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Abstract

In this paper we establish a large deviation principle for solution of perturbed re�ected stochastic di�erential
equations driven by a fractional Brownian motion BH

t with Hurst index H ∈ (0; 1).
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1. Introduction

There are di�erent methods to show that the di�usion process satis�es the principle of large deviations
(LDP), for which several authors have determined the rate function in di�erent spaces. In addition, in the
case of the large deviation principle for a standart Brownian motion, many autors had established the LDP
for perturbed di�usion processes see among others L. Bo and T. Zhang ([3]) , H. Doss and P. Priouret ([8]).
Regarding a fractional Brownian motion, Y. Inahama ([10]) proved, in the framework of the rough trajectory
theory that the process εBH

t obeys a large deviation principle for H ∈ (14 ; 1
2) because the integral only veri�es

the Young theorem if H ∈ (14 ; 1
2). Other authors have established large deviation for local times of fractional

Brownian motion, X. Chen, W. V. Li, J. Rosinski and Q. Shao ([4]), M. M. Meerschaert and E. X. Y. Nane
([11]), and Z. Chen and W. Wang ([17]). The novelty of our work is to extend the work of R.A. Doney
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and T. Zhang ([5]) a new approch via the principle of contraction,in the framework of stochastic di�erential
equations directed by a fractional Brownian motion (fBm) of Hurst parameter H ∈ (0; 1),by determining
the rate function of the dual of Schwartz space. The rest of this paper is organized as follows. Sections 2
contains some de�nitions and theorems of the fBm and LDP which we need for our results. Section 3 contain
our main results.

2. Preliminaries

Let BH = {BH
t , t ∈ [0;T ]} be a fractional Brownian motion (fBm) of Hurst parameter H ∈ (0; 1) with

covariance function:

R(t, s) = E(BH
t B

H
s ) =

1

2
(|t|2H + |s|2H − |t− s|2H) =

∫ t

0

∫ s

0
φ(r, u)dudr,

φ(t, s) = ∂2R(t,s)
∂t∂s = H(2H − 1)|t− s|2H−2.

Consider the perturbed re�ected stochastic di�erential equations:

XH,ε
t = x+

∫ t

0
b(XH,ε

s )ds+ ε

∫ t

0
σ(XH,ε

s )dBH
s + α sup

0≤r≤t
(XH,ε

r ), s, t ∈ [0;T ] (1)

Y H,ε
t = y +

∫ t

0
b(Y H,ε

s )ds+ ε

∫ t

0
σ(Y H,ε

s )dBH
s + Lεt , s, t ∈ [0;T ] (2)

de�ned on noise probability space (S ′(R),B(S ′(R)),P), where

1. α ∈ [0; 1];

2. x and y ∈ S ′(R) are deterministic;

3. b and σ : [0;T ]× S ′(R)→ S ′(R) are measurable functions such that the integrals are de�ned as white
noise integral (see [2],[1] and [15]) and they are bounded lipschitz continuous;

4. Lεt is non-decreasing such that

Lεt =


0 if t = 0∫ t
0 1{Yr=0}(Yr)dL

ε
r if t ∈ [0;T ]

(3)

? S ′(R) is a space of tempered distriution, called dual space of Schwartz space.

Consider a white noise space (S ′(R), B(S ′(R)),P) and denote 〈., .〉 the scalar product and |.| the norm in
S ′(R). It well know that S(R) ⊂ L2(R) ⊂ S ′(R).

De�nition 2.1. For ω ∈ S ′(R), a process 〈ω, f〉φ =
∫ t
0 f(r)dBH

r is a gaussian with covariance (see [1]),

〈f, f〉φ = |f |2φ =
∫ t
0

∫ s
0 f(r)f(u)φ(r, u)dudr and

L2
φ(R) = {f ∈ S ′(R),

∫ t
0

∫ s
0 f(r)f(u)φ(r, u)dudr < +∞}.

