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 The lack of reliable and up-to-date data in developing countries is a major obstacle to 
sustainable development. In Morocco, where groundwater withdrawals by farmers are 
very intensive and informal, maps describing and monitoring the extension of irrigated 
areas are scarce and labor-intensive to obtain. In this paper a novel transfer learning 
algorithm is proposed to map irrigated areas at different stages of an agricultural cycle 
from Landsat 8 images. The results obtained displays satisfactory performance over 
traditional machine learning algorithms. On a small dataset, we initially tested three well 
known deep learning architectures (SegNet, DenseNet and Unet). The results obtained 
were not satisfactory. So, to get high performance, we rely on a transfer learning 
architecture combining UNet with ResNet50 backbone (trained on 2012 ILSVRC 
ImageNet dataset) as a baseline after a phase where different configurations were tested. 
In the first part of this study, we compared the use of three optimization methods: Adam 
and two variants of Stochastic Gradient Descent (SGD) associated with two techniques 
(Cyclical Learning Rate and Warm Restart) to find the optimal learning rate and then test 
the impact of data augmentation on the overall accuracies. Data augmentation had 
improved the overall accuracy for the three methods. Adam based method from 94% to 
97% with mean IoU of 0,79 (for all land cover classes) and 0,86 for irrigated areas class. 
For SGD based methods, the overall accuracy had increased from 91% to 94% with mean 
IoU of 0,75 (for all land cover classes) and 0,82 for irrigated areas class. As we are 
interested in having irrigated areas maps at different key periods of the agricultural 
cycle, we also explored, in the second part of this study, the temporal generalization of 
the best model.  

 

 
 

1. INTRODUCTION 
 

Deep learning (DL) is significantly impacting 
areas of research, including computer vision, image 
processing, and remote sensing (Ball et al., 2018) 
thanks to the increased availability of data and 
computational resources (Zhu et al. 2017). 

Generally, traditional deep networks (DN) are 
trained using large datasets of imagery. However, in 
remote sensing the ones available are typically very 
limited (Ball et al. 2018). In such low to medium 
learning datasets contexts, some architectures like 

UNet and SegNet networks are frequently privileged 
(Younis and Keedwell 2019).  

Fortunately, open high-resolution satellite 
imagery, such as from USGS and Copernicus, is 
becoming increasingly available. Such imagery can 
be used to extract useful insights to inform policy 
decisions in water resources management and feed 
datasets for training new deep learning 
architectures. 

In this paper, we examine one of the different 
approaches used to address the lack of training data 
which are: 1) Unsupervised learning 2) Generative 
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adversarial networks (GANs) 3) Transfer learning 
(Ball et al. 2018) which is still an active research area 
in remote sensing according to Tuia et al. (2016). 

The goal of the next sections is to provide a brief 
overview of some existing architectures based on DN 
and the specific objectives of this study. 

 

1.1 Deep Learning Approaches for Semantic 
Image Segmentation 

 

DL architectures have been successfully applied 
to pixel-based classification of high-resolution 
satellite images outperforming standard image 
classifiers. It has been shown that it can achieve far 
better classification performances (Zhu et al. 2017; 
Liu et al. 2018). 

Despite the lack of training data, Deep networks 
have proven to outperform at extracting mid- and 
high-level abstract and discriminative semantic 
features from images. Recent studies indicate that 
the feature representations learned by CNNs are 
greatly effective in semantic segmentation (Long et 
al. 2015; Khryashchev et al. 2018).  

LeNet-5 is the reference structure of a CNN. It 
was developed by (LeCun et al. 1998). It consists of 
two convolutional layers followed by three fully 
connected layers. 

Semantic image segmentation is defined as the 
task of clustering parts of image together which 
belong to the same object class (Thoma 2016).  

So, to produce a land cover map, well known and 
deep architectures as SegNet, DenseNet and UNet 
can be used. The latter has received a lot of interest 
initially for the segmentation of biomedical images 
using a reduced dataset but then for a lot of 
applications in remote sensing (Iglovikov et al. 2017; 
Feng et al. 2019).  

