ESKISEHIR TECHNICAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY
A- APPLIED SCIENCES AND ENGINEERING

2021, 22(1), pp. 99-117, DOI: 10.18038/estubtda.766590

VIBRATION CHARACTERISTICS OF NONUNIFORM BLADES MADE OF
FUNCTIONALLY GRADED MATERIAL

Burak KILIC * /| Selim SAHIN 2"/ | Ozge OZDEMIR® "

! Aeronautical Engineering Department, Faculty of Aeronautics and Astronautics, Istanbul Technical University, Istanbul, Turkey
2 Aeronautical Engineering Department, Faculty of Aeronautics and Astronautics, Istanbul Technical University, Istanbul, Turkey
3 Aeronautical Engineering Department, Faculty of Aeronautics and Astronautics, Istanbul Technical University, Istanbul, Turkey

ABSTRACT

The purpose of this study is to examine the vibration characteristics of a rotating blade whose material distribution varies in
the spanwise direction. Formulations for functionally graded materials and beam structural models are carried out in detail and
the results are displayed in several figures and tables which is a significant source of information for the authors working in
this area. Different parameters such as angular speed, radius of the hub, material properties, power law index parameter,
boundary conditions and slenderness ratio are considered in the formulation. Finite Element Method where the element matrices
are obtained from potential and kinetic energy expressions is applied as the solution procedure. Results of the study are
validated with open literature in several tables and figures.
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1. INTRODUCTION

Helicopters are subjected to vibration for various reasons during the flight. Determination of the
frequency values and the normal modes is required to perform the vibration analysis in the rotor blade
design process correctly. Many numerical and approximate calculation methods are used in the vibration
and natural frequency calculations and the Finite Element Analysis (FEA) is among the most efficient
methods.

Air and space vehicles, wind turbines, helicopter blades, turbine rotors, defence and civil industries, ship
and automotive sectors are among the engineering areas where composite materials have been mostly
preferred due to their advantages, i.e. light weight and high strength/stiffness-to-weight ratios. However,
composite materials have some limitations. For instance, stress concentration near interlayer surfaces is
high because of the sudden changes in mechanical properties and this limitation may cause severe
material failures. Moreover, the adhesive layer may get cracked when the temperature is low and it may
creep at high temperature. Functionally graded materials, FGMs, are considered to be the new generation
composite materials. The variation character of their material properties is continuous through the
structure so stress concentrations do not occur. Survivability in high temperatures by maintaining
structural integrity is among the outstanding properties of FGMs. Although many different material
combinations have been studied for FGMs, the most widely used one is the ceramic-metal combination
where the ceramic reduces heat transfer to protect metal from corrosion and oxidation, whereas metal
provides strength, higher fracture toughness, etc.

Structural components used in engineering are mostly beams and beam structures. Different material
types, i.e. homogeneous, composite, functionally graded, etc. are used in these structural components to
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meet different engineering design requirements. Both in conventional structural applications and in
advanced structural applications, including electric-thermal-structural systems, FGMs are commonly
used as harvesters, sensors and actuators. Therefore, many researchers have been studying these
materials for different application areas. Due to the increasing application trend of FGMs, their vibration
properties have been examined by applying different beam theories.