De�nition 2.2. The family (Xε
t )ε>0 of probability Pε is said to satisfy a large deviation principle if there

exists a rate function I de�ned on L2
φ(R) and a speed ε tending to 0 such that:

1. 0 ≤ I(x) ≤ +∞;

2. I is lower semicontinuous that is, for all a ∈ R, {x : I(x) ≤ a} is a closed of L2
φ(R);

3. for all a ∈ R, {x : I(x) ≤ a} is a compact of L2
φ(R), in which case I is a good rate function;

4. for any closed set C ⊂ L2
φ(R),

lim
ε→0

sup ε logPε(Xε
t ∈ C) ≤ − inf

x∈C
I(x)
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5. for any open set O ⊂ L2
φ(R),

lim
ε→0

inf ε logPε(Xε
t ∈ O) ≥ − inf

x∈O
I(x)

Theorem 2.3. (Contraction principle, [5])
Let E1, E2 ⊂ L2

φ(R) and g : E1 → E2 is a continuous function. If the family (Xε
t )ε>0 satis�es a large

deviation principle of a rate function I then the family g((Xε
t )ε>0) satis�es the LDP on E2 of a rate function

J de�ned by:
J(y) = inf{I(x) : x ∈ E1, y = g(x)} , for each y ∈ E2.

3. Main Results

In this section of our results, we �rst present the asymptotic behavior study of the solution process Y H,ε
t (2)

and lastly that of XH,ε
t (1) . Before giving our main theorem for this part, we �rst present the LDP theorem

for fBm εBH
t with probability measure PH,εφ .

Thus this theorem is as follow:

Theorem 3.1. (see [6])
The family (εBH

t )(ε>0) satis�es the large deviation principle of speed ε2 with a rate function given by:

I(f) =

{
1
2 |f |

2
φ = 1

2

∫ t
0

∫ s
0 f(r)f(u)φ(r, u)dudr if f ∈ L2

φ(R)

+∞ otherwise .

1. I(f) is lower semicontinuous and {f : I(f) ≤ a} is a compact subset of L2
φ(R),

2. For all closed set C ⊂ L2
φ(R),

lim
ε→0

sup ε2 logPH,εφ (εBH
t ∈ C) ≤ −1

2
|f |2φ

3. For any open set O ⊂ L2
φ(R),

lim
ε→0

inf ε2 logPH,εφ (εBH
t ∈ O) ≥ −1

2
|f |2φ .

3.1. Large deviation principle for re�ected fractional di�usion process

We will prove the LDP for solution of the perturbed stochastic di�erential equation (2).
For ϕ ∈ L2

φ(R), de�ne an operators Γ : L2
φ(R)→ L2

φ(R) by

Γϕ = ϕ− inf
0≤s≤t

(ϕ(s) ∧ 0) for t ∈ [0;T ]. (4)

verifying the following inequality:

sup
0≤r≤t

|Γϕ1(r)− Γϕ2(r)| ≤ 2 sup
0≤r≤t

|ϕ1(r)− ϕ2(r)|

By the re�ection principle (see [3] and [5]), the solution of (2) is given by{
Y H,ε
t = ΓZH,εt

Lεt = Y H,ε
t − ZH,εt = ΓZH,εt − ZH,εt

(5)

where ZH,ε is a solution of the following stochastic di�erential equation:

ZH,εt = y +

∫ t

0
b(ΓZH,εr )dr +

∫ t

0
σ(ΓZH,εr )dBH

r , s, t ∈ [0;T ] (6)
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and we denote the probability law of Y H,ε
t by QH,ε = PH,εφ oG−1 such that G(f) is the only solution of the

ordinary di�erential equation:

G(ft) = y +

∫ t

0
b(G(fr))dr +

∫ t

0
σ(G(fr))frφ(r, s)dr + ηt, s, t ∈ [0;T ] (7)

where ηt =
∫ t
0 χ{G(fr)=0}dηr is an increasing continuous function.

G(f) can also be written as {
G(f) = Γϕ(ft)
ηt = G(f)− ϕ(ft) = Γϕ(ft)− ϕ(ft) .

(8)

Where ϕ(f) is a solution of the following stochastic equation:

ϕ(ft) = y +

∫ t

0
b(Γϕ(fr))dr +

∫ t

0
σ(Γϕ(fr))frφ(r, s)dr, s, t ∈ [0;T ] (9)

and f is the function induced by the LDP of the fBm.

Lemma 3.2.

