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Abstract

Let G = (V,E) be a graph. The first Zagreb index and second Zagreb index
of G are defined as

∑
v∈V d

2(v) and
∑

uv∈E d(u)d(v), respectively. Using first and
second Zagreb indices of graphs, we in this note present sufficient conditions for some
Hamiltonian properties of graphs.
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1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and
terminology not defined here follow those in [2]. We use n and e to denote the number
of vertices and edges of a graph, respectively. The complete graph of order n is denoted
by Kn. We use Gc to denote the complement of a graph G. For a vertex vi in a graph G,
we use di(G) to denote its degree in G. We use δ(G) to denote the minimum degree of
G. We use G ∨ H to denote the the join of two disjoint graphs G and H . The first and
second Zagreb indices were introduced by Gutman and Trinajstić in [3]. For a graph G,
its first Zagreb index and second Zagreb index are defined as Z1(G) :=

∑
v∈V d

2(v) and
Z2(G) :=

∑
uv∈E d(u)d(v), respectively. A cycle C in a graph G is called a Hamiltonian

cycle of G if C contains all the vertices of G. A graph G is called Hamiltonian if
G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G
if P contains all the vertices ofG. A graphG is called traceable ifG has a Hamiltonian path.

In last several years, researchers have used different Zagreb indices to investigate the
Hamiltonian properties of graphs (see [5], [1], [4]). In this note, we will present new
sufficient conditions based upon the first and second Zagreb indices for the Hamiltonian
and traceable graphs. The main results are as follows.
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Theorem 1. Let G be a k-connected (k ≥ 2) graph of order n.

1) If Z1 ≥ (n− k − 1)(n2 + (k − 1)n− k2 − 2k), then G is Hamiltonian or Kk ∨Kc
k+1.

2) If Z2 ≥ (n − 1)(n − k − 1)(n2 + (k − 1)n − 2k2 − 3k)/2, then G is Hamiltonian or
Kk ∨Kc

k+1.

Theorem 2. Let G be a k-connected (k ≥ 1) graph of order n.

1) If Z1 ≥ (n− k − 2)(n2 + kn− k2 − 4k − 3), then G is traceable or Kk ∨Kc
k+2.

2) If Z2 ≥ (n−1)(n−k−2)(n2+kn−2k2−7k−5)/2, thenG is traceable orKk∨Kc
k+2.

2. Proofs

Proof of Theorem 1. Let G be a graph satisfying the conditions in Theorem 1. Suppose
thatG is not Hamiltonian. ThenG is not a complete graph. We further have that n ≥ 2k+1
otherwise 2δ ≥ 2k ≥ n and G is Hamiltonian. Since k ≥ 2, G contains a cycle. Choose
a longest cycle C in G and give an orientation on C. Since G is not Hamiltonian, there
exists a vertex x0 ∈ V (G)− V (C). By Menger’s theorem, we can find s (s ≥ k) pairwise
disjoint (except for x0) paths P1, P2, ..., Ps between x0 and V (C). Let ui be the end
vertex of Pi on C, where 1 ≤ i ≤ s. We use u+i to denote the successor of ui along the
orientation of C, where 1 ≤ i ≤ s. Then {x0, u+1 , u

+
2 , ..., u

+
s } is independent otherwise G

would have cycles which are longer than C. Therefore S := {x0, u+1 , u
+
2 , ..., u

+
k } is inde-

pendent. Set T := V (G)−S = { v1, v2, ..., vr }. Thus |T | = r = n−|S| = n−(k+1) ≥ k.

Proof of 1). From the definition of Z1, we have

(n− k − 1)(n2 + (k − 1)n− k2 − 2k) ≤ Z1 =
∑
v∈V

d2(v)

= d2(x0) + d2(u+1 ) + · · ·+ d2(u+k ) + d2(v1) + · · ·+ d2(vr)

≤ (k + 1)r2 + r(n− 1)2 = (n− k − 1)(n2 + (k − 1)n− k2 − 2k).

Therefore d(x0) = d(u+1 ) = · · · = d(u+k ) = r = n − (k + 1) and
d(v1) = · · · = d(vr) = d(vn−(k+1)) = n− 1. Now G is Kr ∨Kc

k+1 = Kn−(k+1) ∨Kc
k+1.

It is obvious that G is Hamiltonian if r = n − (k + 1) ≥ (k + 1). So it is impossible that
r ≥ (k + 1). Thus r = n− (k + 1) = k. Therefore G is Kk ∨Kc

k+1.

