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Abstract

In this paper, a version modi�ed of contraction Hardy-Rogers type in a metric space and is proved. Moreover,
we apply this modi�ed version to investigate the existence of unique solution of boundary value problems
for the di�erential equations and generalized fractional di�erential equations through help of the properties
of Green function. We also provide an example in support of acquired results. These results extend various
comparable results from literature.
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1. Introduction and Preliminarries

It is well known that the Banach contraction principle plays an important role in various �elds of science
especially in functional analysis and applied mathematical. Banach in [20] proved the existence and unique-
ness for a point u ∈ L such that f : L→ L is a contraction map, i.e.

δ(fu, fv) ≤ ςδ(u, v). (1)
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where (L, δ) be a metric space, for each u, v ∈ L and ς ∈ [0, 1). Kannan in [27] introduced the same result
by the following

δ(fu, fv) ≤ ς[δ(fu, u) + δ(fv, v)], (2)

for all u, v ∈ L and ς ∈ (0, 1
2).

Chatterjee in [22] modi�ed the equation (2) as follows

δ(fu, fv) ≤ ς[δ(fu, v) + δ(fu, v)], (3)

for all u, v ∈ L and ς ∈ (0, 1
2).

Through the literature, Fisher in [24] developed the equation (1) as follows

δ(fu, fv) ≤ ςδ(fu, v), (4)

for all u, v ∈ L.
Then many attempts were made for expanded and developed equation (1), for e.g. Reich in [40] obtained
the next result

δ(fu, fv) ≤ [`1δ(u, v) + `2δ(fu, u) + `3δ(fv, v)], (5)

for all u, v ∈ L such that `1 + `2 + `3 < 1.
Recently, Shukla in [48] developed the equation (5) as follows

δ(fu, fv) ≤ [`1δ(u, fu) + `2δ(v, fv) + `3δ(v, fu)], (6)

for all u, v ∈ L such that `1 + `2 + `3 < 1.
Also, in [25] Hardy and Rogers introduced a generalization of Reich's �xed point theorem, as in the following
theorem:

Theorem 1.1. Let (L, δ) be a metric space and f a self mapping of L. Suppose, `1, `2, `3, `4, `5 ∈ R+ and

we set, `1 + `2 + `3 + `4 + `5 = ς such that

δ(fu, fv) ≤ `1δ(u, fu) + `2δ(v, fv) + `3δ(u, fv) + `4δ(v, fu) + `5δ(u, v),

∀u, v ∈ L, under the conditions; L is complete and ς < 1, then f has a unique �xed point.

Or,

δ(fu, fv) < `1δ(u, fu) + `2δ(v, fv) + `3δ(u, fv) + `4δ(v, fu) + `5δ(u, v), (7)

∀u, v ∈ L, under the conditions; L is compact, f is continuous, ς = 1 and u 6= v, then T has a unique �xed

point.

Riech's theory has been extensively studied by many researchers (see [1, 11, 18, 19, 32, 33, 35, 44, 52]).
Moreover, many of the studies about the Hardy-Rogers theory have been introduced. Among these studies,
Hardy and Rogers type common �xed point theorem for a family of self-maps in cone 2-metric spaces was
obtained by Rangamma in [39]. In the same way, Chifu in [23] presented some �xed point results in b-metric
spaces by using a contractive condition of Hardy-Rogers type with respect to the functional H. Arshad et
al., in [17] established common �xed point theorems for mappings ful�lling locally contraction conditions
under a closed ball in an ordered complete dislocated metric space. In [16, 41] the authors established
common �xed point results for multi-valued mappings via generalized rational type contractions on complete
b-metric spaces. A new direction to the literature of common �xed point theorems related to T -Hardy-
Rogers contraction mappings, Banach pair of mappings, and cone metric space due to Rhymend in[42]. A
modi�ed class of Hardy-Rogers p-proximate cyclic contraction in uniform spaces was introduced by Olisama
in [36]. Abbas in [1] proved some �xed point theorems for a T -Hardy-Rogers contraction in the setting of
partially ordered partial metric spaces. Some �xed point theorems for a generalized almost Hardy-Rogers
type F -contraction in metric like space were established by Saipara in [43].
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On the other hand, fractional calculus has played a very important role in di�erent areas, see [30] and
references mentioned in it. Generalized fractional derivatives with respect to another function ψ have been
considered in [30] as a generalization of Riemann�Liouville fractional operator. This fractional derivative is
di�erent from the other classical fractional derivative because the kernel appears in terms of another function
ψ. Recently, Almeida in [13] presented a version generalized of Caputo with some enjoyable properties. The
investigation of the existence and uniqueness of solutions to several fractional di�erential equations (FDEs)
is the main topic of applied mathematics research. Many interesting results with regard to the existence
and uniqueness of solutions by using some �xed point theorem were discussed in the following references
[5, 6, 7, 8, 4, 14, 21, 26, 31, 38].