The concept of FGMs was originated from a team of material scientists working on thermal barrier
materials [1] and nowadays, production areas and application fields are increasing day by day with the
development of additive manufacturing technology and powder metallurgy of the material properties.
Sankar [2] studied FGM beams with simply-simply supported end conditions under the effect of
transverse loading where the beam elasticity modulus changes through the beam thickness. Aydogdu
and Taskin [3] studied FGM beams with simply supported end conditions where Modulus of Elasticity
changes with respect to a power and an exponential rule in the transverse direction. Chakraborty et al.
[4] developed a new beam element to study the thermoelastic behavior of functionally graded beam
structures. Goupee and Senthil [5] optimized the natural frequencies of FGM beams by changing the
material distribution via a genetic algorithm methodology. Xiang and Yang [6] analysed a thermally
presetressed nonuniform FGM beam in the free and forced vibration cases. Piovan and Sampoia [7]
employed formulas considering shear-deformation and nonlinear relationship between strain and
displacement to study the dynamic behavior of rotating FGM beams. Both the free vibration and the
harmonically forced vibration of FGM Euler-Bernoulli beams are studied by Simsek and Kocaturk [8].
Free vibration of curved beams made of FGM in the out of plane direction is analysed by Malekzadeh
et al. [9] where temperature dependent material properties are considered. Huang and Li [10] studied
free vibration of nonuniform axially functionally graded beams with variable flexural rigidity and mass
density. Free vibration and stability analyses of Timoshenko beams with nonuniform cross-sections was
studied by Shahba et al [11] by employing an energy based finite element solution. Additionally, several
review papers have been published in recent years about the modelling, buckling, stability and vibration
characteristics of FGM structures [12, 13].

In this study, FG blades whose material distribution changes in the spanwise direction are modeled and
vibration analyses are performed. In these studies, beam models with fixed-free and fixed-fixed
boundary conditions and different material distribution properties are investigated. For developing the
mathematical models and for the solution, finite element method (FEM) is used. The blade formulations
are derived for both Euler-Bernoulli and Timoshenko beam theories to inspect the effect of different
parameters on the vibration characteristics. For each beam theory, both the stiffness matrix and the mass
matrix are derived from the energy expressions. In the solution part, effects of different parameters such
as hub rotating speed, material properties, power law index parameter, different boundary conditions,
rotary inertia and shear deformation are investigated. Results of the study are validated with open
literature in several tables and figures.

2. MATERIAL and METHOD
2.1. Functionally Graded Nonuniform Blade Model

In this study, vibration analysis is carried out for an Axially Functionally Graded nonuniform blade
model which is shown in Figure 1.
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Figure 1. Rotating, axially functionally graded nonuniform beam model

Here a blade having a constant rotational velocity, Q, is fixed to a rigid hub of radius R at point O. The
origin of the right-handed Cartesian coordinate system is located at the root of the blade and the x-axis
is directed along the blade while the rotational axis and the z-axis are parallel.

The blade is modeled as a beam structure with variable cross sectional dimensions and material
properties along the x-axis. The beam model has two different material properties, i.e. ceramic and
metal, in different compositions from the fixed to the free end. Additionally, the beam tapers linearly
from a height of hg at the root to h at the free end in the xz plane and from a breadth bo to b in the xy
plane.

Beam material properties vary continuously in the longitudinal direction, i.e. x-axis, via a simple power
law. The rule of mixture states that T(x), i.e. the effective material property such as the Elasticity
modulus and material density. The other properties can be expressed as given by Equations (1a)-(1e)
where a is the power law index parameter that is a positive number and that defines the material variation
characteristic along the x-axis.

T=(TeT) () +T a0 (La)
E(x) = (Eg — E,) (%) +E, (1b)
6() = (6= 6 (7) +6, (1c)

v(x) = (Vg — V) (%)a +v, (1d)
p(x) = (pr — p1) (%)a +p1 (le)
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where ( )z and ( ), are the material properties , i.e. elasticity modulus E, shear modulus G, Poisson’s
ratio, v and material density, p at the right hand side and left hand side of the beam, respectively as given
in Figure 2.
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Figure 2. Material variation in an axially functionally graded beam model

The expressions for the geometrical dimensions and the cross-sectional preoperties of a beam that is
double tapered are

b(x) = by (1, %)m (2a)

h) = ho (1~ ¢ %)n (2b)

A(x) = 4, (1 —cp %)n (1 -cp %)m where A, = byh, (2¢c)
L,(x) =Ly (1 -y, %)311 (1 - %)m where I, = %bohg (2d)

Equation (3a) expresses the breadth taper ratio, c;, while Equation (3b) expresses the height taper ratio,
¢y, - The beam formulation is achieved in a way to let the beam get different taper ratio values in different
planes so ¢, and c;, do not have to be the same.

