GUFBED/GUSTIJ (2020) 10 (3): 631-640 Giimiishane Universitesi Fen Bilimleri Enstitiisii Dergisi
DOI: 10.17714/gumusfenbil.617238 Aragtirma Makalesi / Research Article

On the Characterizations of Convolution Manifolds Obtained by Helix
Hypersurfaces

Helis Hiperyiizeyleri Tarafindan Elde Edilen Konvoliisyon Manifoldlarin
Karakterizasyonlari Uzerine

Sema KAZAN*
Inonu University, Faculty of Arts and Sciences, Department of Mathematics, 44280, Malatya

* Gelis tarihi / Received: 09.09.2019 « Diizeltilerek gelis tarihi / Received in revised form: 06.05.2020  « Kabul tarihi / Accepted: 13.05.2020

Abstract

In this study, a submanifold obtained by tensor product of the immersions of two helix hypersurfaces obtained by planar
curves is constructed. It is seen that, this submanifold is a convolution manifold with convolution metric and its
minimality is examined. After, some characterizations are given by looking at the totally geodesic of same submanifold.
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Oz

Bu ¢aliymada, diizlemsel egrilerden elde edilen iki helis hiperyiizey immersiyonlarinin tensér ¢arptmlart tarafindan
elde edilen bir altmanifold olusturuldu. Bu altmanifoldun, konvoliisyon metrik ile birlikte bir konvoliisyon manifold
oldugu goriildii ve bu manifoldun minimalligi incelendi. Daha sonra aymi altmanifoldun tamamen geodezikligine
bakilarak bazi karakterizasyonlar verildi.
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1. Introduction

In 1993, B.Y.Chen has started the study of the
tensor product immersion of two immersions of a
given Riemannian manifold. Considering Chen’s
definition, F. Decruyenaere and his friends
(Decruyenaere vd., 1993) have studied the tensor
product of two immersions of different manifolds
in general; under certain conditions, this realizes
an immersion of the product manifold. In (Mihai
vd., 1994/1995), tensor product surfaces of
Euclidean plane curves have investigated. Also,
authors have studied the tensor product of
surfaces of a Euclidean space curve and a
Euclidean plane curve in (Arslan vd., 2001). And,
in Phd thesis (Aksoy, 2008), Aksoy has
insvestigated the tensor products of a surface in
Euclidean space and a curve in Euclidean plane.

On the other hand, Chen has introduced the notion
of convolution manifolds, which is related to
isometric immersions to Euclidean spaces in
(Chen, 2003). It is note that, let N; and N, be two
Riemannian manifolds with Riemannian metrics
g1 and g,, respectively, and let f be a positive
differentiable function on N;. The well-known
notion of warped product manifold N; X; N,
is defined as the product manifold N; X N,
equipped with the Riemannian metric given by
g1+ f2g,. 1t is well-known that, the notion of
warped product plays some important roles in
differential geometry as well as in physics
(O’neill, 1983). The notion of convolution can be
regarded as a natural extension of warped
products. The notion of convolution products is
defined as follows: Let N; and N, be two
Riemannian manifolds equipped with metrics g,
and g,, respectively. Consider the symmetric
tensor field g, of type (0,2) on the product

manifold N; X N, defined by

The Gauss equation of N in M is given by

grn =h?g1 + 29, + 2fhdf @ dh 1)

for some positive differentiable functions f and h
on N; and N, respectively. The symmetric tensor
gr,n 1s denoted by ,gq *f g, Which is called the
convolution of g, and g, (via h and f). The
product manifold N; X N, equipped with
nd1 *r g2 1s called a convolution manifold,
which is denoted by ,N; ¢ N,. When the scale
functions f and h are irrelevant, we simply denote
nlNi*f N, and gy *f g, by Ny X N, and g *
g2, respectively. We also investigate relations
between usual product manifolds and convolution
manifolds by considering the tensor product of a
regular surface of Euclidean 3-space and a planar
curve.

