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Abstract
Let R be a commutative ring with non-zero identity, and Z(R) be its set of all zero-divisors.
The total graph of R, denoted by T (Γ(R)), is an undirected graph with all elements of R
as vertices, and two distinct vertices x and y are adjacent if and only if x + y ∈ Z(R).
In this article, we characterize, up to isomorphism, all of finite commutative rings whose
total graphs have vertex-arboricity (arboricity) two or three. Also, we show that, for a
positive integer v, the number of finite rings whose total graphs have vertex-arboricity
(arboricity) v is finite.
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1. Introduction
In [1], D.F. Anderson and A. Badawi introduced the total graph of ring R, denoted

by T (Γ(R)), as the graph with all elements of R as vertices, and for distinct x, y ∈ R,
the vertices x and y are adjacent if and only if x + y ∈ Z(R), where Z(R) is the set of
zero-divisors of R. They studied some graph theoretical parameters of T (Γ(R)) such as
diameter and girth. In addition, they showed that the total graph of a commutative ring
is connected if and only if Z(R) is not an ideal of R. In [7], H.R. Maimani et al. gave the
necessary and sufficient conditions for the total graphs of finite commutative rings to be
planar or toroidal and in [5] T. Chelvam and T. Asir characterized all commutative rings
such that their total graphs have genus two.

Suppose that G is a graph, and let V (G) and E(G) be the vertex set and edge set of
G, respectively. The vertex-arboricity of a graph G, denoted by va(G), is the minimum
positive integer k such that V (G) can be partitioned into k sets V1, V2 . . . , Vk such that
G[Vi] is a forest for each i ∈ {1, 2, . . . , k}, where G[Vi] is the induced subgraph of G
whose vertex set is Vi and its edge set consists of all of the edges in E(G) that have both
endpoints in Vi. This partition is called acyclic partition. The vertex-arboricity can be
viewed as a vertex coloring f with k colors, where each color class Vi induces a forest;
namely, G[f−1(i)] is an acyclic graph for each i ∈ {1, 2, . . . , k}. Vertex-arboricity, also
known as point arboricity, was first introduced by G. Chartrand, H.V. Kronk, and C.E.
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Wall [4] in 1968. Note that a graph with no cycles is a forest, and it has vertex-arboricity
one.

Likewise, the arboricity of a graph G, denoted by ν(G), is the least number of line-
disjoint spanning forests into which G can be partitioned, that is, there is some collection
of ν(G) subgraphs of G, where each subgraph is a forest and each edge in G is in exactly one
such subgraph. Arboricity of a graph was first introduced by C. St. J. A. Nash-Williams
[4] in 1964.

The main purpose of this paper is to characterize all finite commutative rings whose
total graph has vertex-arboricity (arboricity) two or three. In addition, we show that,
for a positive integer v, there are only finitely many finite rings whose total graph has
vertex-arboricity (arboricity) v.

Now, we recall some definitions of graph theory which are necessary in this article. Let
G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). We use n and
e to denote the number of vertices and the number of edges of G, respectively. A graph
in which each pair of distinct vertices is joined by an edge is called a complete graph. We
use Kn to denote the complete graph with n vertices. A bipartite graph G is a graph
whose vertex set V (G) can be partitioned into two subsets V1 and V2 such that the edge
set of such a graph consists of precisely those edges which join vertices in V1 to vertices
of V2. In particular, if E(G) consists of all possible such edges, then G is called the
complete bipartite graph and denoted by the symbol Kr,s, where |V1| = r and |V2| = s.
For a vertex x ∈ V (G), deg(x) is the degree of vertex x, δ(G) =min{deg(x) : x ∈ V (G)},
∆(G) =max{deg(x) : x ∈ V (G)}. For a nonnegative integer d, a graph is called d-regular if
every vertex has degree d. Let S ⊂ V (G) be any subset of vertices of G. Then the induced
subgraph G[S] is the graph whose vertex set is S and whose edge set consists of all of the
edges in E(G) that have both endpoints in S. A spanning subgraph for G is a subgraph of
G which contains every vertex of G. A graph without any cycle is called acyclic graph. A
forest is an acyclic graph. Let G1 and G2 be subgraphs of G, we say that G1 and G2 are
disjoint if they have no vertex and no edge in common. The union of two disjoint graphs
G1 and G2, which is denoted by G1 ∪ G2 is a graph with V (G1 ∪ G2) = V (G1) ∪ V (G2)
and E(G1 ∪ G2) = E(G1) ∪ E(G2). For any graph G, the disjoint union of k copies of
G is denoted by kG. Graphs G and H are said to be isomorphic to one another, written
G ∼= H, if there exists a one-to-one correspondence f : V (G) → V (H) such that for each
pair x, y of vertices of G, xy ∈ E(G) if and only if f(x)f(y) ∈ E(H). Also, for a rational
number p, ⌈p⌉ is the first integer number greater than or equal to p, and ⌊p⌋ is the first
integer number less than or equal to p.