Proof of 2). From the definition of Z2, we have

(n− 1)(n− k − 1)(n2 + (k − 1)n− 2k2 − 3k)/2 ≤ Z2

=
∑
uv∈E

d(u)d(v) =
∑

u∈S,v∈T,uv∈E
d(u)d(v) +

∑
u∈T,v∈T,uv∈E

d(u)d(v)

≤
∑

u∈S,v∈T
d(u)d(v) +

∑
u∈T,v∈T,u6=v

d(u)d(v)
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≤ r(n− 1)(k + 1)r + (n− 1)(n− 1)r(r − 1)/2

= (n− 1)(n− k − 1)(n2 + (k − 1)n− 2k2 − 3k)/2.

Therefore d(x0) = d(u+1 ) = · · · = d(u+k ) = r = n − (k + 1) and
d(v1) = · · · = d(vr) = d(vn−(k+1)) = n− 1. Now G is Kr ∨Kc

k+1 = Kn−(k+1) ∨Kc
k+1.

It is obvious that G is Hamiltonian if r = n − (k + 1) ≥ (k + 1). So it is impossible that
r ≥ (k + 1). Thus r = n− (k + 1) = k. Therefore G is Kk ∨Kc

k+1.

This completes the proof of Theorem 1.

Proof of Theorem 2. Let G be a graph satisfying the conditions in Theorem 2. Suppose
that G is not traceable. Then G is not a complete graph. We further have that n ≥ 2k + 2
otherwise 2δ ≥ 2k ≥ n − 1 and G is traceable. Choose a longest path P in G and give
an orientation on P . Let y and z be the two end vertices of P . Since G is not traceable,
there exists a vertex x0 ∈ V (G)\V (P ). By Menger’s theorem, we can find s (s ≥ k)
pairwise disjoint (except for x0) paths P1, P2, ..., Ps between x0 and V (P ). Let ui be
the end vertex of Pi on P , where 1 ≤ i ≤ s. Since P is a longest path in G, y 6= ui
and z 6= ui, for each i with 1 ≤ i ≤ s, otherwise G would have paths which are longer
than P . We use u+i to denote the successor of ui along the orientation of P , where
1 ≤ i ≤ s. Then {x0, y, u+1 , u

+
2 , ..., u

+
s } is independent otherwise G would have paths

which are longer than P . Therefore S := {x0, y, u+1 , u
+
2 , ..., u

+
k } is independent. Set

T := V (G)− S = { v1, v2, ..., vr }. Thus |T | = r = n− |S| = n− (k + 2) ≥ k.

Proof of 1). From the definition of Z1, we have

(n− k − 2)(n2 + kn− k2 − 4k − 3) ≤ Z1 =
∑
v∈V

d2(v)

= d2(x0) + d2(y) + d2(u+1 ) + · · ·+ d2(u+k ) + d2(v1) + · · ·+ d2(vr)

≤ (k + 2)r2 + r(n− 1)2 = (n− k − 2)(n2 + kn− k2 − 4k − 3).

Therefore d(x0) = d(y) = d(u+1 ) = · · · = d(u+k ) = r = n − (k + 2) and
d(v1) = · · · = d(vr) = d(vn−(k+2)) = n− 1. Now G is Kr ∨Kc

k+2 = Kn−(k+2) ∨Kc
k+2.

It is obvious that G is traceable if r = n − (k + 2) ≥ (k + 1). So it is impossible that
r ≥ (k + 1). Thus r = n− (k + 2) = k. Therefore G is Kk ∨Kc

k+2.

Proof of 2). From the definition of Z2, we have

(n− 1)(n− k − 2)(n2 + kn− 2k2 − 7k − 5)/2 ≤ Z2

=
∑
uv∈E

d(u)d(v) =
∑

u∈S,v∈T,uv∈E
d(u)d(v) +

∑
u∈T,v∈T,uv∈E

d(u)d(v)

≤
∑

u∈S,v∈T
d(u)d(v) +

∑
u∈T,v∈T,u6=v

d(u)d(v)

≤ r(n− 1)(k + 2)r + (n− 1)(n− 1)r(r − 1)/2

= (n− 1)(n− k − 2)(n2 + kn− 2k2 − 7k − 5)/2.
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Therefore d(x0) = d(y) = d(u+1 ) = · · · = d(u+k ) = r = n − (k + 2) and
d(v1) = · · · = d(vr) = d(vn−(k+2)) = n− 1. Now G is Kr ∨Kc

k+2 = Kn−(k+2) ∨Kc
k+2.

It is obvious that G is traceable if r = n − (k + 2) ≥ (k + 1). So it is impossible that
r ≥ (k + 1). Thus r = n− (k + 2) = k. Therefore G is Kk ∨Kc

k+2.

This completes the proof of Theorem 2.
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