Let N be a Riemannian manifold equipped with a
Riemannian metric g. The gradient grade of a
function ¢ on N is defined by < grade,X >=
X, for vector fields X tangent to N. If N is a
submanifold of a Riemannian manifold M, the
formulas of Gauss and Weingarten are given by

VyY =VyY +0(X,Y), 2)
Vx& = —AgX + Dy, (3)

respectively, for vector fields X, Y tangent to N
and normal to N. Here V denotes the Riemannian
connection on M, ¢ the second fundamental form,
D the normal connection and A the shape operator
of N in M. The second fundamental form and the
shape operator are related by < A:X,Y >=<
o(X,Y), &>, where <,> denotes the inner
product on M as well as on M. A submanifold in a
Riemannian manifold is called totally geodesic if
its second fundamental form vanishes identically,
or equivalently, its shape operator vanishes
identically.

RX,Y;Z,W) = R(X,Y; Z,W)+< 0(X,2),a(Y, W) > —< a(X, W), (Y, Z) >, (4)

for X,Y,Z,W tangent to M, where R and R denote the curvature tensors of N and M, respectively. The

covariant derivative Vo of o with respect to the connection on TM @ T+ M is defined by

(V40)(Y,Z) = Dy(a(Y,Z)) — a(VyY,Z) — o (Y, VyZ).

The Codazzi equation is

(R(X,V)Z)* = (Vy0) (¥, 2) — (Vyo) (X, 2),

©)

(6)

where (R(X,Y)Z)* denotes the normal component of R(X,Y)Z.
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Let E™ @ E™ denote the tensor product of two Euclidean spaces E™ and E™. Then E™ @ E™ is isometric to
E™", The Euclidean inner product <,>on E™ @ E™ is given by

<a@ByY RO >=<a,y ><f,6§ >, @)

where < a,y > denotes the Euclidean inner product of @,y € E™ and < 8,8 > the Euclidean inner product
of 8,6 € E™ (for more details about convolution manifolds, we refer to (Chen, 2002, 2003)).

Let M, N be two differentiable manifolds and f:M — E™, h: N - E™ be two immersions. The direct sum
map f @ h:M x N - E™*™ and tensor product map f @ h: M x N - E™" are defined by

f ® . 9) = (FP), (@), ®)
FRnpq =fp) h(y, 9)

respectively. Necessary and sufficient conditions for f @ h to be an immersion have obtained in
(Decruyenaere vd., 1993).

Proposition 1.1. Let x: (N, g1) = E} c E™ and y:(N,, g,) = E™ € E™ be isometric immersions of
Riemannian manifolds (N4, g,) and (N,, g,) into EI* and E[", respectively. Then, the map

Y:N; XN, > E" Q E™ = E"™; (u,v) » x(u) ® y(v), u€ Ny, vEN, (10)
gives rise to a convolution manifold N; * N, equipped with

0,91 *p, G2 = P391 + Pig2 + 2p1p2dps @ dp,, (11)

where p; = /2};1ij and p, = fEZ;lyj denote the distance functions of x and y and x = (x4,...,x;) and

y = (V1,...,Vm) are Euclidean coordinate systems of E™ and E™, respectively (Chen, 2003).

Proof. For vector fields X, Y tangent to N; and Z, W tangent to N,, we have

dp(X) =XPp=X @y, dp(2) =ZP =x Q Z. (12)
Also, it follows from the definition of gradient of p; = |x| that

<X, x>= %X < x,x>=p;(Xp1) = p1dp1(X). (13)
Similarly, we have

p2dp2(2) =< Z,y >. (14)
From (7),(12),(13) and (14), we obtain Proposition 1.1.

Example 1.1. If y: (N, g;) = E* € E™ is an isometric immersion such that y(N,) is contained in the unit
hypersphere S™~1 of E™ centered at the origin. Then, the convolution g, x g, of g; and g, on the
convolution manifold N; * N, defined by (11) is nothing but the warped product metric: g, + |x|?g, (Chen,
2003).

2. Some Characterizations for Convolution Manifolds Obtained By Helix Hypersurfaces

Let ¢:UcR?->E3CE3 ¢uv)=a)+v(sindN* +cos§B%) and P:W cR? - E3 c E3,
YW, z) = B(w) + z(sinONP + cosdBF) be two immersions of helix hypersurfaces obtained by planar
curves a:IcR-E3cCE3 a(u)=(a;(u),ay(w),az(w)) and p:JcR-oE3ZcCE3 BWw)=
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(B1(w), B2(W), B3(W)), respectively. Here, N* and B® denote elements of the Frenet frame {T% =
V% N% =V,% BY = V,%} of the curve a and Nf and Bf denote elements of the Frenet frame {T? =
V,A,NB = V,P, BP = V,F} of the curve B. Then, their tensor product is given by

f,v,w,z2) = (p QY):UXW S R* > E3QE3 =E?°,
= (1 (w, V)P (W, 2), o1 (w, V)Y, (W, 2), p1 (w, V)P3 (W, 2), P2 (W, V)Y (W, 2), P2 (w, V)Y, (W, 2),
b2 (w, )Yz (W, 2), 3 (u, V)P (W, 2), P53 (W, V)Y, (W, 2), P3(u, V)3 (W, 2)).