2. Basic properties
First of all, let us recall some of the basic facts about total graphs and vertex arboricity,

which we shall use in the rest of the paper.

Lemma 2.1 ([7, Lemma 1.1]). Let x be a vertex of T (Γ(R)). Then the following state-
ments are true.

(i) If 2 ∈ Z(R), then deg(x) = |Z(R)| − 1.
(ii) If 2 /∈ Z(R), then deg(x) = |Z(R)| − 1 for every x ∈ Z(R) and deg(x) =

|Z(R)| for every vertex x /∈ Z(R).

Remark 2.2. It is clear that va(G) = 1 if and only if G is acyclic. For a few classes of
graphs, the vertex-arboricity is easily determined. For example, va(Cn) = 2, where Cn is
a cycle graph with n vertices. If n is even, va(Kn) = n

2 ; while if n is odd, va(Kn) = n+1
2 .

So, in general, va(Kn) = ⌈n
2 ⌉. Also, va(Kr,s) = 1 if r = 1 or s = 1, and va(Kr,s) = 2

otherwise.
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Lemma 2.3 ([3, Lemma 1]). Let G be the disjoint union of graphs G1, G2, . . . , Gk. Then,
for all i with 1 ≤ i ≤ k,

va(G) = max va(Gi).
Now, we are ready to show that for a positive integer v, there are only finitely many

finite rings whose total graph has vertex-arboricity v.
Theorem 2.4. For any positive integer v, the number of finite rings whose total graphs
have vertex-arboricity v is finite.
Proof. Let R be a finite ring. We want to obtain a complete subgraph (with vertex set
T ) of T (Γ(R)). To achieve this, we consider the following two cases:

(a) R is local. In this case Z(R) is the maximal ideal of R and |R| ≤ |Z(R)|2 [8]. In
this situation, we put T = Z(R).

(b) R is not local. Then there is a natural number n ≥ 2 and there are local rings
R1, R2, . . . , Rn such that R = R1 × R2 × · · · × Rn. We may assume that |R1| ≤ |R2| ≤
· · · ≤ |Rn|. Now put R∗

1 = 0 × R2 × · · · × Rn. Since |R| = |R1||R∗
1|, we have |R| ≤ |R∗

1|2.
In this situation, we put T = R∗

1.
Now, it is easy to see that, for every elements x and y of T , x is adjacent to y in

T (Γ(R)). Thus there is an induced subgraph K|T | in T (Γ(R)). Hence Remark 2.2 implies
that va(K|T |) ≤ v, and so ⌈ |T |

2 ⌉ ≤ v. Thus |R| ≤ 4v2, and so the proof is complete. �
Let Reg(Γ(R)) be the induced subgraph of T (Γ(R)) with vertices Reg(R) = R − Z(R),

and Z(Γ(R)) be the induced subgraph of T (Γ(R)) with vertices Z(R). Next, we record
some facts concerning total graphs. If Z(R) is an ideal of R, then Z(Γ(R)) is a complete
subgraph of T (Γ(R)) and is disjoint from Reg(Γ(R)). Thus, the following theorem of D.F.
Anderson and A. Badawi gives a complete description of T (Γ(R)).
Theorem 2.5 ([1, Theorem 2.2]). Let R be a commutative ring such that Z(R) is an ideal
of R, and let |Z(R)| = n and | R

Z(R) | = m. Then the following statements hold.
(i) If 2 ∈ Z(R), then Reg(Γ(R)) is the union of m − 1 disjoint Kn’s.
(ii) If 2 /∈ Z(R), then Reg(Γ(R)) is the union of m−1

2 disjoint Kn,n’s.
Theorem 2.6. Let R be a finite commutative ring with identity and I be a nontrivial ideal
contained in Z(R). Set |I| = n and |R

I | = m. Then the following statements hold.
(i) If 2 ∈ I, then va(T (Γ(R))) ≥ ⌈n

2 ⌉.
(ii) If 2 /∈ I, then va(T (Γ(R))) ≥ max{⌈n

2 ⌉, 2}.
Proof. Let G be the spanning subgraph of T (Γ(R)) such that, for every two vertices
x, y ∈ R, x is adjacent to y in G if x + y ∈ I. Now, since I is an ideal of R contained in
Z(R), by making obvious modification to the proof of Theorem 2.5, one can show that

G =
{

mKn if 2 ∈ I
Kn

∪
(m−1

2 )Kn,n if 2 /∈ I.