Fixed point techniques are constantly applied to prove the existence and uniqueness of di�erential equa-
tions (DEs) and FDEs, see [10, 12, 15, 28, 34, 45, 46, 49, 50]. To investigate the existence of unique solutions
for di�erent types of DEs and FDEs, we refer to [2, 3, 9, 29, 37, 47, 51].

To our knowledge, a modi�ed contraction Hardy-Rogers type in metric space has not been extensively
studied. Moreover, the �xed point technique based on generalized Hardy-Rogers type contraction mappings
has never been applied on the boundary value problems (BVPs) for generalized FDEs involving ψ-Caputo
fractional operators. For this reason, and motivated by the recent evolutions in ψ-fractional calculus, in this
paper, we introduce a modi�cation of Hardy-Rogers type contraction in metric space and we also apply this
approach to investigate the existence of unique solution of boundary value problems for a classical DEs and
generalized FDEs. The main result of this paper is to study the modi�ed conditions of Hardy-Rogers �xed
point theorem and proved it. Moreover, some applications to justify our results.

2. Main Results

In this part, we shall prove the modi�ed Hardy-Rogers �xed point theorem as following:

Theorem 2.1. Let L be a complete metric space and let f : L → R be a continuous self-mapping on L,
suppose f satisfying the condition (7) for all u, v ∈ L, u 6= v and for some `1, `2, `3, `4, `5 ∈ [0, 1) such that∑5

i=1 `i = ς < 1. Then f has a unique �xed point.

Proof. Let u0 be an arbitrary point in L and {u}∞n=1 be the sequence of iterations for f at u0 such that

f(un−1) = un. (8)

Consider un−1 6= un for all n ∈ N. Thus, δ(un−1, un) = δ(f(un−2), f(un−1)), by (7) we get

δ(un−1, un) <`1(un−2, f(un−2)) + `2δ(un−1, f(un−1))+

`3δ(un−2, f(un−1)) + `4δ(un−1, f(un−2)) + `5δ(un−2, un−1).

By (8) we get

δ(un−1, un) <`1δ(un−2, un−1) + `2δ(un−1, un) + `3δ(un−2, un)+

`4δ(un−1, un−1) + `5δ(un−2, un−1).

From the triangle inequality for some un−2 ≤ un−1 ≤ un, we obtain

δ(un−1, un) ≤`1δ(un−2, un−1) + `2δ(un−1, un) + `3δ(un−2, un−1)+

`3δ(un−1, un) + `5δ(un−2, un−1)

=

(
ς − `2 − `4
1− `2 − `3

)
δ(un−2, un−1). (9)

If we repeat equation (9), we arrive to,

δ(un−1, un) ≤
( ς − `2 − `4

1− `2 − `3

)n
δ(u0, u1). (10)
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For some r ≥ n− 1, we have

δ(un−1, ur) ≤ δ(un−1, un) + δ(un, un+1) + ...+ δ(ur−1, ur).

It follows from (10) that
δ(un−1, ur) ≤ {κn + κn+1 + ...+ κs}δ(u0, u1),

where κ =
(
ς−`2−`4
1−`2−`3

)
. Therefore,

κn → 0 as n→∞.

Hence
δ(un−1, us)→ 0 s→∞.

Every Cauchy sequence{un−1}∞n−1 in L is convergence, since L is complete space, i.e. there exist u1 ∈ L such
that un → u1, also we have a continuous mapping

f( lim
n→∞

un) = f(u1), lim
n→∞

un = u1.