UNet architecture (Ronneberger et al. 2015) is 
like a convolutional autoencoder. It uses skips 

connections (Figure 1) to reinject the features maps 
of the encoder part into the decoding phase and also 
transposed convolutions to reconstruct the original 
image resolution. These approaches use CNN's 
pretrained convolutional layers for classification, 
including VGG-16, as the encoder. The advantage of 
these symmetric approaches is that they can 
generate predictions at the same spatial resolution 
as the input image. 
 

 
Figure 1. Customized UNet architecture for satellite 
image segmentation (Vooban 2017) 

 
In addition, given the better performance of the 

ResNet and DenseNet models in object recognition, 
researchers also tried to adapt these architectures 
for semantic segmentation. Thanks to the increase in 
GPU computing capacities (Wu et al. 2016) proposed 
a first approach for ResNet. 

Recent research works have shown that deeper 
architectures, such as deep residual networks 
ResNets (He et al. 2106) can gain accuracy from 
increasing the depth of the network. These residual 
networks 1) are substantially deeper (Table 1) 2) 
have fewer parameters 3) are easier to optimize, and 
4) can gain accuracy from considerably increased 
depth (Bilinski and Prisacariu 2018). 
 

 
Table 1. ResNet (50 and 152 layers) architectures for ImageNet (He et al. 2106) 

Layer name Output size 50-Layer 152-layer 

Con1 112*112 
7x7, 64, stride 2 

3 x 3 max pool, stride 2 

Conv2.x 56*56 (
1𝑥1, 64
3𝑥3, 64
1𝑥1, 256

) 𝑥3 (
1𝑥1, 64
3𝑥3, 64
1𝑥1, 256

) 𝑥3 

Conv3.x 28*28 (
1𝑥1, 128
3𝑥3, 128
1𝑥1, 512

) 𝑥4 (
1𝑥1, 128
3𝑥3, 128
1𝑥1, 512

) 𝑥8 

Conv4.x 14*14 (
1𝑥1, 256
3𝑥3, 256
1𝑥1, 1024

) 𝑥6 (
1𝑥1, 256
3𝑥3, 256
1𝑥1, 1024

) 𝑥36 

Conv5.x 7*7 (
1𝑥1, 512
3𝑥3, 512
1𝑥1, 2048

) 𝑥3 (
1𝑥1, 512
3𝑥3, 512
1𝑥1, 2048

) 𝑥 

 1*1 Average pool, 1000-d fc, softmax 
FLOPs 3.8*109 7.6*109 11.3*109 

 
Also, a fully convolutional version of the 

DenseNet (Jégou et al. 2017) has also been proposed 
for semantic segmentation by combining an 
encoder-decoder approach with UNet inspired 
activation passing. 

In SegNet, (Badrinarayanan et al. 2017) the 
authors proposed a convolutional encoder-decoder 
architecture for image segmentation. Similar to the 
deconvolution network. It consists of an encoder 
network, which is topologically identical to the 13 
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convolutional layers in the VGG16 network, and a 
corresponding decoder network followed by a pixel-
wise classification layer. 

Fully convolutional network (FCN) approaches 
for semantic segmentation of remotely sensed 
images have become much more popular. FCNs infer 
a pixel prediction for the entire image in a single 
pass, avoiding as well the problem of the 
classification per patch. This drastically reduces 
computation times without requiring unsupervised 
pre-segmentation. 

Generally, deep learning methods using FCN 
have emerged in few years as the new state of the art 
for many remote sensing image interpretation tasks 
(Liu et al. 2019) and UAV images as well (Figure 2). 
 

 
Figure 2. UAV image segmentation using ResNet 50 
architecture 
 
1.2 Related Works 
 

The first applications of FCN on optical aerial 
data appear many years ago (Paisitkriangkrai et al. 
2015; Sherrah 2016). Since (Mnih 2013) where 
authors tried using FCN for the extraction of roads 
and buildings in aerial images from image patches, 
these approaches have been successfully used on 
many Very High-Resolution satellite data (Lagrange 
et al. 2015). 