Now, by Remark 2.2 in conjunction with Lemma 2.3, we have the following equalities

va(G) =
{

⌈n
2 ⌉ if 2 ∈ I

max{⌈n
2 ⌉, 2} if 2 /∈ I.

Now, since G is a subgraph of T (Γ(R)), we have that va(G) ≤ va(T (Γ(R))), and so the
proof is complete. �

The following corollary is immediate from Theorem 2.5.
Corollary 2.7. Let R be a finite commutative ring with identity, Z(R) be nontrivial ideal
of R and set |Z(R)| = n and | R

Z(R) | = m. Then the following statements hold.
(i) If 2 ∈ Z(R), then va(T (Γ(R))) = ⌈n

2 ⌉.
(ii) If 2 /∈ Z(R), then va(T (Γ(R))) = max{⌈n

2 ⌉, 2}.
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3. The vertex-arboricity of the total graph
For any graph G, the girth of G, denoted by gr(G), is the length of a shortest cycle in

G (gr(G) = ∞ if G contains no cycles). The following Theorem of Anderson and Badawi
implies that T (Γ(R)) has vertex-arboricity one if and only if either R is an integral domain
or R is isomorphic to Z4 or Z2[x]

(x2) .

Theorem 3.1 ([2, Theorem 4.7]). Let R be a commutative ring. Then gr(T (Γ(R))) ∈
{3, 4, ∞}. Moreover,

(i) gr(T (Γ(R))) = ∞ if and only if either R is an integral domain or R is isomorphic
to Z4 or Z2[x]

(x2) ,
(ii) gr(T (Γ(R))) = 4 if and only if R is isomorphic to Z2 × Z2, and
(iii) gr(T (Γ(R))) = 3 otherwise.

Now, we will classify, up to isomorphism, all finite commutative rings whose total graphs
have vertex-arboricity two or three. We begin with a following result which is essentially
due to Raghavendran.

Theorem 3.2 ([10, Theorem 2]). Let R be a finite commutative local ring with nonzero
identity and U(R) be the set of all unit elements of R. Then |R| = pnr, |Z(R)| = p(n−1)r

and |U(R)| = p(n−1)r(pr − 1) for some prime p and some positive integers n and r.

In sequel, we state two remarks which we will use throughout this paper.

Remark 3.3. Let R1 and R2 be two finite commutative rings with |R1| = m, |R2| = n
and m ≤ n. It is easy to see that the subgraph of the total graph of R1 × R2 induced by
the set {0} × R2 is a copy of Kn.

Remark 3.4. Let R1, R2, S1 and S2 be finite commutative rings such that T (Γ(R1)) ∼=
T (Γ(R2) and T (Γ(S1)) ∼= T (Γ(S2). Then T (Γ(R1 × S1)) ∼= T (Γ(R2 × S2). However, this
property does not hold in general for other widely studied graphs associated to rings (for
example, the zero-divisor graphs).

Lemma 3.5. va(T (Γ(Z2 × Z2 × Z2))) = va(T (Γ(F4 × F4))) = 3.

Proof. First of all, note that, in view of Remark 3.3, va(T (Γ(Z2 × Z2 × Z2))) > 1. Now,
we show that va(T (Γ(Z2 × Z2 × Z2))) > 2. To this, we consider a set of vertices of the
graph T (Γ(Z2 × Z2 × Z2)) of the form

A = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Let the set {V1, V2} be an acyclic partition of V (T (Γ(Z2 × Z2 × Z2))). Since G[A] is a
complete graph isomorphic to K4 and G[Vi](1 ≤ i ≤ 2) have no triangle, so |A ∩ V1| =
|A∩V2| = 2. Without the loss of generality, we may assume that (0, 0, 0), (1, 0, 0) ∈ V1 and
(0, 1, 0), (0, 0, 1) ∈ V2. Now, consider the vertex (0, 1, 1) of T (Γ(Z2 × Z2 × Z2)). It is clear
that (0, 1, 1) ∈ V1. Therefore, each of the remaining vertex of the graph T (Γ(Z2 ×Z2 ×Z2))
forms a triangle with two vertices of V1. Hence, all of these vertices must be in V2, which
is a contradiction.