Hence, u1 is a �xed point of f in L.
Now to prove that u1 is a unique �xed point of f in L, there exist another �xed point u2 ∈ L such that
u1 6= u2, f(u1) = u1 and f(u2) = u2. By (7) we have

δ(u1, u2) <`1δ(u1, f(u1)) + `2δ(u2, f(u2)) + `3δ(u1, f(u2)) + `4δ(u2, f(u1))+

`5δ(u1, z2),

<(ς − `1 − `2)δ(u1, u2)

which implies u1 = u2. So u1 is a unique �xed point of f in L.

Theorem 2.2. Let L be a complete metric space and let f, g are two continuous self-mapping on L satisfy

δ(f(u), g(v)) < `1δ(u, f(u)) + `2δ(v, g(v)) + `3δ(u, g(v)) + `4δ(v, f(u)) + `5δ(u, v)

for all u, v ∈ L, u 6= v and for some `1, `2, `3, `4, `5 ∈ [0, 1) such that
∑5

i=1 `i = ς < 1. Then f and g having

a unique �xed point.

Proof. For u0, v0 ∈ L we take f(un−1) = un, g(vn−1) = vn, it follows that

δ(uk, vk) = δ(f(uk−1, g(vk−1))

< `1δ(uk−1, f(uk−1)) + `2δ(vk−1, g(vk−1) + `3δ(uk−1, g(vk−1)

+ `4δ(vk−1, f(uk−1 + `5δ(uk−1, vk−1)),

for k ∈ N. Also, we have
n∑
k=1

δ(uk, vk) =

n∑
k=1

δ(f1(uk−1, f2(vk−1))

<

n∑
k=1

[`1δ(uk−1, uk) + `2δ(vk−1, vk) + `3δ(uk−1, uk) + `4δ(vk−1, uk)+

`5d(uk−1, vk−1)],

≤ [`1δ(u0, un) + `2δ(v0, vn) + `3

n∑
k=1

δ(uk−1, vk) +

n∑
k=1

`4δ(vk−1, uk)+

n∑
k=1

`5δ(uk−1, vk−1)],
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and
n∑
k=1

δ(uk+1, vk) ≤ `1δ(u1, un) + `2δ(v0, vn) + `3

n∑
k=1

δ(uk, vk)

+
n∑
k=1

`4δ(vk−1, uk) +
n∑
k=1

`5δ(uk−1, vk−1).

Therefore,
n∑
k=1

δ(uk, uk+1) ≤ (`1 + `5)δ(u0, un) + (`2 + `3)δ(u1, un+1).

Hence
n∑
k=1

δ(uk, uk+1) ≤
n∑
k=1

δ(uk, vk) ≤
n∑
k=1

δ(uk+1, vk) <∞.

This means
∑n

k=1 d(uk, uk+1)→ 0 as k →∞, so {uk} is a Cauchy sequence in L.
By the same way, we can show that {vk} is a Cauchy sequence in L. Since L is complete metric space, there
exist a common �xed point in L. To get it, we suppose

u1 = lim
n→∞

un, u2 = lim
n→∞

vn, ∀u1, u2 ∈ L,

Therefore,

δ(un, u1)→ 0, n→∞,
δ(vn, v1)→ 0, n→∞.

Since f and g are continuous mappings, we obtain

dδ(f(un), f(u1))→ 0, n→∞,
δ(g(vn), g(u2))→ 0, n→∞.

That is,

δ(u1, f(u1)) = δ(f−1(f(u1)), f(u1))

< `1δ(f
−1(f(u1)), f(u1)) + `2δ(u1, f(u1))

+ `3δ(f(u1), f(u1)) + `4δ(u1, f
−1(f(u1))) + `5δ(f(u1), u1)

< (ς − `3 − `4)δ(u1, f(u1)),

which implies f(u1) = u1. Similarly, we get g(u2) = u2.
Now, we shall prove that u1 is common �xed point of f and g in L as follows

δ(u1, u2) < `1δ(u1, f1(u1)) + `2δ(u2, f2(u2)) + `3δ(u1, f2(u2))

+ `4δ(u2, f1(u1)) + `5δ(u1, u2)

< (ς − `1 − `1)δ(u1, u2).