Let σ be a bounded lipschitz function and f be bounded and continuous function. Then there exists K > 0
and N > 0 such that

|f(t)φ(t, s)| ≤ K
|σ(h(t))φ(t, s)| ≤ N for all s, t ∈ [0, T ].

Proof.
f is a bounded function, so there exists δ such that |f | ≤ δ. We have for s, t ∈ [0;T ]

|f(t)φ(s, t)| = |f(t)||φ(s, t)|
= |f |H(2H − 1)|t− s|2H−2

≤ δH|(2H − 1)|T 2H = K.

σ is bounded, so there exists M such that |σ(ht)| ≤M ∀ h ∈ L2
φ(R), we have for s, t ∈ [0;T ]

|σ(ht)φ(s, t)| = |σ(ht)||φ(s, t)|
= |σ|H(2H − 1)|t− s|2H−2

≤MH|(2H − 1)|T 2H = N.

Lemma 3.3. G(f) and η are continuous on the compact set
{J(G(f), η) ≤ a,G(f), η ∈ L2

φ(R)} for any a ≥ 0 .

Proof. Let's show G(f) and η are continuous:
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For G(f), Let G(f1) = Γϕ(f1) and G(f2) = Γϕ(f2) with

ϕ(ft) = y +

∫ t

0
b(Γϕ(fr))dr +

∫ t

0
σ(Γϕ(fr))frφ(r, s)dr,

|G(f1(t))−G(f2(t))| = |Γϕ(f1(t))− Γϕ(f2(t))|
sup

0≤r≤t
|G(f1(r))−G(f2(r))| = sup

0≤r≤t
|Γϕ(f1(r))− Γϕ(f2(r))|

≤ 2 sup
0≤r≤t

|ϕ(f1(r))− ϕ(f2(r))|

ϕ(f1(t))− ϕ(f2(t)) =

∫ t

0
[b(Γϕ(f1(r)))− b(Γϕ(f2(r)))]dr

+

∫ t

0
σ(Γϕ(f1(r)))f1(r)φ(r, s)dr −

∫ t

0
σ(Γϕ(f2(r)))f2(r)φ(r, s)dr

=

∫ t

0
[b(Γϕ(f1(r)))− b(Γϕ(f2(r)))]dr +

∫ t

0
σ(Γϕ(f1(r)))f1(r)φ(r, s)dr

−
∫ t

0
σ(Γϕ(f2(r)))f1(r)φ(r, s)dr +

∫ t

0
σ(Γϕ(f2(r)))f1(r)φ(r, s)dr

−
∫ t

0
σ(Γϕ(f2(r)))f2(r)φ(r, s)dr

=

∫ t

0
[b(Γϕ(f1(r)))− b(Γϕ(f2(r)))]dr

+

∫ t

0
[σ(Γϕ(f1(r)))− σ(Γϕ(f2(r)))]f1(r)φ(r, s)dr

+

∫ t

0
σ(Γϕ(f2(r)))φ(r, s)[f1(r)− f2(r)]dr

|ϕ(f1(t))− ϕ(f2(t))| ≤
∫ t

0
|b(Γϕ(f1(r)))− b(Γϕ(f2(r)))|dr

+

∫ t

0
|σ(Γϕ(f1(r)))− σ(Γϕ(f2(r)))||f1(r)φ(r, s)|dr

+

∫ t

0
|σ(Γϕ(f2(r)))φ(r, s)||f1(r)− f2(r)|dr

≤ L

∫ t

0
|Γϕ(f1(r))− Γϕ(f2(r))|dr + LK

∫ t

0
|Γϕ(f1(r))− Γϕ(f2(r))|dr

+ N

∫ t

0
|f1(r)− f2(r)|dr

≤ L(1 +K)

∫ t

0
|Γϕ(f1(r))− Γϕ(f2(r))|dr +NδT

sup
0≤r≤t

|ϕ(f1(r))− ϕ(f2(r))| ≤ L(1 +K)

∫ t

0
sup

0≤r≤t
|Γϕ(f1(r))− Γϕ(f2(r))|dr +NδT

≤ 2L(1 +K)

∫ t

0
sup

0≤r≤t
|ϕ(f1(r))− ϕ(f2(r))|dr +NδT

≤ 2L(1 +K)