or

A basis of tangent space of manifold U x W is {X = a—f, Y = ’;,W = Z—";,Z = g—i}, such that

Ju a

X = (1 — vk¥sin®)TE[By(W) + z(sinON’ + cos6BF)], (1 — vk&sin®)TE [B, (W) + z(sinb + cos6BY)],
(1 — vk{sin)TE[B3(w) + z(sinBNf + cosGBf)], (1 — vk{sin®) TS [B1(w) + z(sin@Nf + cosHBf)],

(1 — vk{sinO)TS[B,(w) + z(sinBNZB + cosGBf)], (1 — vk{sind) TS [B3(w) + z(sin@Nf + cosHBf)],

(1 — vk{sin®)Ts' [B1 (W) + z(sinBNf + cosGBf)], (1 — vk{sind) TS [B, (W) + z(sin@Nzﬁ + cosHBf)],

(1 — vkEsinO)TE[Bs (W) + z(sinONE + cosd BE)]),

Y = ((sinfN{ + cos@B)[B, (W) + z(sinON’ + cos6B)], (sinON + cos6B)[B,(w) + z(sinON?
+cos€BZB)], (sin@N{* + cosOB{)[Bs(w) + Z(sinBNf + cosHBf)], (sin@Ny* + cosOBS)[B1(w)
+2(sinN? + cos6BP)], (sinON + cosOB)[B,(w) + z(sinON? + cosdB?)], (sinfNg
+cosOB)[Bz(w) + z(sinHNf + cosBBf)], (sinONg* + cosOBS)[B1(w) + Z(sinQNf

+c05981ﬁ)], (sin@Ng* + cosOBS) [B,(w) + Z(sinBNZB + cosBBf)], (sinfN§" + cosOB$)[Bz(w)
+Z(sin9Nf + cosQBf)]),

W = (ay(u) + vsinN{ + vcosOBY) (1 — Zkf sin@) Tlﬁ, (a1 (w) + vsinON{* + vcosOBY) (1 —
zkfsin@) Tf,(al(u) + vsin@N{* + vcosOBY) (1 — Zkfsine) Tf, (az(w) + vsinONS + vcosOBY) (1 —
zkfsin@) Tlﬁ, (ay(w) + vsin@N5* + vcosOBY) (1 — Zkf sin9) TZB, (az(w) + vsinONS + vcosOBY) (1 —
zkfsin@) Tf, (a3(w) + vsinON§ + vcosOBY (1 — Zkf sin9) Tf, (a3(w) + vsinON§ + vcosOBY (1 —
zkfsin@) TZ‘B, (a3(w) + vsinON5* + vcos6BY) (1 - Zkf sin9) Tf),

Z = (a;(w) + vsin@N{* + vcosOB{) (sinfN{* + cosOBf), (a;(w) + vsin@N{* + vcosOBf) (sinf N5
+cosOBY), (a1 (u) + vsindN{ + vcosdBY)(sinON§ + cosOBY), (a,(w) + vsinONS +

vcosOBY ) (sinfN{¥ + cosOBY), (a,(w) + vsinONS + vcosOBS ) (sindN5 + cosOBY), (a,(u) +

vsindNg* + vcosOBY ) (sindN§ + cosOBY),(az(w) + vsinfN + vcosdBS) (sinON{* + cosOBY), (as(w) +
vsinfN$' + vcosOBS) (sinfN5 + cosOBY), (az(w) + vsinON5' + vcosOBS ) (sinfN§ + cos6BY)).