In (Papadomanolaki et al. 2016), the authors 
used Convolutional Neural Networks (CNN) for the 
classification of SAT-4/SAT-6 dataset given by US 
National Agriculture Imagery Program. They 
compared different deep architectures (AlexNet, 
VGG. etc).  

Some researches (Xu et al. 2018; Iglovikov et al. 
2017) start from UNet based and adapted 
architectures to extract buildings, urban patterns 
and other land cover classes from satellite images.  

Also, in (Audebert et al. 2016; Audebert et al. 
2017) the authors train variants of the SegNet 
architecture on remotely sensed imagery over an 
urban area. The goal was to study different strategies 
to have an accurate semantic segmentation. 

For hyperspectral image (HSI), Lin et al. (2013) 
introduced, for the first time, the concept of deep 
learning in a new framework of spectral-spatial 
feature extraction.  

(Pirotti et al. 2016), by using mainly ESA and 
USGS free images, benchmarked 9 machine learning 
algorithms (Random Forest, SVM and Neural 
Networks...etc.). These models were tested for 
accuracy and speed in training and classification of 
land-cover classes in a Sentinel-2 dataset. 

Research on semantic segmentation includes 
some works that deal with training data scarcity as 
in our paper. (Acquarelli et al. 2018) proposed, in the 
case of lacking training data, a convolutional neural 
network with a single hidden layer that can achieve 
state-of-the-art performance by using three tricks: a 
spectral-locality-aware regularization term, 
smoothing and label-based data augmentation. 

(Vooban 2017; Jiang 2017) used only 25 
labelled satellite images for training. While (Younis 
and Keedwell 2019) modified the structure of 
SegNet architecture (Figure 3) and train it using 6 
RGB images. The results of this study were also 
promising.  
 

 
Figure 3. SegNet adapted architecture to 
semantically segment satellite data (Younis and 
Keedwel 2019) 
 

As we mention before, transfer learning can be 
used as solution to fine-tune pretrained networks 
based on a small training dataset. This is possible 
thanks to transfer learning which seeks to learn from 
one area to another (Tuia et al. 2016). It can improve 
the learning process of a target predictive function 
from a knowledge-based source predictive function 
(Pan and Yang 2010). 

Working on new target domain, two options for 
transfer learning can be explored (Ghazi et al. 2017). 
Using completely a pre-trained network to learn new 
features or fine-tune its weights. 

Generally, most remote sensing-based transfer 
learning works are focused on updating the weights 
of a DL solution from another context to the current 
task based on available training data. 

In (Yang et al. 2016) the authors used dual CNNs 
and transfer learning as inputs to a fully connected 
layer for classification. Lower and middle layers 
were trained on external dataset whereas the top 
layers were trained on the available training 
samples.  

(Othman et al. 2016) used transfer learning 
architecture trained on the ILSVRC-12 dataset. The 
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trained system was next applied to the UC Merced 
Land Use and Banja-Luka datasets. 

The nature of used mapping approaches by 
machine learning made it necessary to invest a lot of 
effort in training the models. In (Wurm et al. 2019) 
the study seeks to analyze transfer learning 
capabilities of FCNs to slum mapping in various 
satellite images. A model trained on very high-
resolution optical satellite imagery from QuickBird is 
transferred to Sentinel-2 and TerraSAR-X data. 

Recently, advanced methods based on domain-
specific transfer learning are proposed for semantic 
segmentation of remote sensing data.  Panboonyuen 
et al. (2019) proposed a novel CNN called global 
convolutional network (GCN) which can capture 
different resolutions by extracting multi-scale 
features from different stages of the network. 

In summary, automated land cover mapping 
based on satellite image is a great source of 
information for many fields such as land 
management, forestry, agriculture and so on. In 
Morocco, where groundwater withdrawals by 
farmers are very numerous and informal, the need 
for information on the location of irrigated areas 
rises up as a strategic objective. 