∫ t

0
sup

0≤r≤t
|ϕ(f1(r))− ϕ(f2(r))|dr +NδT
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sup
0≤r≤t

|G(f1(r))−G(f2(r))| ≤ 2 sup
0≤r≤t

|ϕ(f1(r))− ϕ(f2(r))|

≤ 4L(1 +K)

∫ t

0
sup

0≤r≤t
|ϕ(f1(r))− ϕ(f2(r))|dr +NδT

|G(f1(t))−G(f2(t))| ≤ NδTe4L(1+K)T

hence G(f) is continuous.
For η,
accoding to (8) ηt = Γϕ(ft)− ϕ(ft), so

η1(t)− η2(t) = Γϕ(f1(t))− ϕ(f1(t))− Γϕ(f2(t)) + ϕ(f2(t))

|η1(t)− η2(t)| ≤ |Γϕ(f1(t))− Γϕ(f2(t))|+ |ϕ(f1(t))− ϕ(f2(t))|
sup

0≤r≤t
|η1(r)− η2(r)| ≤ sup

0≤r≤t
|Γϕ(f1(r))− Γϕ(f2(r))|+ sup

0≤r≤t
|ϕ(f1(r))− ϕ(f2(r))|

≤ 2 sup
0≤r≤t

|ϕ(f1(r))− ϕ(f2(r))|+ sup
0≤r≤t

|ϕ(f1(r))− ϕ(f2(r))|

≤ 3 sup
0≤r≤t

|ϕ(f1(r))− ϕ(f2(r))|

≤ 6L(1 +K)

∫ t

0
sup

0≤r≤t
|ϕ(f1(r))− ϕ(f2(r))|dr +NδT (see ∗)

|η1(t)− η2(t)| ≤ NδTe6L(1+K)T ,

hence η is continuous.

Theorem 3.4. The family (Y H,ε
t , Lεt )(ε>0) of the stochastic di�erential equation (2) satis�es the large devi-

ation principle of the good rate function given by

J(g, η) =

{ 1
2 |σ
−1(g)[ġ − b(g)− χ{g=0}(g)η̇]|2φ−1 if g = G(f) ∈ L2

φ(R) η ∈ L2
φ(R)

+∞ otherwise
(10)

(a) J(g, η) is lower semi-continuous and {g, η ∈ L2
φ(R), J(g, η) ≤ a} is a compact subset ofL2

φ(R) ,

(b) For all closed set C subset L2
φ(R),

lim
ε→0

sup ε2 logQH,ε[(Y H,ε
t , Lεt ) ∈ C] ≤ −J(g, η),

(c) For any open set O ⊂ L2
φ(R),

lim
ε→0

inf ε2 logQH,ε[(Y H,ε
t , Lεt ) ∈ O] ≥ −J(g, η).

Proof. Now let's show the upper and the lower bound by the contraction principle. G(f) is continuous and

the process εBH
t of probability law PH,εφ has a LDP with a rate function I(f) =

1

2
|f |2φ, according to the

contraction principle we have for:
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(b) Any open set O of L2
φ(R), we have,

lim
ε→0

inf ε2 logQH,ε[(Y H,ε
t , Lεt ) ∈ O] = lim

ε→0
inf ε2 logPH,εφ o(G(f))−1[(Y H,ε

t , Lεt ) ∈ O]

= lim
ε→0

inf ε2 logPH,εφ [(G(f))−1[(Y H,ε
t , Lεt ) ∈ O]]

= lim
ε→0

inf ε2 logPH,εφ [(G(f))−1[(Y H,ε
t , Lεt ) ∈ O]]

= lim
ε→0

inf ε2 logPH,εφ [(G(f))−1((Y H,ε
t , Lεt )) ∈ (G(f))−1(O)]

= lim
ε→0

inf ε2 logPH,εφ [εBH
t ∈ (G(f))−1(O)]

= lim
ε→0

inf ε2 logPH,εφ [εBH
t ∈ (G(f))−1(O)]

= lim
ε→0

inf ε2 logPH,εφ [εBH
t ∈ (G(f))−1(O)]

≥ − inf
f∈G(f)−1(O)

I(f)

= − inf
G(f)∈O

{inf I(f) =
1

2
|f |2φ, f ∈ L2

φ(R), G(ft) = gt}

= −J(g, η).