The coefficients of the Riemannian metric g induced on Imf by the Euclidean metric of E° can be given as
in the following lemma:

Lemma 2.1. Let ¢: U c R? - E3 c E3, ¢p(u,v) = a(u) + v(sindN* + cos§B%) and : W c R? -» E3 C
E3, Y(w,z) = (W) + z(sinONP + cos#B#) be two immersions of helix hypersurfaces obtained by planar
curves a:IcR-E3cCE3 a(u)=(a;(u),ay(u),az(w)) and p:JcR-oEZCE3 pBWw)=
(B1 (W), B2(w), B3(w)), respectively. Here, N* and B% denote elements of the Frenet frame {T% =
V% N% =V,% BY = V,%} of the curve a and NP and Bf denote elements of the Frenet frame {T# =
V,A,NB =V,P, BP = V,P} of the curve B. For their tensor product which is given by f(u,v,w,z) =
(p®Y):UxW cR* > E3® E3 = E?, the coefficients of the Riemannian metric g induced on Imf by
the Euclidean metric of E° are

634



Kazan / GUFBED 10(3) (2020) 631-640
gi1 = P%91(¢u»¢u): 922 = p%gl(d)wd)v)r gs33 = Pfgz (Yw, Yw), Gaa = P%gz Wz 2),

g12 = P%91(¢u:¢v) =921, 913 = P1P2dp1(P)p2(Ww) = 31, 14 = P1P2dp1(Pu)p2(W2) = Gaa,
923 = P1P2dp1(Py)p2(Vw) = 32, 924 = P1P2dP1(Pp)P2(V2) = Gaz, G34 = P%gz (WPYw)Pz) = Gasz-

Here, p; = f2i3=1¢i2 and p, = f21.2=11/1]? denote the distance functions of ¢ and ¥; ¢ = (¢4, P, P3) and

Y = (Y1,P,,YP3) are Euclidean coordinate systems of E3, respectively.

Proof: Let ¢:U c R? » E3 c E3, ¢(u,v) = a(u) + v(sinN* + cosfB%) and y:W c R? » E3 c E3,
Y(w,z) = B(w) + z(sindNF + cosOBF) be two immersions of helix hypersurfaces obtained by planar
curves a:IcR->E3cE3 a()=(a;(uw),a(u),as(w)) and B:JcR-oEZCE3 pBWw)=
(B (W), B2 (W), B3(w)), respectively. Then their tensor product (¢ @ Y):U x W CR* > E3 @ E3 = E° is
obtained from (10). Also, using the Riemannian metric g, its coefficients are obtained as following:

911 =< X, X >=N ¢y PN Y 17, g2 =< Y, Y >=I ¢, I Y 1%, gzz =< W, W >=I 9, I’ ¢ II%,
9as =< ZZ>=N P, P § I?, g12 =< X,Y >=<y, o, >N Y I?, g13 =< X, W >=< ¢, ¢ >< 9,9y, >,

914 =< X,Z >=< ¢ <P, >, g3 =<V, W >=< $,, ¢ >< P, ,, >,
924 =<V, Z>=< ¢, ¢ ><, P, >, g3 =< W,Z >=<1,,, %, | ¢ I>.

Then, we can give our main theorem:

Theorem 2.1. Let ¢p:Uc R> > E3cE?® and Y:W cR - E3cE?® be two immersions of helix
hypersurfaces obtained by planar curves a:I c R —» E3 c E3, a(u) = (a;(u), az(w),as(u)) and B:] c
R - E3 c E3, B(w) = (By(w), B (W), B3(w)). Then, the map

fUXW->E3QE3=E%uvwz)->¢duv) QPw,z), u,velU, wzeW,

gives rise to a convolution manifold U » W equipped with ,, g, *,, g, = P21 + p?g, + 2p1p2dp; @ dp,.
Proof: The proof is obvious from (1) and Lemma 2.1.