Ch=1—7 (3a)
b
=12 (3b)

The exponents n and m get values depending on the taper type of the beam. In this study, a beam
structure that tapers in two planes in a linear manner is considered so n =1 and m = 1 for this study.

2.2. Energy Expressions

In this section, energy expressions are given both for rotating, nonuniform AFG Euler-Bernoulli and
Timoshenko beam models. Details of the derivation can be found in Ref. [14-16] in great detail by using
several explanatory figures and tables.

The potential energy expressions are given for Euler-Bernoulli and Timoshenko beam models in
Equation (4a) and Equation (4b), respectively.
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(42)

U Euler

1
=3 [E(x)ly(x)(H’)2 + FCF(x)(w’)z]dx +C

Le

1
Urimoshenko = EJ. [E(x)ly(x)(gl)z + kA G )W’ — 9)2 + FCF(x)(W’)Z]dx +(; (4b)

where the centrifugal force is
L
Fep(x) = f pAQZ(R + x)dx (5)
X
In Equation (4b), the first term is the strain energy due to transverse displacement while the second term

is the strain energy due to shear which is a result of the Timoshenko beam formulation.

The kinetic energy expressions are given for Euler-Bernoulli and Timoshenko beam models in Equation
(6a) and Equation (6b), respectively.

1
Touter =5 | (PAW? + ply (') + p1, 0% (w'))dx + D, (62)
Le

1 . .
Trimoshenko = Ef (,OAWZ + ,Dly92 + pIyQZGZ) dx + D, (6b)

In the Equations (4a)-(6b), C1, C,, D1 and D, are the integration constants.

2.3.Finite Element Modeling

Finite element representation of the functionally graded and nonuniform rotating beam model is shown
in Figure 3.
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Figure 3. FE model of a FG nonuniform rotating beam
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where L; is the offset of each element from the rotational axis and L. is the element length.
Depending on the analysis, Le may get different values for each element but in this study, the
beam model is divided into elements of the same length. Here XYZ and x"y’z’ are the global and
local coordinates, respectively.

When a beam that rotates about a fixed axis is studied, new terms are added to the element stiffness
matrices resulting from the centrifugal force. Considering the finite element model, given in Figure 3,
the centrifugal force, i.e. Equation (5), can be expressed as follows where Ne is the number of elements
used in the FE formulation.

1
Fep(x) = pAQ*[R(L — L; — x') + E(L —Li—x")(L—-L;+x")] (7a)

Li:(i_l)Nie, i=12..N, (7b)

Euler Bernoulli beam finite element modeling

In Figure 4, an Euler Bernoulli beam finite element model which has four degrees of freedom is shown.
Due to the Euler beam theory, shear effects are not considered and the degree of freedom is two, i.e.
transverse displacement, w and rotation 0 at each node. The rotation angle is defined as the slope at each
node, so 0=w’.
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Figure 4: FE model of an Euler Bernoulli beam

Polynomials are defined to express the displacement field of the Euler-Bernoulli beam [17]
W=a,+aX+a,X +ax (8a)
0=w'=a +23,x+3,X’ (8b)

Considering the displacement field polynomials given by Equation (8a) and Equation (8b), the nodal
displacements are defined at the 1%t node and at the 2" node, respectively as follows
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W, 1 0 O 0 |[a
6, 01 0 0|y
w,( |1 L 2 s ©)
6,] [0 1 2L, 3L2]|a,

Here, (), are the displacement values of the 1% node while ( ), are the displacements on the 2™
node.

The displacement field vector, {q} and the nodal displacement vector, {q, } are related to each other by
the matrix of shape functions, [N].