To prove the uniqueness of u1, we must suppose another point u3 ∈ L such that

f(u3) = u3, and g(u3) = u3.

Therefore

δ(u1, u3) = (f1(u1), f3(u3))

< `1δ(u1, f1(u1)) + `2δ(u3, f2(u3)) + `3δ(u1, f2(u3))

+ `4δ(u3, f1(u1)) + `5δ(z1, z3)

= (ς − `1 − `2)δ(u1, u3).

Hence u1 = u3. Thus, u1 is the unique �xed point of f and g in L.
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In next theorem, we will generalize Theorems 2.1 and 2.2.

Theorem 2.3. Let fϑ be a family continuous self-mapping in complete metric space L, suppose that

δ(fϑ(u), fβ(v)) ≤`1δ(u, fϑ(u)) + `2δ(v.fβ(v)) + `3δ(u, fβ(v)) + `4δ(v, fϑ(u))

+ `5δ(u, v),

for every u, v ∈ L, u 6= v and
∑5

i=1 `i = ς < 1. Then fϑ(u) has a unique �xed point u1 ∈ L.

Proof. By repeat the same way in Theorem 2.2 with replacing f and g by fϑ and fβ respectively, we get

fϑ(u1) = fβ(u1) = u1.

We can reformulate the theorem as follows:

Theorem 2.4. Let fk be a self-mappings on a complete metric space L such that fk(uk) = uk, for all

u, uk ∈ L ∀k respectively, such that

δ(fk(u), fk(v)) <`1δ(u, f
k(u)) + `2δ(v, f

k(v)) + `3δ(u, f
k(v)) + `4δ(v, f

k(u))

+ `5δ(u, v).

∀u, v ∈ L, u 6= v and
∑5

i=1 `i = ς < 1.

Proof. We need to prove that fk(u1) = u1. Therefore, by same technique used to prove the Theorem 2.2,
Theorem 2.4 can be proven.

Example 2.1. Assume that L = [0, 1] is a complete metric space. Suppose that f(u) = u/3, at u ∈ [0, 1
3) and

f(v) = v/4 at v ∈ (1
3 , 1]. Clearly, f is discontinues, so (1) is not hold. Take ς = 1/3. Hence, all conditions

of Theorem 2.1 is satis�ed and a unique �xed point is u = 0 ∈ L.

3. Applications

3.1. An application without necessary continuity condition

In the next theorem, we can apply our results to study the existence and uniqueness of common �xed
points for mappings without continuity condition.

Theorem 3.1. Let fk1 , fk2 be two self-mappings on complete metric space L satis�es

δ(fk1(u), fk2(v)) <`1δ(u, fk1(u)) + `2δ(v, fk2(v)) + `3δ(u, fk2(v))+

`4δ(v, fk1(u)) + `5δ(u, v),

∀u, v ∈ L, u 6= v and
∑5

i=1 `i = ς < 1. Suppose that fk1fk2 = fk2fk1 is continuous then fk1 and fk2 having a

unique common �xed point in L.

Proof. Take un = fk1(un−1), un+1 = fk2(un) and fk1(un−1) 6= fk2(un−1), un 6= un−1, ∀n ∈ N.
Therefore,

δ(u2n+1, u2n) = δ(fk1(u2n), fk2(u2n−1))

< `1δ(u2n, x2n+1) + `2δ(u2n−1, u2n) + `3δ(u2n, u2n)

+ `4δ(u2n−1, u2n+1) + `5δ(u2n, u2n−1).
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So, we have

δ(u2n+1, u2n) ≤
( ς − `1 − `3

1− `2 − `4

)
δ(u2n, u2n−1). (11)

From (11) we obtain

δ(u2n+1, u2n) ≤
( ς − `1 − `3

1− `2 − `4

)2n
δ(u1, u0).

Therefore,
fk1fk2(u1) = fk2fk1(u1) = fk1fk2( lim

k→∞
unk) = lim

k→∞
unk+1

= u1.

Suppose that u1 is a �xed point of fk1fk2 in L such that fk1fk2(u1) = u1. Now, we must show that u1 is a
�xed point of fk1 and fk2 in L, i.e.

fk1(u1) = u1 and fk2(u1) = u1.