Now, consider the partition of V (T (Γ(Z2 × Z2 × Z2))) with sets V1 = {(0, 0, 0),
(0, 1, 0), (1, 1, 1)}, V2 = {(1, 0, 0), (0, 0, 1), (0, 1, 1)} and V3 = {(1, 0, 1), (1, 1, 0)}. It is clear
that the subgraphs of T (Γ(Z2 ×Z2 ×Z2)) induced by sets V1, V2 and V3 are acyclic. Hence
va(T (Γ(Z2 × Z2 × Z2))) = 3.

By Remark 3.3, we have va(T (Γ(F4 × F4))) > 1. Assume that By = {(a, y) : a ∈ F4}
and Cx = {(x, b) : b ∈ F4} for all x, y ∈ F4. Obviously, {By : y ∈ F4} and {Cx : x ∈
F4} both form partitions for V (T (Γ(F4 × F4))). Let {V1, V2} be an acyclic partition of
V (T (Γ(F4 × F4))). Since the subgraphs of T (Γ(F4 × F4)) induced by sets V1 and V2 have
no triangles, each of these sets has exactly two vertices of the sets By and Cx for all
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x, y ∈ F4. Hence, each of the sets V1 and V2 has exactly two vertices such that their first
components are the same and have exactly two vertices such that the second components
are the same. So, each vertex in V1 and V2 has degree 2, which is a contradiction, since
the subgraphs of T (Γ(F4 × F4)) induced by the sets V1 and V2 are union of cycles. Thus
we have va(T (Γ(F4 × F4))) > 2.

Now, according to the Figure 1, we have va(T (Γ(F4 × F4))) = 3.
�

(0, 0)

(0, 1)

(a2, 0)

(a, 1)

(a2, a)(1, a) (1, a2)
(a)

(0, a)

(0, a2)

(a, a) (a2, 1)(a, 0) (1, 0) (1, 1)

(b)

(a, a2) (a2, a2)
(c)

Figure 1

Theorem 3.6. Let R be a finite commutative ring such that va(T (Γ(R))) = 2. Then the
following statements hold.

(i) If R is local, then R is isomorphic to one of the following rings:
Z9, Z3[x]

(x2) , Z8, Z2[x]
(x3) , Z4[x]

(2x,x2−2) , Z2[x,y]
(x,y)2 , Z4[x]

(2,x)2 , F4[x]
(x2) , Z4[x]

(x2+x+1) .
(ii) If R is not local, then R is isomorphic to one of the following rings:

Z2 × Z2, Z6, Z2 × Z4, Z2 × Z2[x]
(x2) , Z2 × F4, Z3 × Z3, Z3 × F4.

Proof. (i) Assume that R is a local ring, and let |Z(R)| = n and | R
Z(R) | = m. Then by

Theorem 2.5, T (Γ(R)) has an induced subgraph isomorphic to Kn and so by Remark 2.2,
|Z(R)| ≤ 4. Now, we consider the following two cases:

(a) If 2 ∈ Z(R), then by Theorem 3.2, |R| = 2k and k ≤ 4. Since va(T (Γ(R))) = 2,
Theorem 3.1 implies that |R| = 16, 8. According to Corbas and Williams [6] there are
two non-isomorphic rings of order 16 with maximal ideals of order 4, namely F4[x]

(x2) and
Z4[x]

(x2+x+1) (see also Redmond [11]), so for these rings have T (Γ(R)) ∼= 4K4. Therefore, by
Remark 2.2, these rings have vertex-arboricity 2. In [6] it is also shown that there are 5
local rings of order 8 (except F8) as follows:

Z8,
Z2[x]
(x3)

,
Z4[x]

(2x, x2 − 2)
,
Z2[x, y]
(x, y)2 ,

Z4[x]
(2, x)2 .

In all of these rings we have |Z(R)| = 4 and hence T (Γ(R)) ∼= 2K4. Then, by Remark 2.2,
these rings have vertex-arboricity 2.

(b) If 2 /∈ Z(R), then |Z(R)| = 3. According to [6], there are two rings of order 9
namely, Z9 and Z3[x]

(x2) . For these rings, we have T (Γ(R)) ∼= K3
∪

K3,3. Hence, by Corollary
2.7, these rings have vertex-arboricity 2.