Studies on the use of remote sensing for 
mapping irrigated areas in Morocco are uncommon. 
In (Merdas et al. 2015) we used low-resolution data 
(MODIS) and a time series of NDVIs to map irrigated 
areas using a pixel-based approach (86.29% of well-
classified pixels). This study was based on previous 
studies (Ozdogan et al. 2010). In (Benbahria et al. 
2018), a new automatic mapping framework was 
proposed based on Landsat 8 (L8) time series images 
and using pixelwise classification Random Forest 
algorithm. 

(Zhang et al. 2018) tested an approach based on 
well-known image classification convolutional 
neural networks to automatically detect only center 
pivot irrigation systems from Landsat 5 TM images.  

Our main objective, in this paper, is to evaluate 
recent Transfer Learning approaches and Semantic 
Segmentation to monitor the extension of irrigated 
areas at different stages of an agricultural cycle.  

As a preliminary step, we experimented known 
deep learning architectures as SegNet, DenseNet and 
UNet with our train dataset and then a transfer 
learning architecture combining UNet with 
ResNet50 as backbone. Three specific objectives are 
set: 
 

 To compare the use of three optimization 
methods (Adam and two variants of 
Stochastic Gradient Descent (SGD)). 

 To evaluate the impact of data augmentation 
on the overall accuracies of the three 
methods. 

 To assess the temporal generalization of the 
model to imagery collected at different 
times and under different atmospheric 
conditions (in the same agricultural cycle). 

2. STUDY AREA and DATA 
 

2.1 Study Area 
 

Experiments are conducted in Gharb site which 
is located in the north-west of Morocco (Figure 4). It 
currently counts 190 000 ha irrigated area. About 80 
% of the rains are concentrated between November 
and April. The dry period is usually between June 
and September. 
 

 
Figure 4. Study area localization (blue rectangle) (© 
Open Street Map). 
 

2.2 Used Data 
 

Three L8 cloud free scenes (October 2015, May 
and August 2016) were acquired and pre-processed. 
The choice is based on three key periods in the 
agricultural cycle (Autumn, Spring and Summer).  

In addition to RGB (R = NIR, G = R, B = G) L8 
images, ground truth data are collected and used for 
learning and validation. 

For collecting reference data, Corine Land Cover 
(CLC) based classification scheme is used by 
adapting it to the Moroccan context. Seven (7) 
classes were selected (Table 2) to appear in the final 
land cover maps. 
 

Table 2. Classification scheme for Gharb region 

Code Land cover 

0 Impervious 

1 Forest 

2 Water 

3 Arable land 

4 Irrigated land 

5 Greenhouse 

6 Orchard 

 
The training image dataset includes 50 images 

(128x128 pixels each with 3 channels (NIR, R, G)) 
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with corresponding ground truth masks. The ground 
truth was collected by photointerpretation of the 
images and existing recent data (Ortho-images 
SPOT6 and 7 with 1.5m resolution and Google 
Earth). 

For testing the models, initially three datasets of 
ten manually labelled images were prepared and 
then augmented to make tests on 100 images for 
each period of the agricultural cycle.  
 

3. METHODOLOGY 
 

3.1 Data Preparation 
 

L8 images were pre-processed through the 
following steps: 1) Converting DN of bands (B3 = 
Green, B4=Red, B5=NIR and B8=Panchromatic) into 
reflectance (ToC) by applying DOS atmospheric 
correction, 2) Apply a Pan-sharpening using Brovey 
Transform (Johnson et al. 2012), and 3) Stacking the 
three pansharpened bands (B3, B4 and B5). 

From the first image, we extracted well 
distributed 50 patches (128x128 pixels each with 3 
channels (NIR, R, G)) covering all land cover classes. 
These patches were photo-interpreted and the 
vector results were converted to raster masks. 
Finally, all the generated images were resized to 
224x224 to be suited for the training and validation 
of the experimented DL architecture (UNet with 
ResNet50 as backbone). 
 