(c) Any closed set C of L2
φ(R)

lim
ε→0

sup ε2 logQH,ε[(Y H,ε
t , Lεt ) ∈ O] = lim

ε→0
sup ε2 logPH,εφ o(G(f))−1[(Y H,ε

t , Lεt ) ∈ C]

= lim
ε→0

sup ε2 logPH,εφ [(G(f))−1[(Y H,ε
t , Lεt ) ∈ C]]

= lim
ε→0

sup ε2 logPH,εφ [(G(f))−1[(Y H,ε
t , Lεt ) ∈ C]]

= lim
ε→0

sup ε2 logPH,εφ [(G(f))−1((Y H,ε
t , Lεt )) ∈ (G(f))−1(C)]

= lim
ε→0

sup ε2 logPH,εφ [εBH
t ∈ (G(f))−1(C)]

= lim
ε→0

sup ε2 logPH,εφ [εBH
t ∈ (G(f))−1(C)]

= lim
ε→0

sup ε2 logPH,εφ [εBH
t ∈ (G(f))−1(C)]

≤ − inf
f∈G(f)−1(C)

I(f)

= − inf
G(f)∈C

{inf I(f) =
1

2
|f |2φ, f ∈ L2

φ(R), G(ft) = gt}

= −J(g, η).

Let's show that J(g, η) =
1

2
|σ−1(gt)[ġt − b(gt)− χ{gt=0}(gt)η̇t]|2φ−1

G(ft) = y +
∫ t
0 b(G(fr))dr +

∫ t
0 σ(G(fr))frφ(r, s)dr + ηt.

Let's put G(ft) = gt
gt = y +

∫ t
0 b(gr)dr +

∫ t
0 σ(gr)frφ(r, s)dr +

∫ t
0 χ{gr=0}(gr)dηr

ġt = b(gt) + σ(gt)ftφ(t, s) + χ{gt=0}(gt)η̇t
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ft =
1

σ(gt)φ(t, s)
[ġt − b(gt)− χ{gt=0}(gt)η̇t]. So,we show that

J(g, η) = inf
f∈G(f)−1(C)

I(f)

=
1

2
| 1

σ(gt)φ(t, s)
[ġt − b(gt)− χ{gt=0}(gt)η̇t]|2φ

=
1

2

∫ t

0

∫ s

0
(

1

σ(gr)φ(r, u)
[ġr − b(gr)− χ{gr=0}(gr)η̇r])

× (
1

σ(gu)φ(r, u)
[ġu − b(gu)− χ{gu=0}(gu)η̇u])φ(r, u)dudr

=
1

2

∫ t

0

∫ s

0
(σ−1(gr)[ġr − b(gr)− χ{gr=0}(gr)η̇r])

× (σ−1(gu)[ġu − b(gu)− χ{gu=0}(gu)η̇u])φ−1(r, u)dudr

J(g, η) =
1

2
|σ−1(gt)[ġt − b(gt)− χ{gt=0}(gt)η̇t]|2φ−1

hence, we have

J(g, η) =
1

2
|σ−1(gt)[ġt − b(gt)− χ{gt=0}(gt)η̇t]|2φ−1 .

(a) Lower semicontinuous:

Let gε, and ηε ∈ L2
φ(R) such that gε −→ g, ηε −→ η ∈ L2

φ(R).
So we have,

lim
ε→0

J(gε,ηε)

= lim
ε→0

1

2
|σ−1(gε)[ġε − b(gε)− χ{gε=0}(gε)η̇ε]|2φ−1

=
1

2
lim
ε→0

[

∫ t

0

∫ s

0
σ−1(gε(r))[ġε(r)− b(gε(r))− χ{gε(r)=0}(gε(r))η̇ε]

× σ−1(gε(u))[ġε(u)− b(gε(u))− χ{gε(u)=0}(gε(u))η̇ε]φ
−1(r, u)dudr

≥ 1

2

∫ t

0

∫ s

0
lim
ε→0

[σ−1(gε(r))[ġε(r)− b(gε(r))− χ{gε(r)=0}(gε(r))η̇ε]