(ii) Suppose that R is not local. Since R is finite, there are finite local rings R1, . . . , Rt

(with t ≥ 2) such that R = R1 × R2 × · · · × Rt. Now, according to Remarks 2.2 and 3.3,
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we have the following candidates:
Z2 × Z2, Z6, Z2 × Z4, Z2 × Z2[x]

(x2) , Z2 × F4, Z3 × Z3, Z3 × Z4, Z3 × Z2[x]
(x2) , Z3 × F4,

Z2 × Z2 × Z2, Z4 × Z4, Z4 × Z2[x]
(x2) , Z2[x]

(x2) × Z2[x]
(x2) , Z4 × F4, Z2[x]

(x2) × F4, F4 × F4.
Now we examine each of the above rings.

The total graph of the ring Z2 × Z2 is isomorphic to the cycle of size 4. We consider
the acyclic partition V1 = {(0, 0), (1, 0)} and V2 = {(0, 1), (1, 1)} of V (T (Γ(Z2 × Z2))).
Hence, the subgraphs of T (Γ(Z2 × Z2)) induced by sets V1 and V2 are acyclic. Thus
va(T (Γ(Z2 × Z2))) = 2.

For Z6, by considering the acyclic partition V1 = {0, 1, 3} and V2 = {2, 4, 6} of V (T (Γ(Z6))),
we have va(T (Γ(Z6))) = 2.

For Z2×Z4, we put V1 = {(0, 0), (0, 2), (1, 1), (1, 3)} and V2 = {(0, 1), (0, 3), (1, 0), (1, 2)}.
Now, it is easy to see that va(T (Γ(Z2 × Z4))) = 2. Since T (Γ(Z4)) ∼= T (Γ(Z2[x]

(x2) )), by
Remark 3.4, we have T (Γ(Z2 × Z4)) ∼= T (Γ(Z2 × Z2[x]

(x2) )). Thus va(T (Γ(Z2 × Z2[x]
(x2) ))) = 2.

For Z2 × F4, by using the acyclic partition

V1 = {(0, 0), (0, 1), (1, 0), (1, a)} and V2 = {(0, a), (0, a2), (1, 1), (1, a2)}

of V (T (Γ(Z2 × F4))), we have va(T (Γ(Z2 × F4))) = 2.
For Z3 ×Z3, we consider the acyclic partition V1 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 1)} and

V2 = {(0, 2), (2, 0), (1, 2), (2, 2)} of V (T (Γ(Z3 × Z3))). Hence va(T (Γ(Z3 × Z3))) = 2.
For Z3×Z4, the graph T (Γ(Z3×Z4)) has a complete graph K6 as a subgraph with vertex

set {(0, 0), (1, 0), (2, 0), (0, 2), (1, 2), (2, 2)}, and so, by Remark 2.2, we have va(T (Γ(Z3 ×
Z4))) > 2. Also by Remark 3.4, we have T (Γ(Z3 × Z4)) ∼= T (Γ(Z3 × Z2[x]

(x2) )). Thus
va(T (Γ(Z3 × Z2[x]

(x2) ))) > 2.
For Z3 × F4, according to the Figure 2 we have va(T (Γ(Z3 × F4))) = 2.

(0, 0)

(1, 0)

(0, 1)

(2, a)

(1, a)

(1, a2)

(a)

(0, a2)
(0, a)

(2, a2)
(1, 1)

(2, 0)

(2, 1)
(b)

Figure 2

For Z2 × Z2 × Z2, by Lemma 3.5, we have va(T (Γ(Z2 × Z2 × Z2))) > 2.
For Z4 × Z4, the graph T (Γ(Z4 × Z4)) has a K8 as a subgraph with vertex set

{(0, 0), (1, 0), (2, 0), (3, 0), (0, 2), (1, 2), (2, 2), (3, 2)},

and so, by Remark 2.2, we have va(T (Γ(Z4 × Z4))) > 3.
According to Remark 3.4, T (Γ(Z4 × Z4)) ∼= T (Γ(Z4 × Z2[x]

(x2) )) ∼= T (Γ(Z2[x]
(x2) × Z2[x]

(x2) )). So
the vertex-arboricity of graphs T (Γ(Z4 × Z2[x]

(x2) )) and T (Γ(Z2[x]
(x2) × Z2[x]

(x2) )) is greater than
three.