For that, let
fk1(u1) 6= u1 and fk2(u1) 6= u1.

Then by using(7), we have

δ(z1, f1(z1)) = δ(f2f1(z1), f1(z1))

< `1δ(f1(z1), f2f1(z1) + `2δ(z1, f1(z1)) + `3δ(f1(z1, f1(z1)

+ `4δ(z1, f1(f1(z1)) + `5δ(f1(z1), z1)

Hence, u1 is a �xed point of fk1 in L. Similarly, we get fk2(u1) = u1. This indicates that fk1 and fk2 having
a common �xed point in L. That was proof of existence result.
Again we apply (7) for proving the uniqueness result. Suppose u2 ∈ L (u2 6= u1) are another �xed points of
fk1 and fk2 such that

δ(u1, u2) = δ(f1(u1), f2(u2))

< `1δ(u1, f1(u1)) + `2δ(u2, f2(u2)) + `3δ(u1, f2(u2)

+ `4δ(u2, f1(u1) + `5δ(u1, u2)

= (ς − `1 − `2)δ(u1, u2).

This means that u1 = u2. So, we have proven the uniqueness result. The proof is completed.

3.2. An application on DEs

:
Consider the following nonlinear DE{

u′′(t) = −g(t, u(t)), t ∈ [0, 1],
u(0) = u(1) = 0,

(12)

where the function g : [0, 1]× R→ R is a continuous.
Now, by using Theorem 2.1, we discuss the existence and uniqueness of the problem (12).

Problem (12) is equivalent to the following integral equation

u(t) =

∫ 1

0
G(t, τ)g(τ, u(τ))dτ, ∀t ∈ [0, 1], (13)

where G(t, τ) is the Green's function de�ned by

G(t, τ)

{
t− τt, 0 ≤ t ≤ τ ≤ 1,
τ − τt, 0 ≤ τ ≤ t ≤ 1.
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Therefore, if u ∈ C2([0, 1]), then a solution of (12) it will be u if and only if it is a solution of (13). Denote
the space of all continuous functions by L = C([0, 1]). Let δ satisfying

δ(u, v) = ‖u‖∞ + ‖v‖∞ + ‖u− v‖∞, for all u, v ∈ L

such that ‖u‖∞ = maxt∈[0,1]|u(t)| for all u ∈ L.

Theorem 3.2. Assume that

i) |g(τ, a)− g(τ, b)| ≤ 8f1(τ)|a− b|,∀a, b ∈ R, τ ∈ [0, 1] such that f1 : [0, 1]→ [0,∞] a continuous functions.

ii) |g(τ, a)| ≤ 8f2(τ)|a|, ∀a ∈ R, τ ∈ [0, 1] such that f2 : [0, 1]→ [0,∞] a continuous functions.

iii) maxτ∈[0,1]f1(τ) = ηk1 <
1
81 , 0 ≤ η < 1

9 .

iv) maxτ∈[0,1]f2(τ) = ηk2 <
1
81 , 0 ≤ η < 1

9 .

Then, u ∈ L = C([0, 1],R) is a unique solution to problem (12).

Proof. Consider the operator f : L→ L de�ned by

fu(t) =

∫ 1

0
G(t, τ)g(τ, u(τ))dτ, ∀u ∈ L, t ∈ [0, 1].

Let u, v ∈ L, we have

|fu(t)− fv(t)| =
∣∣∣∣ ∫ 1

0
G(t, τ)g(τ, u(τ))dτ −

∫ 1

0
G(t, r)g(τ, v(τ))dτ

∣∣∣∣
≤
∫ 1

0
G(t, τ)|g(τ, u(τ)− g(τ, v(τ))|dτ

≤ 8

∫ 1

0
G(t, τ)f1(τ)|u(τ)− v(τ)|dτ

≤ 8ηk1‖u− v‖∞
∫ 1

0
G(t, τ)dτ

≤ ηk1‖u− v‖∞

where we used fact that
∫ 1

0 G(t, τ)dτ = t
2 −

t2

2 for all t ∈ [0, 1] and so sup
t∈[0,1]

∫ 1
0 G(t, τ)dτ = 1

8 . Therefore,

‖fu− fv‖∞ ≤ ηk1 ‖u− v‖∞ . (14)

On the other hand, we have

|fu(t)| ≤
∣∣∣∣ ∫ 1

0
G(t, τ) |g(τ, u(τ))| dτ

∣∣∣∣
≤ 8

∫ 1

0
G(t, τ)f2(τ)|u(τ)|dτ

≤ ηk2‖u‖∞.