{at=[NJ{a.} (10)
where
{af={w o} (11a)
{a)=tw 6 w of (11b)
[N]=[N, NT (11¢)

Here the expressions of the shape functions are

_ 3x2  2x3 2x2  x3 3x%2 2x3 x? x3
[Nw]‘{l‘L—z‘F TTTE T ‘f+ﬁ} (429

_( 6x 6x2 4x 3x? 6x 6x%2 2x 3x?
[’V@]—{—F+F ITtE TR ‘T+L—z} (120)

Here, [N,,] and [Ng] are the normal modes associated with the transverse motion w and the rotation
angle, 0, respectively and [ ]7 is the transpose of a matrix.

Considering the effect of the centrifugal force and substituting the shape functions, i.e. Equation (12a)
and Equation (12b), into the energy expressions the element stiffness and mass matrices, i.e. [K€] and
[M€], are obtained as follows

Le

(K] = j ome T o [ Jao w3

dx
0
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Le
] = 5 [ (@A NI + Pl (N TN (130)
0

Timoshenko beam finite element modeling

In Figure 5, a Timoshenko beam finite element model which has six degrees of freedom is shown. Due
to the Timoshenko beam theory, shear effects are considered and the degree of freedom is three, i.e.
transverse displacement, w, rotation angle 6 and shear angle, ¢ at each node.
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Figure 5: FE model of a Timoshenko beam

Polynomials are defined to express the displacement field of the Timoshenko beam [17]

w = ag+ arx + azx? + azx3 (14a)
@ =a, +asx (14b)
0=w'—¢=a; —a, + (2a, — as)x + 3azx?> (14c)

Considering the displacement field polynomials given by Equations (14a)-(14c), the nodal
displacements are defined at the 1 node and at the 2" node, respectively as follows.

(W1 1 0 0 0 0 0 7 a0

0, 01 0 0 -1 0|fa

o 100 0 0 1 0 |]a
wol=[1 L, 12 13 0 0 |\as (15)

6, 0 1 2L, 312 -1 -L,||a

$2 o o o o0 1 L as}

From Equation (10),

{@=w 0 ¢}7 (16a)
{ge={w1 6; o1 wy 6, @}7 (16b)
[N] = [Nw Ng Ny]" (16c)
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Here [N, ], [Ng] and [Nq)] are the shape functions associated with the transverse displacement, w,
rotation angle due to transverse displacement, 6 and shear angle, ¢, respectively.

" " 3x2 N 2x3 2x2 N x3 2x2 N x3
={1l-—+— x— — X——+—
w Lez Le3 Le Lez Le Lez
3x%2  2x3 x? N x3 x%  x3 (172)
Lez Le3 Le Lez Le Lez
N,] = 6x N 6x2 ) 4x N 3x?2 3x N 3x?
9 L L b L be Lt (17b)
6x  6x2 2x  3x? 3x 3x?
2773 Ttz T tT=2
Le Le e Le e Le
N, =fo 0 1-7 0 0 (170)
= —— — c
¢ L, L,

Considering the effect of the centrifugal force and substituting the shape functions into the potential and
Kinetic energy expressions, the element stiffness matrix, [K¢], and element mass matrix, [M¢], are

obtained as follows

L
1 dNy1" 1dNg
[Ke] == f (E(x)l O |==2| |52
2 y [ dx ] [ dx (18a)

0
oo (1] ) (1] ) o 2] 1) o
L
[M°] = %f(ﬂ(x)A(x) [Nw]" [Ny ] + p)1, () [Ng]" [Ng]) dx (18b)
0

Reduced global matrices and modal analysis

Depending on the element number used in the FE modeling, all the element matrices are assembled by
considering the finite element rules to get the global matrices. The BC’s are applied to the global

matrices to get the reduced matrix system of equations

[M]{4} + [K]{q} = {0} (19)

where [M] and [K] are the reduced global mass and reduced global stiffness matrices, respectively.

Modal analysis is applied to Equation (19) to calculate the natural frequencies, o as follows.

det[[K] — w?[M]] = 0 (20)
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3. THE RESEARCH FINDINGS AND DISCUSSION

In this section, flapwise bending vibration analysis of both Euler-Bernoulli and Timoshenko beams that
taper in both planes and that have material variation in the axial direction are carried out. Several
parameters, i.e. taper ratios for nonuniformity, power law index parameter for material distribution,
slenderness ratio, rotational speed, hub radius parameter, etc. are considered for the vibration analysis.