3.2 Evaluating Deep Learning Architectures for 
Irrigated Areas Mapping 
 

Although it has not been designed specifically 
for satellite images, UNet architecture is increasingly 
applicable in remote sensing. As we will explain 
later, we use this structure as a base reference but 
combined with ResNet. 

In this paper, due to the limited training dataset, 
we tested a UNet based transfer learning 
architecture (Yakubovskiy 2018) to perform land 
cover semantic segmentation of L8 images. 

Our multi class segmentation is based on UNet 
with ResNet50 backbone (which has weights trained 
on 2012 ILSVRC ImageNet).  

In the first part of this study, this architecture 
was experimentally assessed through three different 
use cases depending on the used optimization 
methods: Adam (Diederik and Jimmy 2014) and two 
variants of Stochastic Gradient Descent (SGD).  

As we know, an important part of developing a 
DL architecture is the selection of hyperparameters. 
Different methods exist for choosing such values: 

1. Manual: hyperparameters are set through 
trial-and-error until a usable set of parameters are 
found. 

2. Search algorithms: A grid search, or random 
search algorithm can be deployed. The network is 
then trained on multiple models by using all 
combinations of parameters made available in these 
ranges (Bergstra and Bengio, 2012). 

The learning rate (LR) range (base_lr, max_lr) 
was firstly determined through trial-and-error test 
by observing the variations of loss value. Then two 
techniques (associated with SGD) were 
experimented: Cyclical Learning Rate (CLR) 
(Kenstler 2018) and Warm Restart (SGDR) 
(Loshchilov and Hutter 2016). 

According to (Smith 2017), letting the learning 
rate cyclically vary between reasonable bounds 
(Figure 5) can increase the accuracy of the model in 
fewer steps and escape the saddle points more 
efficiently. 
 

 
Figure 5. Cyclical learning rate (Smith 2017) 
 

SGDR (Figure 6) is similar to CLR. It applies an 
aggressive annealing strategy. So, the learning rate is 
varied during training deep neural networks and 
performance is improved (Loshchilov and Hutter 
2016). 
 

 
Figure 6. SGD with restart and cosine annealing 
 

In the second part of this study, we assess (for 
the three adopted architectures) the impact of data 
augmentation. We considerably augment the initial 
training dataset (outside training process) 
combining 90 degrees rotations with top-bottom 
and left-right flip (Bloice, 2017) which increased the 
training dataset 10 times (500 images with 
associated ground truth). 

In addition, we also assess the temporal 
generalization of the best model (from the three 
architectures) learned from the first Landsat 8 image 
acquired at the beginning of the agricultural cycle 
(Autumn period). The idea is to explore the 
feasibility of predicting (using the same model) the 
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location of irrigated areas at some specific times in 
the same agricultural cycle (Spring and Summer 
periods). 

As evaluation metrics (Liu et al. 2019) for image 
segmentation, we use Pixel Accuracy (Pacc) (Eq. 1) 
and Intersection over Union (IoU) (Eq. 2): 
 

Pacc =  
∑ niii

∑ tii

 (1) 

  

IoU =  
1

ncl

∑
nii

ti +  ∑ nji −  niij

 (2) 

 
Where, 
nij: number of pixels of class i predicted correctly to 
belong to class j 
ncl: number of classes 
ti: number of pixels of class i (ti = ∑j nij) 
 

Our architectures were implemented based on 
Keras API with TensorFlow backend. All models are 
trained and tested using Google Colaboratory. 
 

4. RESULTS and DISCUSSIONS 
 

4.1 Generating Land Cover Maps without Data 
Augmentation 
 

On the limited train dataset, we experiment 
three of the known DL architectures: SegNet, 
DenseNet and UNet. The overall accuracy obtained 
doesn’t exceed 47%. 

To improve the performance, we rely on UNet 
architecture with ResNet50 as backbone and used a 
loss based on the categorical cross entropy. For all 
models, we use a minibatch size of 32 images (this 
choice was a result of trial and error testing for four 
values: 8, 16, 24 and 32) and fixed learning rates 
between base_lr=0.001 and max_lr=0.01. The results 
for the three use cases based on the variation of the 
optimization method are as follow. 