The normal space of U x W is spanned by {n,, n,, ns,n,}. So, we can give the following lemma:

Lemma 2.2. Let ¢:U c R? - E3 c E3, ¢p(u,v) = a(u) + v(sindN* + cos§B%) and : W c R? - E3 C
E3, Y(w,z) = B(W) + z(sinONP + cos#B#) be two immersions of helix hypersurfaces obtained by planar
curves a:IcR-E3cCE3 a(u)=(a;(u),ay(u),as(uw)) and p:JcR-EZCE3 pBWw)=
(B1(w), B2 (W), B3(w)), respectively. Here, N* and B* denote elements of the Frenet frame {T* =
V% N =V,% B* = V;*} of the curve a and N# and BP denote elements of the Frenet frame {T# =
V., NP = v,P, B = v,#} of the curve B. Then, the normal space of U x W is spanned by

ny; = (—(az(w) + vsindN§ + vcos6BY) (ﬂz w) +z (sinBNZB + cosBBf)), (a3(w) + vsinONS +
vcosOBY) (ﬁl (w) +z (sinGNf + cosHBf)) ,0,0,0,0, (aq (w) + vsinON{* + vcosOBY) (,82 w) +

z (sinGNzﬁ + cosHBzﬁ)) ,—(ay(u) + vsindN* + vcosOBY) ([?1 w)+z (sin@Nlﬁ + cosHBlﬁ)),O),

n, = (0,0,0, —(a3(u) + vsin@Ng' + vcos6BS) (B, (w) + Z(Sil’l@NZﬁ + cos@BZB)),(a3 (w) + vsinN§ +
vcosOBS)(B1(w) + z (sinONf + cosHBf) ,0, (ay(u) + vsindN5 + vcos6BY) (ﬁz w)+z (sinHNf +

cosGBf)) , —(ay(u) + vsindN§ + vcosOBY) (ﬁl w) +z (sinONf + cos@Blﬁ)) ,0),
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n3 = (—(a(u) + vsindN5* + vcos6BS ) (S, (w) + Z(SiIl@Nzﬁ + cosHBzﬁ)), (ay(u) + vsinON$ +
vcosOBS ) (B (w) + z(sinGNf + cosBBf)), 0, (a1 (u) + vsindN{* + vcosOBY) (B, (w) + z(sinGNZB +
cosHBZB)), —(aq(w) + vsinfN{* + vcosOB{) (B (w) + Z(sinHNf + cosBBf)),0,0,0,0),

ng = (0,0,0,0, —(a3(u) + vsindNS + vcosdBS) (B3 (w) + z(sinBNf + cosGBf)), (a3(u) + vsinONg
+vcosOBE) (B, (W) + z(sinONE + cos8B)),0, (az(w) + vsinON§ + vcosdBE)(B3(w) + z(sinONY
+cos€B3B)), —(az(uw) + vsinON5 + vcos6BS) (B, (w) + z(sinBNf + cosGBzﬂ)).

Proof: Let ¢:U c R? » E3 c E3, ¢(u,v) = a(u) + v(sinN* + cosfB%) and Y:W c R? » E3 c E3,
Y(w,z) = B(w) + z(sindNF + cosOBF) be two immersions of helix hypersurfaces obtained by planar
curves a:IcR-E3cCE3 a()=(a;(u),ay(w),az(w)) and pL:JcR-oEZCE3 pBWw)=
(B1(w), B2(w), B3(w)), respectively. Then using the Riemannian metric g and the base {X,Y,W,Z} of
tangent space of manifold U x W, the normal space of U x W easily can be obtained.

After stating this lemma, we can state following theorem:

Theorem 2.2. Let ¢: U € R? » E3 c E3, ¢p(u,v) = a(u) + v(sinfN% + cosfB*) and y: W c R? - E3 C
E3, Y(w,z) = B(W) + z(sinONP + cos@BP) be two immersions of helix hypersurfaces obtained by planar
curves a:IcR-E3CE3  a()=(a;(u),a,(w),asz(u)) and pB:JcR->E3cCE3 Bw)=
(B1(w), B2(w), B3(w)), respectively. Here, N* and B% denote elements of the Frenet frame {T% =
V% N =V,% B* = V;%} of the curve a and N® and BP denote elements of the Frenet frame {T# =
V., NF = v,P, BF = v,P} of the curve B. Then, U = W convolution manifold is a minimal submanifold.