For Z4 × F4, the graph T (Γ(Z4 × F4)) has a K8 as a subgraph with vertex set

{(0, 0), (0, 1), (0, a), (0, a2), (2, 0), (2, 1), (2, a), (2, a2)},
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and so, by Remark 2.2, we have va(T (Γ(Z4 × F4))) > 3. Also by Remark 3.4, T (Γ(Z4 ×
F4)) ∼= T (Γ(Z2[x]

(x2) × F4)). Therefore va(T (Γ(Z2[x]
(x2) × F4))) > 3.

For F4 × F4, by Lemma 3.5, we have va(T (Γ(F4 × F4))) > 2. �
Lemma 3.7. For the ring Z2 × Z2 × Z3, va(T (Γ(Z2 × Z2 × Z3))) = 4.
Proof. First, by Remark 3.3, we have va(T (Γ(Z2 × Z2 × Z3))) > 2.

Now, let T (Γ(Z2 × Z2 × Z3)) = G and A = A0 ∪ A1, where A0 = {(0, 0, z) : z ∈ Z3}
and A1 = {(0, 1, z) : z ∈ Z3}. Also put B = B0 ∪ B1, where B0 = {(1, 0, z) : z ∈ Z3} and
B1 = {(1, 1, z) : z ∈ Z3}. It is clear that the two sets A and B are partition for V (G).
Let {V1, V2, V3} be an acyclic partition for V (G). If |Vj | ≥ 5 for some j ∈ {1, 2, 3}, then
|A∩Vj | ≥ 3 or |B ∩Vj | ≥ 3, which is impossible, since G[A] and G[B] are complete graphs
isomorphic to K6 and G[Vi] (1 ≤ i ≤ 3) are acyclic induced subgraphs of G. Therefore
|Vi| = 4 for some i ∈ {1, 2, 3}.

We know that every vertex of G[A0] (G[A1]) are adjacent to every vertex of G[B0]
(G[B1]) and G[Vi] (1 ≤ i ≤ 3) are acyclic induced subgraphs of G. Hence without the loss
of generality we can assume that |A0 ∩ V1| = |B1 ∩ V1| = 2 and |A1 ∩ V2| = |B0 ∩ V2| = 2.
Then V3 = {a0, a1, b0, b1 : as ∈ As, bt ∈ Bt, 0 ≤ s, t ≤ 1}. It follows that G[V3] is a cycle of
length 4, which is a contradiction and so va(G) > 3.

Now, by using the following partition of V (G), we have that va(G) = 4.
V1 = {(0, 0, 0), (1, 0, 0), (1, 1, 2)}, V2 = {(0, 1, 0), (1, 1, 1), (1, 0, 1)},

V3 = {(0, 1, 2), (0, 0, 2), (1, 0, 2)}, V4 = {(0, 0, 1), (0, 1, 1), (1, 1, 0)}.

�
Theorem 3.8. Let R be a finite commutative ring such that va(T (Γ(R))) = 3. Then the
following statements hold.

(i) If R is local, then R is isomorphic to Z25 or Z5[x]
(x2) .

(ii) If R is not local, then R is isomorphic to one of the following rings:
Z3 × Z4, Z3 × Z2[x]

(x2) , Z2 × Z2 × Z2, F4 × F4, Z2 × Z5, Z3 × Z5, F4 × Z5, Z5 × Z5.

Proof. (i) Assume that R is a local ring. We consider the following two cases:
(a) If 2 ∈ Z(R), then, by Theorem 2.5, we have T (Γ(R)) ∼= mKn. Hence, by Remark

2.2, 5 ≤ |Z(R)| ≤ 6. But, in this situation 2 ∈ Z(R), and so, there are no such local rings.

(b) If 2 /∈ Z(R), then, by Theorem 2.5, we have T (Γ(R)) ∼= Kn
∪

(m−1
2 )Kn,n. Hence, by

Remark 2.2, 5 ≤ |Z(R)| ≤ 6. Therefore |Z(R)| = 5 and so there exist two local rings, Z25
and Z5[x]

(x2) of order 25. For these rings we have T (Γ(R)) ∼= K5
∪

2K5,5. Hence, by Corollary
2.7, we have va(T (Γ(R))) = 3.