 
Figure 7. Accuracies on training and validation 
datasets based on 300 epochs (Adam method) 
 

 
Figure 8. Accuracies on training and validation 
datasets based on 300 epochs (SGD method with CLR 
and Restart) 
 

The results show a clear improvement with an 
overall accuracy fluctuating around 94% (76% on 
validation dataset for Adam method) (Figure 7). The 
two variants of SGD lead to relatively smooth 
increasing to reach 91% as overall accuracy and 72% 
on validation dataset (Figure 8) but with a value of 
loss (on validation dataset) that doesn’t decrease 
under the value of 1. 

 

Table 3 Pixel accuracy and IoU metrics on test dataset  
 ADAM SGD_CLR SGDR 

Land Cover Acc (Pixel) IoU Acc (Pixel) IoU Acc (Pixel) IoU 

Impervious 75% 43% 54% 32% 36% 26% 

Forest 56% 39% 81% 72% 74% 67% 

Water 45% 37% 6% 6% 2% 2% 

Arable land 85% 73% 83% 69% 90% 72% 

Irrigated land 74% 63% 78% 62% 81% 62% 

Greenhouse 82% 63% 6% 6% 5% 5% 

Orchard 42% 40% 18% 9% 15% 14% 

Mean 66% 51% 47% 37% 43% 35% 

 
With mean IoU of 51% (63% for Irrigated land 

class) and with less confusion among classes, Adam 
gives the best result (Table 3). Hereafter some 

predictions outputted on some test images (Figure 
9) and the whole first image (Figure 10). 
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Figure 9. Predictions on some test images by Adam 
based model 
 

From this, it can be seen that Adam based 
network is particularly good at predicting irrigated 
areas and green houses. 
 

 
Figure 10. Land cover map generated by Adam 
based model 
 

4.2 Generating Land Cover Maps with Data 
Augmentation 
 

In the deep learning field, it is commonly known 
that a large amount of data is required to properly 
train a network. Unfortunately, accessing a suitable 
amount of data is not possible (or time consuming) 
for everyone along with data ground truth 
information. 

In this second part of the study, we 
experimented the same three models on the 

augmented training dataset to assess the impact on 
performance and accuracies.  

After artificially augmenting the training 
dataset and with less epochs (200), the overall 
accuracy has increased from 94% to 97% for Adam 
based method (Figure 11) and from 91% to 94% for 
SGD based methods (Figure 12). Also, the overall 
accuracy for the three methods on validation dataset 
has increased and reached respectively 92% and 
91%. 
 

 
Figure 11. Accuracies on augmented training and 
validation datasets based on 200 epochs (Adam 
method) 
 

 
Figure 12. Accuracies on augmented training and 
validation datasets based on 200 epochs (SGD 
method with CLR and Restart) 
 

All the methods (Table 4) perform well (less 
confusion among classes). Adam based method 
outperform the other methods especially for classes 
water and irrigated land. This latter is mapped with 
high degree of performance (IoU of 87%).

 
Table 4 Pixel accuracy and IoU metrics on test dataset 

 ADAM SGD_CLR SGDR 

Land Cover Acc (Pixel) IoU Acc (Pixel) IoU Acc (Pixel) IoU 

Impervious 89% 84% 89% 74% 90% 80% 

Forest 93% 87% 93% 89% 89% 86% 

Water 74% 56% 49% 39% 44% 37% 

Arable land 96% 91% 93% 87% 95% 87% 

Irrigated land 93% 87% 91% 82% 90% 82% 

Greenhouse 78% 63% 73% 63% 74% 66% 

Orchard 87% 84% 96% 90% 93% 84% 

Mean 87% 79% 83% 75% 82% 75% 
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Using Google Colaboratory with GPU processing 
capacities, it has been noticed that training and 
testing all models show the same speed 
performance. 