Then,
‖fu‖∞ ≤ ηk2‖u‖∞. (15)

Similarly, we get
‖fv‖∞ ≤ ηk2‖v‖∞. (16)
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By (14),(15) and (16), we obtain

δ(fu, fv) = ‖fu‖∞ + ‖fv‖∞ + ‖fu− fv‖∞
≤ ηk2‖u‖∞ + ηk2‖v‖∞ + ηk1‖u− v‖∞
< η(2k2 + k2

1)(‖u‖∞ + ‖v‖∞ + ‖u− v‖∞)

< η(2k2 + k2
1)δ(u, v),

where (2k2 + k2
1) < 1. Suppose `1, `2, `3, `4, `5 > 0, such that

`1 <
1

9
, `2 <

1

9
, `3 <

1

9
, `4 <

1

9
, `5 <

1

9
and η ∈ [0, 1).

Then, the following is satis�ed

δ(fu, fv) < `1δ(u, fu) + `2δ(v, fv) + `3δ(u, fv) + `4δ(v, fu) + `5δ(u, v).

Hence, by Theorem 2.1, the problem (12) has a unique solution u ∈ L.

3.3. An application on FDEs

:
More de�nitions and properties of the generalized fractional calculus can be found in [13, 30].

Lemma 3.1. Let 1 < θ < 2, h : [0, 1] → R+ are continuous function and ψ : [0, 1] → R+ an increasing

function with ψ′(t) 6= 0 for t ∈ [0, 1]. Then the function u(t) ∈ C[0, 1] is a solution of the following problem{
CDθ,ψ

0+
u(t) + h(t) = 0, t ∈ [0, 1]

u(0) = u(1) = 0.
(17)

if and only if u ∈ C[0, 1] is a solution of the following fractional integral equation

u(t) =
1

Γ(θ)

∫ 1

0
ψ′(τ)G(t, τ)h(τ)dτ.

where

G(t, τ) =


[ψ(t)−ψ(0)][[ψ(1)−ψ(τ)]θ−1−[ψ(t)−ψ(τ)]θ−1]

[ψ(1)−ψ(0)] , 0 ≤ τ ≤ t ≤ 1,
[ψ(t)−ψ(0)][ψ(1)−ψ(τ)]θ−1

[ψ(1)−ψ(0)] , 0 ≤ t ≤ τ ≤ 1.
(18)

Here G(t, τ) is called Green function of BVP (17).

Proof. Applying Iθ,ψ
0+

on both sides of the �rst equation of ( 17),

Iθ,ψ
0+

CDθ,ψ
0+ u(t) + Iθ,ψ

0+
h(t) = 0.

Using Theorem 4 (see [13]) we get

u(t) = c0 + c1[ψ(t)− ψ(0)]− 1

Γ(θ)

∫ t

0
ψ′(τ)[ψ(t)− ψ(τ)]θ−1h(τ)dτ.

The condition u(0) = 0 means c0 = 0, and we have

u(1) = c1[ψ(1)− ψ(0)]− 1

Γ(θ)

∫ 1

0
ψ′(τ)[ψ(1)− ψ(τ)]θ−1h(τ)dτ.
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Since u(0) = u(1) = 0, then

c1 =
[ψ(1)− ψ(0)]−1

Γ(θ)

∫ 1

0
ψ′(τ)[ψ(1)− ψ(τ)]θ−1h(τ)dτ

The equation CDθ,ψ
0+ u(t) + h(t) = 0 is reduces to the equivalent integral equation

u(t) =
[ψ(t)− ψ(0)]

[ψ(1)− ψ(0)]

1

Γ(θ)

∫ 1

0
ψ′(τ)[ψ(1)− ψ(s)]θ−1h(τ)dτ

− 1

Γ(θ)