(ii) Suppose that R is not a local ring. Arguments similar to those used in proof of
Theorem 3.6 (ii), in conjunction with Remarks 2.2 and 3.3 show that we have the following
candidates:
Z2 × Z2, Z6, Z2 × Z4, Z2 × Z2[x]

(x2) , Z2 × F4, Z3 × Z3, Z3 × Z4, Z3 × Z2[x]
(x2) , Z3 × F4,

Z2 × Z2 × Z2, Z4 × Z4, Z4 × Z2[x]
(x2) , Z2[x]

(x2) × Z2[x]
(x2) , Z4 × F4, Z2[x]

(x2) × F4, F4 × F4,
Z2 × Z5, Z2 × Z2 × Z3, Z3 × Z5, Z4 × Z5, Z2[x]

(x2) × Z5, F4 × Z5, Z5 × Z5.
According to the proof of Theorem 3.6 (ii), we examine the following cases:

For Z3 × Z4, we consider the partition
V1 = {(0, 0), (1, 1), (1, 2), (1, 3)},

V2 = {(0, 2), (2, 0), (2, 1), (2, 3)}
and

V3 = {(0, 1), (0, 3), (1, 0), (2, 2)}
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of V (T (Γ(Z3 × Z4))). The subgraphs of T (Γ(Z3 × Z4)) induced by the sets V1, V2 and V3
are acyclic graphs. Hence, we have va(T (Γ(Z3 × Z4))) = 3. The Remark 3.4 implies that
T (Γ(Z3 × Z4)) ∼= T (Γ(Z3 × Z2[x]

(x2) )) and so va(T (Γ(Z3 × Z2[x]
(x2) ))) = 3.

For rings Z2 ×Z2 ×Z2 and F4 × F4, by Lemma 3.5, we have va(T (Γ(Z2 ×Z2 ×Z2))) =
va(T (Γ(F4 × F4))) = 3.

For Z2 ×Z5, consider the acyclic partition V1 = {(0, 0), (0, 1), (1, 1), (1, 2)}, V2 = {(0, 2),
(0, 3), (1, 0), (1, 4)} and V3 = {(0, 4), (1, 3)} of V (T (Γ(Z2 × Z5))). Now, it is easy to see
that va(T (Γ(Z2 × Z5))) = 3.

For Z2 × Z2 × Z3, by Lemma 3.7, we have va(T (Γ(Z2 × Z2 × Z3))) > 3.
For Z3 × Z5, by using the acyclic partition

V1 = {(0, 4), (1, 0), (1, 3), (2, 3)},

V2 = {(0, 0), (0, 1), (1, 2), (1, 4), (2, 1)}
and

V3 = {(0, 2), (0, 3), (1, 1), (2, 0), (2, 2), (2, 4)}
of V (T (Γ(Z3 × Z5))), we have va(T (Γ(Z3 × Z5))) = 3.

For Z4 × Z5, the graph T (Γ(Z4 × Z5)) has a complete graph K10 as a subgraph with
vertex set {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)}, and so, we have
va(T (Γ(Z4 × Z5))) ≥ 5. Also, Remark 3.4, T (Γ(Z4 × Z5)) ∼= T (Γ(Z2[x]

(x2) × Z5)) and so
va(T (Γ(Z2[x]

(x2) × Z5))) ≥ 5.
For F4 × Z5, according to Figure 3, we have va(T (Γ(F4 × Z5))) = 3.

(1, 4)

(0, 1)

(a2, 1)

(1, 1)

(0, 0)

(a2, 2) (a, 3) (a, 2)

(a)

(0, 2)
(0, 3) (1, 2) (1, 0) (a, 0) (a, 1)

(a2, 4)

(b)

(a2, 0)(a2, 3) (0, 4) (1, 3) (a, 4)

(c)

Figure 3

For Z5 × Z5, by Figure 4, we conclude that va(T (Γ(Z5 × Z5))) = 3.
Thus the proof is complete. �

4. The arboricity of the total graph
In this section, we characterize all finite commutative rings whose total graph has ar-

boricity two or three. In addition, we show that, for a positive integer v, there are only
finitely many finite rings whose total graph has arboricity v. We begin the section with
the following result of C. St. J. A. Nash-Williams.

Theorem 4.1 ([9]). For a graph G, ν(G) = max⌈ eH
nH−1⌉, where nH = |V (H)|, eH =

|E(H)| and H ranges over all non-trivial induced subgraphs of G.
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(1, 4)

(0, 1)

(2, 1)

(1, 1)

(0, 0)

(3, 2) (1, 3) (1, 2)

(1, 0)

(a)

(3, 1)

(3, 4)

(0, 4)

(4, 4)
(4, 0)

(0, 2) (3, 3) (4, 2)

(3, 0)

(b)

(2, 2)

(0, 3)

(4, 3)

(2, 3)
(2, 4) (2, 0)(4, 1)

(c)

Figure 4

Theorem 4.2. For a graph G, ⌈ δ(G)+1
2 ⌉ ≤ ν(G) ≤ ⌈∆(G)+1

2 ⌉. In particular, if G is
d-regular, then ν(G) = ⌈d+1

2 ⌉ = ⌈ e
n−1⌉, where n = |V (G)| and e = |E(G)|.