The normalized parameters used in the tables and graphics are given by

w=w ’pA0L4/EIy0 (218.)
r = ’Iyo/AoLz (Zlb)

oc=R/L (21c)

where the properties given in the paranthesis (...), are the ones defined at the root of the blade where
x=0. Here, @ is the normalized natural frequency, r is the slenderness ratio and o is the normalized hub
radius.

Several tables and figures which are expected to be a good source for the researchers who study in this
field to analyse the initial models for helicopter blades are presented in this study. When the results are
compared with the ones in open literature, it is noticed that there is a very good agreement between the
results which proves the correctness and accuracy of the studies in this paper.

3.1. Homogeneous Nonuniform Beams

In this section, vibration characteristics are examined for both Euler Bernoulli and Timoshenko beams
that have taper effects and homogeneous material properties.

Euler-Bernoulli beam results

In this case, vibration characterics of a rotating/nonrotating, tapered Euler-Bernoulli beam having
clamped free boundary conditions is examined. The geometrical and material properties of the beam
model are given in Table 1.

Table 1. Geometrical and material properties of the homogeneous tapered Euler Bernoulli beam

Beam Height,h, = 0.01 m Material Density, p = 7850 kg/ m?
Beam Breadth,b, = 0.1 m Elasticity Modulus, E = 206.8 GPa
Beam Length, L =2 m Poisson’s Ratio, v = 0.3
Hub radius, R=0 m (Clamped beam)

Variation of the normalized natural frequencies with respect to taper ratios, ¢, and cy is introduced in
Table 2 and Table 3 for homogeneous Euler-Bernoulli beams model with fixed-free end conditions. The
calculated results are compared with the ones in open literature and a very good agreement between the
results is observed.
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Table 2. Effects of taper ratios on the natural frequencies of a nonrotating Euler-Bernoulli beam

Ch

0 0.3 0.6 0.8

Cb Present Ref.[18] Present Ref.[18] Present Ref.[18] Present | Ref.[18])

3.5160 3.5160 3.6656 3.6667 3.9258 3.9343 4.2631 4.2925

0 22.0338 22.0345 19.8903 19.8806 17.5318 17.4879 15.8180 | 15.7427
61.6924 61.6972 53.3599 53.3222 44.2046 44.0248 | 37.2405 | 36.8846

120.8850 120.9020 103.3440 103.2670 | 83.9397 83.5541 68.9108 | 68.1164

3.9135 3.9160 4.0632 4.0669 4.3250 4.3362 4.6665 4.6991

0.3 22.7801 22.7860 20.5609 20.5555 18.1217 18.0803 16.3487 | 16.2744
' 62.4253 62.4361 54.0474 54.0152 44.8340 44,6583 | 37.8171 | 37.4635
121.6240 121.6480 104.0450 103.9750 | 84.5900 84.2101 69.5110 | 68.7209

4.5670 4.5853 4.7175 4.7372 4.9929 5.0090 5.3471 5.3761

0.6 23.9833 24.0211 21.6466 21.6699 19.1775 19.0649 17.2032 | 17.1657
' 63.6990 63.7515 55.2170 55.2224 45.8302 45.7384 | 38.6497 | 38.4392
122.9480 123.0250 105.2630 105.2410 | 85.5567 85.3438 70.2244 | 69.7438

5.3625 5.3976 5.5170 5.5529 5.7882 5.8288 6.1431 6.1964

0.8 25.5754 25.6558 23.0914 23.1578 20.3607 20.3952 18.3800 | 18.3855
' 65.6300 65.7470 56.9379 57.0157 47.3322 47.3051 | 39.9876 | 39.8336
125.1050 125.2640 107.1490 107.2310 | 87.1879 87.0561 71.6519 | 71.2418

In Table 2, it is noticed that increasing taper ratios have increasing effects on the natural frequencies

and the effect of the breadth taper ratio, ¢y, is more dominant.