Proof: Let {X,Y,W,Z} be the base of tangent space of manifold U x W. Then we can give the derivatives

_9%f _9%f 92%f _
Xy =75Y =75 W =552, =53} as

Xy = ([ vk{ sm@T1 + (1 — vk§ sm9)T1 ][ﬂl(w) +Z(Sil‘19NB + cos@Blﬁ)],
[—vkf sm@T1 + (1 — vk{sind) T ][ﬁz(w) + Z(smeNﬁ + cosQBB)]

[—vkf sm@T1 + (1 — vk{sind)T ][ﬁg(w) + Z(smeNf + cosQBf)],
[—vkf sm@T2 + (1 — vk{sind)TS ][ﬁl(w) + Z(sineNlﬁ + cosQBf)],
[—vkf smGT2 + (1 — vk{sind) TS ][ﬂz(w) + Z(Sil‘l@NZB + cosQBZB)],
[—vkf smGT2 + (1 — vk{sind)TS ][ﬂ3(w) + Z(sinHNf + cos@Bf)],
[—vkf smGT3 + (1 — vk{sind)Ts ][ﬂl(w) + Z(sinHNf + cosQBf)],
[—vkf smGT3 + (1 — vk{sind)Ts ][ﬂz(w) + Z(Sil‘l@NZB + cosQBf)],

[ vk{ smGT3 + (1 — vk{sind)Ty ] [B3(W) +z (sinHNf + cos@Bf)]),

W,, = ([@1(u) + vsinON{* + vcosHBf][—zkf ,sinBTf +(1- ZkfsinB)Tlﬁ’],

a;(u) + vsinON{* + vcos@Bf][—zkf ,sinHTf +(1- ZkfsinO)Tzﬁ ,],

a;(u) + vsinON{* + vcosOB{|[— Zkf ,sinHTf +(1- ZkfsinO)Tf ,],

[— Zkf’sinHTf +(1- ZkfsinO)Tlﬁl]
[— Zkf,SiHHTZB +(1- zkfsinO)Tzﬁl]

2(u) + vsinON§ + vcos6 BY [—Zkf ,sinBTf +(1- Zkfsine)Tf ,],

)

a,(u) + vsindNy5* + vcos6BY

)

[

[ ]
[, (w) + vsinON5 + vcos6BY |
[ |
[a |
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[a3(u) + vsindNS + vcos@Bg‘][—zkf sinBTf +(1- zkfsinH)Tlﬁ ],
[a3(u) + vsinONS + vcos@Bg‘][—zkf sinBTf +(1- zkfsinH)Tzﬁ ],
[a3(w) + vsinON§ + vcos6BY | [—Zkf sinBTf + (1 - Zkfsine) Tf ]),

Z,=0.
Thus, we obtain < X,,,n; >=0,<Y,,n; >=0,<W,,,n; >=0,<Z,,n; >=0, i =1,2,3,4.

Hence, from the Gauss formula (2), it is obtained h(X,X) =0,h(Y,Y) =0,h(W,W) =0,h(Z,Z) = 0.
From (Chen, 1973), one can recall that, a submanifold of a Riemannian manifold is said to be minimal, if
mean curvature vector H vanishes identically. Since we have < h(X,X)+ h(Y,Y)+h(W, W)+
h(Z,Z),n; >= 0, the proof completes.

Now, we can give the following theorem:

Theorem 2.3. Let ¢:U c R? - E3 c E3, ¢p(u,v) = a(u) + v(sindN® + cosdB%) and y:W c R? -
E3 c E3, Y(w,z) = (W) + z(sindNP + cosdBF) be two immersions of helix hypersurfaces obtained by
planar curves a:I cR—- E3 c E3, a(u) = (a;(u),ay(u),az(w)) and B:Jc R->E3cE3 B(w)=
(B1(w), B2(w), B3(w)), respectively. Here, N* and B% denote elements of the Frenet frame {T% =
V% N =V,% B* = V;%} of the curve a and N® and BP denote elements of the Frenet frame {T# =
V,#, N =Vv,P,BF = v,} of the curve B. Then the convolution manifold U W is totally geodesic

submanifold if and only if the functions (%), (%), (%) and (%), (%) are constant.
1 2 1 2 3

Proof: Let {X,Y, W, Z} be the base of tangent space of manifold U x W. Now, we obtain the derivatives with
respect to parameters u, v, w, z of the base {X, Y, W, Z} on manifold U x W as following:

X, = ( kf sm@T1 B1(w) + Z(Sll‘l@Nﬁ + cos@Bﬁ) —k§ stT1 (B2 (W) +Z(sm0NB + cosHBB)
—kf sm9T1 (ﬁg(w) + Z(SII‘IQNB + cos@Bﬁ) —k{ smt9T2 (ﬁl(w) + Z(SIHQNB

cosHBf), —k§ sm@T2 B (W) + Z(SIDQNZB + cosBBf), —k stT2 (Bs(w) + Z(SlnHNf +
cosHBf), —kf‘,sinHTf(ﬁl(w) + Z(Sil‘l@Nlﬁ + cosBBf), —kf,sin9T3“ B (w) + Z(sinHNZB +
cosHBzﬁ), —kf’sin9T3“(ﬁ3 w) + Z(sinHNf + cosHBf)),

Xw=(1- ka,sinH)Tla (ﬁll w) + Z(sinHNf , + cosBBf ,), 1- ka"sine)Tf‘(ﬂzl w) + z(sinGNZﬁl
+cos€BZﬁ ,), 1- ka,sinH)Tla ([)’3’ w) + Z(sinHNf , + cosQBf ,), (1- ka"sine)TZ“ (,6’1’ w)
+z(sin9Nlﬁ , + cosHBf ,), 1- ka,sinH)TZ“ ([?2’ w) + Z(sineNzﬁ , + cosHBZBI), (1

—vk{",sinG)TZ“ (ﬁgl w) + Z(sinGNf , + cosHBf ,), 1- ka’sinB)Té"(Bll w) + Z(Sin@Nlﬁl

+cosGBf ,), 1- ka,sinG)Tf (B, (W) + Z(Sil‘l@NZB , + cosBBf ,), 1- vk{’"sinﬁ)Tf‘ (Bs (W)
+z(sin9N3ﬁ’ + cosHBf,)),

X, = ((1— vk sin®)TE(sin6N? + cosBP), (1 — vk sin@)TE (sinbNE + cosoBS),
(1 —vky ,sinH)Tl (sinBNﬁ + cosHBB) 1- ka"sinB)TZ“ (sinGNf + cos@Blﬁ),

(1 —vky 51n¢9)T2 (smBNﬁ + cosHBB) (1 — vk ,sinB)Tz (sin@Nﬁ + cos@Bﬁ),

(1 — vky 51n¢9)T3 (smHNB + cosHBB) (1 — vk smH)T3 (sm@Nﬁ + cos@Bﬁ),

(1 — vkf 51n¢9)T3 (smHNf + cosHBf)),
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Yy = ((sinGNf + cosBBf)(31’ (w) + Z(sinBNf ’ + cos@Bf ’), (sin@Nf + cosGBf)(ﬁzl (w) + Z(sinHNZBI
+cos€BZB ,), (sinGNf + cosBBf)(ﬁ; (w) + Z(sinGN,f ’ + cosGB,f ’), (sineNzﬁ + cosGBZB)(ﬁll (w)
+z(sin9Nf, + cosBBf,), (sinBNzﬁ + cos@Bzﬁ)(ﬁzl (w) + z(sin@Nzﬁ, + cosGBzﬁl), (sinGNf

+cosOBY) (B (W) + z(sinBNf, + cosOB? ) (sinON’ + cos6BF) (B, (w) + Z(sinHNf,

+cosoB’ '), (sinON? + cos8BE)(B, (W) + z(sinONY . cosOBY '), (sinON? + cos6BL)(B5 (w)
+Z(sin9N3B, + cosOBY ')),

Y, = ((sinON{ + cosfBE)(sinON? + cos6B”), (sinfN& + cosdBY)(sinfN? + cosdBY),
(sinON{ + cosHBf‘)(sinBNf + cosBBf), (sinON3* + cosBBé")(sinGNf + cosHBf),
(sinONg* + cosHBg‘)(sinBNZB + cosBBf), (sinON3* + cosBBé")(sinGNf + cosHBf),
(sin@N§ + cosHBg‘)(sinBNf + cosBBf), (sin6N§ + cosBBé")(sinGNzﬁ + cosHBzﬁ),
(sinON§ + cosOBS)(sinNS + cosdBL)),

W, = ((a1(u) + vsindN{* + vcosé’B{")(siné?Nllg , + cosBBf’), (a1 (w) + vsinONF + vcos@B{")(sinBNf,
+cos€BZB ,), (aq(u) + vsinON{ + vcosé’B{")(siné?Nég , + cosHBf’), (ay(u) + vsin@Ny'
+vcos€B§‘)(sin9Nﬁl + cos@BB’) (az(uw) + vsiné?N2 + vcos@Bg)(sinHNﬁ, + cosBBB’) (az(uw)
+v51n9N2 + vcosOBY )(smHNB + cos@Bﬁ ) (a3(u) +vsm9N3 + vcosOB3 )(smBNB

+COSHB1 ), (a3(w) + vsinONg* + vcos6 BS )(smBNZB + cosBBf ), (a3(u) + vsindNy
+vcosHB?‘f‘)(sin9N3B, + cosHBf,)).