Below, some predictions produced on some test 
images (Figure 13) and the first whole image (Figure 
14). 
 

 
Figure 13. Predictions on some test images by Adam 
based model 
 

4.3. Temporal Generalization of the Best Learned 
Model  
 

The aim here is to assess how robust is the 
temporal generalization of the best learned model 

(from the previous phase). Two new test datasets 
(ground truth masks) are photo interpreted based 
on two acquisitions corresponding to spring and 
summer periods in the same agricultural cycle. The 
results of the predictions evaluations (Table 5) are 
given hereafter. 
 

 
Figure 14. Land cover map generated by Adam 
based model (on augmented training dataset)

 
 
Table 5. Pixel accuracy and IoU metrics on test datasets for the three image acquisitions 

 AGRICULTURAL CYCLE 

 AUTUMN SPRING SUMMER 

Land Cover Acc (Pixel) IoU Acc (Pixel) IoU Acc (Pixel) IoU 

Impervious 89% 84% 79% 29% 88% 9% 

Forest 93% 87% 65% 54% 6% 6% 

Water 74% 56% 54% 23% 53% 40% 

Arable land 96% 91% 58% 54% 29% 25% 

Irrigated land 93% 87% 52% 37% 33% 28% 

Greenhouse 78% 63% 21% 9% 5% 5% 

Orchard 87% 84% 31% 8% 0% 0% 

Mean 87% 79% 51% 31% 31% 16% 
 

 
Figure 15. Predicted land cover maps for spring and 
summer L8 images 
 

The results show low accuracies for the 
predictions on spring and summer L8 images (Figure 
15 and 17). The main cause is the reflectance of the 
objects which change during the agricultural cycle. 
Especially for summer acquisition, more confusion 

between irrigated land and orchard classes (Figure 
16) and low performance for the other classes. 
 

 
Figure 16. Samples of two test images acquired 
during different periods of the agricultural cycle 
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Figure 17. Predictions of irrigated areas (Green) on 
two test images 
 

The aim of this third part experiments is to come 
up with a prediction model that can map irrigated 
areas at different times of an agricultural cycle. The 
reason behind is that our class of interest generally 
keep the same reflectance during the year. 
Unfortunately, 2015-2016 was a specific year 
marked by a severe drought in Morocco which 
explain the low accuracies and also the confusion 
among classes. 
 

5. CONCLUSIONS 
 

With the aim of irrigated areas automatic 
mapping from RGB Landsat 8 satellite images, we 
review three architectures based on UNet with 
ResNet50 as backbone. Initially, small dataset of 50 
images with associated ground truth labels were 
used in training and validation.  
 

Table 6. Irrigated areas mapping accuracies using 
the three architectures 

 ADAM SGD_CLR SGDR 

 Model 
  Acc 
(Pixel) 

IoU 
   Acc 
(Pixel) 

IoU 
   Acc 
(Pixel) 

  IoU 

Without 
AUG 

74% 63% 78% 62% 81% 62% 

With 
AUG 

93% 87% 91% 82% 90% 82% 

 AUG: Augmentation 
 

Without data augmentation, Adam based model 
gives the best result with mean IoU of 51% (63% for 
Irrigated land class) (Table 6). We believe that better 
performances can be achieved using more data.  

After artificially augmenting the training 
dataset, the overall accuracy has increased from 94% 
to 97% for Adam based model and from 91% to 94% 
for SGD based models. The irrigated areas are 
mapped with high degree of performance (IoU >= 
82%). On the same area of interest and using 
Random Forest algorithm (Benbahria et al., 2018) 
we obtained less accuracy. This could confirm the 
relevance of using these new approaches based on 
deep learning architectures. 

On the other hand, the temporal generalization 
of the best learned model to spring and summer L8 
images (in the same agricultural cycle) leads to low 
accuracies with 37% and 28% IoUs respectively. 
Many enhancements can be explored to improve 
these results. Firstly, we can further augment the 

training dataset from different season’s images. 
Adding more spectral bands and indices into training 
images should also be explored. 
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