Variation of the normalized natural frequencies with respect to the taper ratios and the rotational speed
parameter is given in Table 3.

Table 3. Effects of taper ratios and rotational speed on the natural frequencies of a rotating Euler-Bernoulli beam

Q
2 4 6 8
Present Ref.[19] Present Ref.[19] Present Ref.[19] Present Ref.[19]
4.527 4.4368 6.1826 5.8788 8.1936 7.6551 10.3337 9.5539
cb=0 19.109 18.9366 21.1283 20.6851 24.1151 23.3093 27.7481 26.5437
ch=0.5 | 48.3031 47.8717 50.4098 49.6456 53.7245 52.4632 58.0238 56.1595
91.9318 91.0625 94.1133 92.873 97.6306 95.809 102.332 99.7638
5.3099 5.1564 7.054 6.4726 9.2283 8.1663 11.5754 10.0192
c=0.5 | 20.2771 20.0733 22.283 21.5749 25.2655 23.8684 28.9117 26.7454
ch=0.5 | 49.5292 49.0906 51.6321 50.5938 54.9446 53.0018 59.2468 56.1941
93.1673 92.3243 95.345 93.8415 98.8577 96.3142 103.555 99.6673

Here Table 3 reveals that as the rotational speed Q, increases, the natural frequencies increase because
the centrifugal force, i.e. Equation (5), which is proportional to the square of the rotational speed makes
the beam stiffer.

Timoshenko beam results

Table 4 gives the material and geometrical properties of the homogeneous nonuniform Timoshenko
beam model. In Table 5, variation of the Timoshenko beam natural frequencies with respect to the taper
ratio parameters are tabulated. The case, given in Table 5, demonstrates a beam that has the same taper
in both planes; i.e. ch=Cy. and that has fixed-free boundary conditions.
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Table 4. Geometrical and material properties of homogeneous Timoshenko beam

Beam Height,h = 0.037 m Material Density, p = 7860 kg/ m?
Beam Length, L = 0.24 m Elasticity Modulus, E = 210 GPa
Slenderness Ratio, r=0.01 Poisson’s Ratio, v = 0.3
Shear Correction Factor, k = 5/6

Table 5. Effects of taper ratios on the natural frequencies of a Timoshenko beam (fixed-free)

Experimental Mathematical

ch Study Modelling Present

Ref.[20] Ref.[20]
3.4821 3.4956 3.4976
18.941 19.1962 19.2561
01 46.8812 47.5057 47.8338
80.8891 82.0774 82.9644
3.5962 3.6076 3.6068
17.9951 18.2044 18.2602
03 43.861 44.3941 44.6912
76.1284 77.1983 78.0033
3.7462 3.7665 3.7606
0 16.9821 17.0617 17.1278
& 39.9951 40.7118 41.0235
69.7561 71.1402 71.9314

Variation of the first four natural frequencies of homogeneous Euler-Bernoulli and Timoshenko
beams with respect to the height taper ratio, ¢, and the breadth taper ratio, ¢, are displayed in Figure
6 and Figure 7, respectively. Here, R=0, r=0.08, ,,=0.3, k=0.85. The dashed lines show the variation
of the Euler-Bernoulli beam natural frequencies while the solid lines show the variation of the
Timoshenko beam natural frequencies.
120
110 F

100 L

1]

80 T ——
70 ST
60

o T I

Natural Frequencies

40 d ™ it LT
'y WNF

30 1**NF
2[} Fe———_——— mmesSssanss etttk L J-ﬂ':----‘---‘h-

o Ll

02 03 04 05 0.6 0.7 08
Ch
Figure 6. Effect of the height taper ratio, cn,0n the natural frequencies (c,=0.2)
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Figure 7. Effect of the breadth taper ratio, cp,0n the natural frequencies (ch=0.2)

Here Figure 6 and Figure 7 reveal that ¢, has less effect on the variation of the natural frequencies while
cn is more dominant. Especially, this difference is more obvious on higher modes. Moreover, Euler-
Bernoulli beam frequencies are higher than the Timoshenko beam frequencies due to the decreasing

effect of the inverse of the slenderness ratio.