Proof. First, it is clear that, if G has some isolated vertices, say X = {x1, x2, . . . , xk},
then ν(G) = ν(G[V (G) \ X]). So, we can assume that G has no isolated vertices. Let H
be a subgraph of G with |V (H)| = n′ and |E(H)| = e′. Then we have

e′

n′ − 1
≤ ∆(H)n′

2(n′ − 1)
= 1

2
(∆(H) + ∆(H)

n′ − 1
).

Since ∆(H) ≤ min{∆(G), n′ − 1}, we have e′

n′−1 ≤ ∆(G)+1
2 , and hence, by Theorem 4.1,

ν(G) ≤ ⌈∆(G)+1
2 ⌉. On the other hand e

n−1 ≥ δ(G)n
2(n−1) > δ(G)

2 . Since ν(G) is an integer,
ν(G) ≥ ⌈ δ(G)+1

2 ⌉, as required. �
Clearly, in view of the above theorem, ν(Kn) = ⌈n

2 ⌉. So, by arguing as in the proof of
Theorem 2.4, we have the following theorem.

Theorem 4.3. For any positive integer v, the number of finite rings R whose total graph
has arboricity v is finite.

Theorem 3.1 implies that T (Γ(R)) has arboricity one if and only if either R is an integral
domain or R is isomorphic to Z4 or Z2[x]

(x2) . Now, we will classify, up to isomorphism, all
the finite commutative rings whose total graph has arboricity two or three.

Theorem 4.4. Let R be a finite ring such that ν(T (Γ(R))) = 2. Then the following
statements hold.

(i) If R is local, then R is isomorphic to one of the following rings:
Z9, Z3[x]

(x2) , Z8, Z2[x]
(x3) , Z4[x]

(2x,x2−2) , Z2[x,y]
(x,y)2 , Z4[x]

(2,x)2 , F4[x]
(x2) , Z4[x]

(x2+x+1) .
(ii) If R is not local, then R is isomorphic to Z2 × Z2 or Z6.

Proof. (i) Assume that R is a local ring. If 2 ∈ Z(R), then, by Lemma 2.1 and Theorem
4.2, we have |Z(R)| = 4. Then by Theorem 3.2, |R| = 16, 8. Now, by same argument of



Arboricity and vertex-arboricity of the total graph 119

Theorem 3.6, R is isomorphic to one of the following rings:

Z8,
Z2[x]
(x3)

,
Z4[x]

(2x, x2 − 2)
,
Z2[x, y]
(x, y)2 ,

Z4[x]
(2, x)2 ,

F4[x]
(x2)

,
Z4[x]

(x2 + x + 1)
.

If 2 /∈ Z(R), then |Z(R)| = 3. So, R is isomorphic to Z9 or Z3[x]
(x2) .

(ii) If R is not a local ring, then, by Theorem 4.2, we have 3 ≤ |Z(R)| ≤ 4. When
|Z(R)| = 3, it is clear that R is isomorphic to Z2 × Z2. Moreover, if |Z(R)| = 4, then R
is isomorphic to Z6, and so the proof is complete. �

By slight modifications in the proof of Theorem 4.4, one can prove the following theorem.

Theorem 4.5. Let R be a finite ring such that ν(T (Γ(R))) = 3. Then the following
statements hold.

(i) If R is local, then R is isomorphic to Z25 or Z5[x]
(x2) .

(ii) If R is not local, then R is isomorphic to one of the following rings:

Z2 × F4,Z3 × Z3,Z2 × Z4,Z2 × Z2[x]
(x2)

,Z2 × Z5,Z3 × F4.

In general, we can determine the arboricity of the total graph as in the following theorem.

Theorem 4.6. Let R be a finite ring.
(i) If 2 ∈ Z(R), then ν(T (Γ(R))) = ⌈ |Z(R)|

2 ⌉.
(ii) If 2 /∈ Z(R), then the following statements hold.

(1) If |Z(R)| = 2k + 1, then ν(T (Γ(R))) = k + 1.
(2) If |Z(R)| = 2k, then k ≤ ν(T (Γ(R))) ≤ k + 1.

Proof. It follows from Lemma 2.1 and Theorem 4.2. �
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