× σ−1(gε(u))[ġε(u)− b(gε(u))− χ{gε(u)=0}(gε(u))η̇ε]φ
−1(r, u)dudr (Fatou′s lemma)

=
1

2

∫ t

0

∫ s

0
{lim
ε→0

σ−1(gε(r))[ġε(r)− b(gε(r))− χ{gε(r)=0}(gε(r))η̇ε]}

× {lim
ε→0

σ−1(gε(u))[ġε(u)− b(gε(u))− χ{gε(u)=0}(gε(u))η̇ε]φ
−1(r, u)dudr}

=
1

2

∫ t

0

∫ s

0
σ−1(g(r))[ġ(r)− b(g(r))− χ{g(r)=0}(g(r))η̇]}

× σ−1H (g(u))ġ(u)− b(g(u))− χ{g(u)=0}(g(u))η̇]φ−1(r, u))dudr}

=
1

2
[|σ−1H (g)[ġ − b(g)− χ{g=0}(g)η̇]|2φ−1 .

So J(g, η) ≤ lim
ε→0

J(gε, ηε), hence J(g, η) is lower semicontinuous.

For compactness: J(g, η) < +∞ for all g, η ∈ L2
φ(R), so there exists a > 0 such that J(g, η) ≤ a,

he's in a closed-o� place and we deduces that the set of level: {g, η ∈ L2
φ(R), J(g, η) ≤ a} is compact

subset of L2
φ(R). We can �nally conclude that J(g, η) is a good rate function.
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3.2. Large deviation principle for perturbed fractional di�usion process

Denote µH,ε the probability law of the process solution XH,ε
t (1) such that µH,ε = PH,εφ oF−1 where F is a

determinist function associated with f such that F (f) = h, the only solution of ordinary di�erential equation:

h(t) = x0 +

∫ t

0
b(hr)dr +

∫ t

0
σ(hr)frφ(r, s)dr + α sup

0≤r≤t
(hr), s, t ∈ [0;T ] (11)

Lemma 3.5. For α ∈ (0; 1), F is a continuous function.

Proof. Denote F (f1) = h1 and F (f2) = h2 with
F (ft) = h(t) = x0 +

∫ t
0 σ(hr)frφ(r, s)dr +

∫ t
0 b(hr)dr + α sup

0≤r≤t
(Xt)

h2(t)− h1(t) =

∫ t

0
[σ(h2(r))f2(r)− σ(h1(r))f1(r)]φ(r, s)dr +

∫ t

0
[b(h2(r))− b(h1(r)]dr

+ α( sup
0≤r≤t

(h2(r))− sup
0≤r≤t

(h1(r)))

=

∫ t

0
[σ(h2(r))− σ(h1(r))]f2(r)φ(r, s)dr +

∫ t

0
[f2(r)− f1(r)]σ(h1(r))φ(r, s)dr

+

∫ t

0
[b(h2(r))− b(h1(r)]dr + α( sup

0≤r≤t
(h2(r))− sup

0≤r≤t
(h1(r)))

|h2(t)− h1(t)| ≤ L
∫ t

0
|h2(r)− h1(r)||f2(r)φ(r, s)|dr +

∫ t

0
|f2(r)− f1(r)||σ(h1(r))φ(r, s)|dr

+ L

∫ t

0
|h2(r)− h1(r)|dr + α| sup

0≤r≤t
(h2(r))− sup

0≤r≤t
(h1(r))|

≤ LK
∫ t

0
|h2(r)− h1(r)|dr + δNT + L

∫ t

0
|h2(r)− h1(r)|ds+ α sup

0≤r≤t
|h2(r)− h1(r)|

= L(K + 1)

∫ t

0
|h2(s)− h1(s)|ds+ α sup

0≤r≤t
|h2(r)− h1(r)|+ δNT

sup
0≤r≤t

|h2(r)− h1(r)| ≤ L(K + 1)

∫ t

0
sup

0≤r≤t
|h2(r)− h1(r)|dr + α sup

0≤r≤t
|h2(r)− h1(r)|+ δNT

(1− α) sup
0≤r≤t

|h2(r)− h1(r)| ≤ L(K + 1)

∫ t

0
sup

0≤r≤t
|h2(r)− h1(r)|dr + δNT

sup
0≤r≤t

|h2(r)− h1(r)| ≤
L(K + 1)

1− α

∫ t

0
sup

0≤r≤t
|h2(r)− h1(r)|dr +

δNT

1− α

|F (f2)− F (f1)| = |h2 − h1| ≤
δNT

1− α
e
(
L(K + 1)

1− α
)T
,

hence F is continuous if α ∈ (0; 1).