3.2. Axially Functionally Graded Beams

In this section, vibration characteristics are examined for both Euler Bernoulli and Timoshenko beams
that have axially functionally graded (AFG) material properties. The beam model used for the analysis
is shown in Figure 8 where the beam material is pure ZrO; at the fixed end and it is pure Al at the free

end.

=

(9]

2]

Material variation

&
L4

\ : I

Zirconia (Zr0z) " Aluminum (Al)

Figure 8. Rotating, axially functionally graded, cantilevered beam

In Table 6, the material properties of Aluminum and Zirconia are displayed.

Table 6. Material properties of the AFG beam

Material Property Zirconia (ZrO,) Aluminum (Al)
Elasticity Modulus, E 200 GPa 70 GPa

Material Density, p 5700 kg/ m3 2702 kg/ m3

Poisson’s Ratio, v 0.3 0.3
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Euler-Bernoulli beam results

Vibration properties of an AFG Euler-Bernoulli beam is analyzed for hinged-hinged boundary
conditions. In Table 7, effect of the taper ratio on the natural frequencies of homogeneous and AFG
Timoshenko beam models are tabulated. The results are compared with the ones given by Ref. [21].

Table 7. Natural frequencies of Tapered AFG Euler-Bernoulli beam (hinged-hinged)

Homogeneous Euler Beam AFG Euler Beam
cb ch ch
0 0.1 0.5 0.9 0 0.1 0.5 0.9
9.865 9.569
9.8606* 9.361 7.118 3.928 9.5994" 9.044 6.711 3.425

0 39.401 37.409 28.912 18.216 38.265 36.329 28.090 17.833
88.435 83.980 64.805 40.210 85.985 81.616 62.882 39.028
156.682 | 148.833 | 114.831 | 70.561 | 152.736 | 144.948 | 111.408 68.141
9.861 9.354 7.095 3.892 9.550 9.022 6.678 3.386
39.392 37.405 28.925 18.252 38.268 36.336 28.115 17.882

01 88414 | 83.966 | 64.820 | 40257 | 85986 | 81624 | 62915 | 39.089
156.644 | 148.804 | 114.839 | 70.609 | 152.726 | 144.946 | 111.437 | 68.203

6.946 6.470
9808 | 9281 | cooo. | 3676 | 9413 | 8870 | oo | 3155
0.5 30380 | 37.423 | 20032 | 18494 | 38320 | 36410 | 28.285 | 18.206
88.388 | 83.974 | 64.969 | 40582 | 86.075 | 81743 | 63.162 | 39.491
156563 | 148.766 | 114.976 | 70.959 | 152.798 | 145054 | 111.695 | 68.63L
9525 | 8967 | 6502 | 30974 | 8953 | 8387 | 5904 | 2559
09 30307 | 37.469 | 20250 | 19115 | 38.350 | 36492 | 28.614 | 19.060
' 88530 | 84.184 | 65449 | 41553 | 86399 | 82132 | 63.845 | 40.691
156.810 | 149.081 | 115610 | 72137 | 153.337 | 145.661 | 112.605 | 70.037

* Ref.[21]

Effect of the power law index parameter, &« on the Modulus of Elasticity, E, of the beam is demonstrated
in Figure 9. Here it is noticed that the percentage of Zirconia gets higher with the increasing value of
the power law index parameter, a.
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Figure 9. Effect of the power law index parameter, a on the Modulus of Elasticity, E

Vibration analysis of AFG Timoshenko beam is carried out for the hinged-hinged boundary condition.
As an addition to the material properties given in Table 5, r = 0.01 m is the slenderness ratio, L= 5m

is the beam length and k=5/6 is the shear correction factor.

