959 12.650 12.968 

15.150 15.399 26.650 27.451 

31.580 31.827 43.580 44.653 

47.700 47.826 59.700 60.290 

2.1 

3.920 3.946 12.600 12.852 

15.250 15.525 26.630 27.390 

31.700 32.215 43.620 44.821 

48.200 48.522 59.740 60.640 
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In Table 9, variation of the normalized natural frequencies of an AFG Timoshenko beam (α=2) with 

respect to the taper ratios; i.e. ch and cb is given.   
 

Table 9. Natural frequencies of AFG Nonuniform Timoshenko beam (fixed-free) 

 

cb 
ch 

Present Present Ref.[22] Present Ref.[22] Present Ref.[22] 

 0 0.1 0.3 0.5 

0 3.896 4.008 - 4.282 - 4.654 - 

 15.309 15.466 - 15.837 - 16.329 - 

 31.727 31.838 - 32.111 - 32.495 - 

 47.789 47.896 - 48.172 - 48.587 - 

0.1 3.948 4.060 4.049 4.334 - 4.708 - 

 15.197 15.349 15.313 33.000 - 16.191 - 

 31.323 31.433 31.380 31.703 - 32.081 - 

 47.732 47.833 47.823 48.088 - 48.468 - 

0.3 4.073 4.186 - 4.461 4.457 4.837 - 

 14.887 15.030 - 15.373 15.358 15.832 - 

 30.328 30.437 - 30.704 30.680 31.075 - 

 46.946 47.037 - 47.266 47.291 47.600 - 

0.5 4.244 4.357 - 4.634 - 5.011 5.018 

 14.442 14.577 - 14.901 - 15.340 15.349 

 29.007 29.117 - 29.382 - 29.751 29.757 

 45.351 45.440 - 45.659 - 45.973 46.029 

 

 

Effects of the rotational speed parameter, Ω̅ and the hub radius parameter, σ on the dimensionless 

frequencies of a AFG Timoshenko beam that rotates with a constant angular speed is analyzed in Figure 

10 and Figure 11 for α=1. 

 

 
Figure 10. Fundamental frequency variation via hub radius and rotational speed. 
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Figure 11. 2nd frequency variation via hub radius and rotational speed. 

 

As it is seen in Figure 10 and Figure 11, the increasing rotational speed increases the natural frequencies 

and as the hub radius parameter gets larger values, this increasing effect gets more dominant because 

the centrifugal force becomes more effective on the natural frequencies.   

 

4. CONCLUSION 

 

In this study, finite element formulation of  axially functionally graded Euler Bernoulli and Timoshenko 

beams with different boundary conditions that undergo transverse displacement is derived. The beam 

models are tapered in one or two planes with different taper ratios. The calculated results are introduced 

in several figures and tables and compared with the ones in open literature.   

 

Considering the calculated results, the following conclusions are reached: 

 The hub rotating speed increases the natural frequencies. This effect becomes more dominant as the 

hub radius parameter gets larger values. 

 Increasing taper ratios have increasing effects on the natural frequencies of Euler Bernoulli and 

Timoshenko beam models. The increasing effect of the breadth taper ratio, cb, is more dominant. 

 The power law index parameter, i.e. α, increases the natural frequencies and this increasing effect 

becomes more dominant on higher frequencies.  
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