∫ t

0
ψ′(τ)[ψ(t)− ψ(τ)]θ−1h(τ)dτ,

which implies

u(t) =
[ψ(t)− ψ(0)]

[ψ(1)− ψ(0)]

1

Γ(θ)

∫ t

0
ψ′(τ)[ψ(1)− ψ(s)]θ−1h(τ)dτ

+
[ψ(t)− ψ(0)]

[ψ(1)− ψ(0)]

1

Γ(θ)

∫ 1

t
ψ′(τ)[ψ(1)− ψ(τ)]θ−1h(τ)dτ

− 1

Γ(θ)

∫ t

0
ψ′(τ)[ψ(t)− ψ(τ)]θ−1h(τ)dτ

=

∫ t

0

ψ′(τ)[ψ(t)− ψ(0)]
[
[ψ(1)− ψ(τ)]θ−1 − [ψ(t)− ψ(τ)]θ−1

]
[ψ(1)− ψ(0)]Γ(θ)

h(τ)dτ

+

∫ 1

t

ψ′(τ)[ψ(t)− ψ(0)][ψ(1)− ψ(τ)]θ−1

[ψ(1)− ψ(0)]Γ(θ)
h(τ)dτ

=
1

Γ(θ)

∫ 1

0
ψ′(τ)G(t, τ)h(τ)dτ.

Now, we consider the following nonlinear FDE{
Dθ;ψ

0+
u(t) + g(t, u(t)) = 0, t ∈ [0, 1],
u(0) = u(1) = 0,

(19)

where Dθ;ψ
0+

is generalized fractional derivative in the sense of Caputo and g : [0, 1]×R→ R is a continuous.
Now, by using Theorem 2.1 we will discuss the existence and uniqueness of solutions for (19). Problem (19)
is equivalent to the following fractional integral equation

u(t) =
1

Γ(θ)

∫ 1

0
ψ′(τ)G(t, τ)g(t, τ)dτ, t ∈ [0, 1], (20)

where G(t, τ) de�ned by (18).
Therefore, if u ∈ C2([0, 1]), then a solution of (19) it will be u if and only if it is a solution of (20).

Denote the space of all continuous functions by L = C([0, 1]). Let δ a metric like de�ned on L as

δ(u, v) = ‖u‖∞ + ‖v‖∞ + ‖u− v‖∞, for all u, v ∈ L

such that ‖u‖∞ = maxt∈[0,1]|u(t)| for all u ∈ L.

Theorem 3.3. Assume that

i) ψ ∈ C1[0, 1] and there exists ξ > 0 such that sup
τ∈[0,1]

|ψ′(τ)| ≤ ξ.
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ii) |g(τ, a)− g(τ, b)| ≤ Γ(θ+1)
[ψ(1)−ψ(0)]θ

f1(τ)|a− b|, ∀a, b ∈ R, τ ∈ [0, 1]such thatf1 : [0, 1]→ [0,∞) is a continuous

functions.

iii) |g(τ, a)| ≤ Γ(θ+1)
[ψ(1)−ψ(0)]θ

f2(τ)|a|,∀a ∈ R, τ ∈ [0, 1] such that f2 : [0, 1]→ [0,∞] a continuous functions.

iv) maxτ∈[0,1]f1(τ) = ηk1 <
1
81 , 0 ≤ η < 1

9 .

v) maxτ∈[0,1]f2(τ) = ηk2 <
1
81 , 0 ≤ η < 1

9 .

Then, the problem (19) has a unique solution u ∈ L.

Proof. Consider the mapping F ∗ : L→ L de�ned by

F ∗u(t) =
1

Γ(θ)

∫ 1

0
ψ′(τ)G(t, τ)g(t, τ)dτ, u ∈ L, t ∈ [0, 1].