In Table 8, effect of the power law index parameter, a on the normalized frequencies is tabulated. Here,
it is noticed that the natural frequencies increase with the power law index parameter.

Table 8. Natural frequencies of AFG Uniform Timoshenko beam (fixed-free)

Dimensionless Natural Frequencies

PO\:"rfgel)‘(aW Clamped Free Clamped Clamped
Parameter, o Ref.[22] Present Ref.[22] Present
3.500 3.522 12.870 13.065
0.3 14.250 14.333 26.780 27.052
' 30.059 30.059 43.300 43.283
45.070 45.070 59.000 57.876
3.900 3.882 12.730 13.107
0.9 15.000 15.114 26.700 27.460
' 30.900 31.228 43.490 44,298
46.000 46.807 59.500 59.599
3.940 3.959 12.650 12.968
15 15.150 15.399 26.650 27.451
' 31.580 31.827 43.580 44,653
47.700 47.826 59.700 60.290
3.920 3.946 12.600 12.852
21 15.250 15.525 26.630 27.390
' 31.700 32.215 43.620 44.821
48.200 48.522 59.740 60.640
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In Table 9, variation of the normalized natural frequencies of an AFG Timoshenko beam (0=2) with
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respect to the taper ratios; i.e. ¢, and ¢y is given.

Table 9. Natural frequencies of AFG Nonuniform Timoshenko beam (fixed-free)

Ch
e Present Present | Ref.[22] Present | Ref[22] | Present | Ref.[22]
0 0.1 0.3 0.5

0 3.896 4.008 - 4.282 - 4.654 -
15.309 15.466 - 15.837 - 16.329 -
31.727 31.838 - 32.111 - 32.495 -
47.789 47.896 - 48.172 - 48.587 -

0.1 3.948 4.060 4.049 4.334 - 4,708 -
15.197 15.349 15.313 33.000 - 16.191 -
31.323 31.433 31.380 31.703 - 32.081 -
47.732 47.833 47.823 48.088 - 48.468 -

0.3 4.073 4.186 - 4.461 4.457 4.837 -
14.887 15.030 - 15.373 15.358 15.832 -
30.328 30.437 - 30.704 30.680 31.075 -
46.946 47.037 - 47.266 47.291 47.600 -

0.5 4.244 4.357 - 4.634 - 5.011 5.018
14.442 14577 - 14.901 - 15.340 15.349
29.007 29.117 - 29.382 - 29.751 29.757
45.351 45.440 - 45.659 - 45.973 46.029

Effects of the rotational speed parameter, Q and the hub radius parameter, ¢ on the dimensionless
frequencies of a AFG Timoshenko beam that rotates with a constant angular speed is analyzed in Figure
10 and Figure 11 for o=1.

snnnnmmmn (J=(]

-— = =],

— =0,

Ist Frequency Parameter
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2,5 3 3,5 - 4,5

Rotational Speed Parameter

Figure 10. Fundamental frequency variation via hub radius and rotational speed.
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Figure 11. 2" frequency variation via hub radius and rotational speed.

As itis seen in Figure 10 and Figure 11, the increasing rotational speed increases the natural frequencies
and as the hub radius parameter gets larger values, this increasing effect gets more dominant because
the centrifugal force becomes more effective on the natural frequencies.

4. CONCLUSION

In this study, finite element formulation of axially functionally graded Euler Bernoulli and Timoshenko
beams with different boundary conditions that undergo transverse displacement is derived. The beam
models are tapered in one or two planes with different taper ratios. The calculated results are introduced
in several figures and tables and compared with the ones in open literature.

Considering the calculated results, the following conclusions are reached:

e The hub rotating speed increases the natural frequencies. This effect becomes more dominant as the
hub radius parameter gets larger values.

e Increasing taper ratios have increasing effects on the natural frequencies of Euler Bernoulli and
Timoshenko beam models. The increasing effect of the breadth taper ratio, cs, is more dominant.

e The power law index parameter, i.e. a, increases the natural frequencies and this increasing effect
becomes more dominant on higher frequencies.
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