Theorem 3.6. For all α ∈ (0; 1) then the family (XH,ε
t )(ε>0) satis�es the large deviation principle of speed

ε2 with a rate function given by:

J(h) =

{
inf{inf I(f), f ∈ L2

φ(R), F (f) = h}
+∞ otherwise

(12)
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(i) J(h) is lower semicontinuous and {h : J(h) ≤ a} is a compact subset of L2
φ(R),

(ii) for any open set O ⊂ L2
φ(R) and h ∈ O,

lim
ε→0

inf ε logµH,ε(XH,ε
t ∈ O) ≥ −J(h).

(iii) for any closed set C ⊂ L2
φ(R) and h ∈ C,

lim
ε→0

sup ε logµH,ε(XH,ε
t ∈ C) ≤ −J(h).

Proof. For the lower semicontinuous of J(h) we have the same reasoning that theorem (3.4) for lower
semicontinuous .
For compactness: J(h) < +∞ for all h ∈ L2

φ(R), so there exists a ∈ R such that J(h) ≤ a, he's in a

closed-o� place and we deduces that the set of level: {h ∈ L2
φ(R), J(h) ≤ a} is compact subset of L2

φ(R).

For the upper bounded: C ⊂ L2
φ(R), εBH

t of probability measure PH,εφ has LDP with good rate function

I(f) =
1

2
|f |2φ for f ∈ L2

φ(R) and F is a contnuous function. So by contraction principle, we have

lim
ε→0

sup ε2 logµH,ε[XH,ε
t ∈ C] = lim

ε→0
sup ε2 logPH,εφ oF−1[XH,ε

t ∈ C]

= lim
ε→0

sup ε2 logPH,εφ [F−1(XH,ε
t ∈ C)]

= lim
ε→0

sup ε2 logPH,εφ [F−1(XH,ε
t ) ∈ F−1(C)]

= lim
ε→0

sup ε2 logPH,εφ [εBH ∈ F−1(C)] ≤ − inf
f∈F−1(C)

I(f)

= − inf
F (f)∈C

{inf I(f), f ∈ L2
φ(R), F (f) = h} = −J(h) .

So lim
ε→0

sup ε2 logµH,ε[XH,ε
t ∈ C] ≤ −J(h) = − inf

h∈C
{inf I(f), f ∈ L2

φ(R), F (f) = h}.

For the lower bounded: O ⊂ L2
φ(R) and I(f) =

1

2
|f |2φ is a good rate function of the law PH,εφ . Then by

the contraction principle,

lim
ε→0

inf ε2 logµH,ε[XH,ε
t ∈ O] = lim

ε→0
inf ε2 logPH,εoF−1[XH,ε

t ∈ O]

= lim
ε→0

inf ε2 logPH,εφ [F−1(XH,ε
t ∈ O)]

= lim
ε→0

inf ε2 logPH,εφ [F−1(XH,ε
t ) ∈ F−1(O)]

= lim
ε→0

inf ε2 logPH,εφ [εBH
t ∈ F−1(O)] ≥ − inf

f∈F−1(O)
I(f)

= − inf
F (f)∈O

{inf I(f), f ∈ S(R), F (f) = h} = −J(h) .

So lim
ε→0

inf ε2 logµH,ε[XH,ε
t ∈ O] ≥ −J(h) = − inf

h∈O
{inf I(f), f ∈ L2

φ(R), F (f) = h} .

Conclusion 3.7. In the present paper, we have established a large deviation principle for re�ected di�usion
process driven by a fBm for any Hurst parameter H ∈ (0; 1). This construction is carried out in the tempered
distribution space S ′(R) using the method of Freidlin-Wentzell ([9]). So it would be very interesting to do
this in a space larger than that considered here.
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