Similarly, as a result of long operations, one can calculate the derivatives Y,,, W,,, W, Z,,, Z,,, Z,,. Thus, we
can give the following results:

We know that, h(X,X) = 0,h(Y,Y) = 0,h(W,W) = 0,h(Z,Z) = 0. Also, we have

<X,n>=0 and <Y, n; >=0, (15)
93w, v) ¥ (w,2)

< XW'nl >= (¢ ( ))u¢1( )(l/) ( ))WIIJZ( Z) =< Wu' nl

< Xy >= (2 (0, v) )3 (w, 2) =< Wy > (16)

<Koty 3= G2 BT )G ,2) =< W >,

<Kt 3= G B3 G ,2) =< Wy >,

<Koy 3= G 7w S W 2) =< Zum >

<Koy >= (G 0F  v)CE D) YE W, 2) =< Zy,mp > )

<Xy ng >= (‘fﬁu ﬁ)uqbl( )(I,’jlgw iwz( 2) =< Zynz >

< Xpmy >= (ﬁ §Ju¢z( )(izg §>z¢3( 2) =< Zyny >
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<Yy >= (zjg §)U¢>1< )(ﬁ %)m (w,2) =< Wp,my >
<Ymz >= (2003 (u0) G wb W, 2) =< Wy, s > (18)
<Yy nz >= (izﬁ §)v¢1( )(ﬁ iwz (w,2) =< Wy, n3 >
< Yyomy >= G0, 03 () G2, 3w, 2) =< Wy, ny >
¢3(u, ) Y1(w,2) _
< YZ! ng >= (¢ (u v))v¢1( )(lll ( ))ZIIJZ( Z) =< ZVlnl >,
<Ym >= (), 03 (0 v) (o) Y3 (W, 2) =< Zy,mp > (19)
<Y, ng >= (zzg Uﬁ)ml( )(jlg %w%(w. 2) =< Zy,n; >
<Y,y >= <2j Ui)mz( ><$ E iws(w. 2) =< Zy,ny >
< W, n; >=0, (20)
< Zy,n >=0,, forall i=1,2,3,4. (21)

Considering that h is symmetric, we obtain h(X,W) # 0, h(X,Z) # 0, h(Y,W) # 0, h(Y,Z) # 0. Thus,
take into account this statement and the equations (15-21), the proof is complete.

3. Conclusion

In 1802, M.A. Lancret has stated a classical result
which is “A necessary and sufficient condition
that a curve be a general helix is that the ratio of
curvature to torsion be constant” and in 1845, B.
De Saint Venant has proved this result. Also, if
both of k and t are non-zero constant it is a
general helix and we call it a circular helix. Its
known that, straight line and circle are degenerate-
helix examples (x=0, if the curve is straight line
and 7=0, if the curve is a circle) (Kula vd., 2010).
After these studies, many authors have studied
helix curves, helix surfaces and helix
submanifolds (for instance, one can see (Barrera
Cadena vd, 2015; Di Scala and Ruiz-Hernandez,
2009, 2010, 2016; Fetcu, 2015; Kiiciikarslan and
Yildirim, 2018; Ziplar, 2012 and etc.). Some other
motivations for the study of helix submanifolds
comes from the physics of interfaces of liquid
crystals and that they appear contained in the
shadow boundary of a submanifold (Di Scala and
Ruiz-Hernandez, 2010).
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In this study, considering two helix hypersurfaces
which are obtained by planar curves, we obtain a
convolution manifold with the aid of the
immersions of these hypersurfaces and we give
some important characterizations about this
manifold. Consequently, the researchers who are
dealing with some special areas of physics and
medicine can use these characterizations about the
geometry of the tensor product of helix
hypersurfaces and this approach can bring a new
perspective to researchers of these fields.
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