Let u, v ∈ L, we have

|F ∗u(t)− F ∗v(t)| ≤ 1

Γ(θ)

∫ 1

0
ψ′(τ)G(t, τ) |g(τ, u(τ)− g(τ, v(τ))| dτ

≤ θ

[ψ(1)− ψ(0)]θ

∫ 1

0
sup
τ∈[0,1]

∣∣ψ′(τ)
∣∣G(t, τ)

τ∈[0,1]

maxf1(τ)|u(τ)− v(τ)|dτ,

≤ θξ

[ψ(1)− ψ(0)]θ
ηk1‖u− v‖∞

∫ 1

0
G(t, τ)dτ. (21)

Since ψ ∈ C1[0, 1], for 0 ≤ τ ≤ t ≤ 1, we have∫ 1

0
G(t, τ)dτ =

∫ 1

0

[ψ(t)− ψ(0)]
[
[ψ(1)− ψ(τ)]θ−1 − [ψ(t)− ψ(τ)]θ−1

]
[ψ(1)− ψ(0)]

dτ

=
[ψ(t)− ψ(0)]

[ψ(1)− ψ(0)]

∫ 1

0
ψ′(τ)[ψ(1)− ψ(τ)]θ−1

[
ψ′(τ)

]−1
dτ

− [ψ(t)− ψ(0)]

[ψ(1)− ψ(0)]

∫ 1

0
[ψ(t)− ψ(τ)]ς−1dτ

≤ [ψ(t)− ψ(0)]

[ψ(1)− ψ(0)]

∫ 1

0
ψ′(τ)[ψ(1)− ψ(τ)]θ−1

[
ψ′(τ)

]−1
dτ

≤ 1

θξ
[ψ(t)− ψ(0)][ψ(1)− ψ(0)]θ−1

≤ 1

θξ
[ψ(1)− ψ(0)]θ. (22)

Similarly, for 0 ≤ t ≤ τ ≤ 1, we have∫ 1

0
G(t, τ)dτ =

∫ 1

0

[ψ(t)− ψ(0)][ψ(1)− ψ(τ)]θ−1

[ψ(1)− ψ(0)]
dτ

=
[ψ(t)− ψ(0)]

[ψ(1)− ψ(0)]

∫ 1

0
ψ′(τ)[ψ(1)− ψ(τ)]θ−1

[
ψ′(τ)

]−1
dτ

≤ 1

θξ
[ψ(t)− ψ(0)][ψ(1)− ψ(0)]θ−1

≤ 1

θξ
[ψ(1)− ψ(0)]θ. (23)



J. Patil et al., Adv. Theory Nonlinear Anal. Appl. 4 (2020), 407�420. 418

From (22) and (23), we get∫ 1

0
G(t, τ)dτ ≤ 1

θξ
[ψ(1)− ψ(0)]θ, for all t ∈ [0, 1] and 1 < θ < 2.

Hence, the inequality (21) becomes

‖F ∗x− F ∗y‖∞ ≤ ητ1‖x− y‖∞. (24)

Also, we have from (22), (23) and the condition (iii) that

|F ∗u(t)| ≤ 1

Γ(θ)

∣∣∣∣ ∫ 1

0
G(t, τ) |g(τ, u(τ))| dτ

∣∣∣∣
≤ θ

[ψ(1)− ψ(0)]θ

∫ 1

0
G(t, τ)f2(τ)|u(τ)|dτ

≤ ηk2‖u‖∞.

Thus,
‖F ∗u‖∞ ≤ ηk2‖u‖∞. (25)

Similarly, we get
‖F ∗v‖∞ ≤ ηk2‖v‖∞. (26)

By (24),(25) and (26), we get

δ(F ∗u, F ∗v) = ‖F ∗u‖∞ + ‖F ∗v‖∞ + ‖F ∗u− F ∗v‖∞
≤ ηk2‖u‖∞ + ηk2‖v‖∞ + ηk1‖u− v‖∞
≤ η(2k2 + k1)(‖u‖∞ + ‖v‖∞ + ‖u− v‖∞)

< η(2k2 + k2
1)δ(u, v)

where (2k2 + k2
1) < 1. Suppose `1, `2, `3, `4, `5 > 0, such that

`1 <
1

9
, `2 <

1

9
, `3 <

1

9
, `4 <

1

9
, `5 <

1

9
and η ∈ [0, 1).

Then, the following relation is satis�ed

δ(F ∗u, F ∗v) < `1δ(u, F
∗u) + `2δ(v, F

∗v) + `3δ(u, F
∗v) + `4δ(y, F

∗u) + `5δ(u, v).

Hence, by Theorem 2.1, the problem (19) has a unique solution u ∈ L.
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