

*Abdullah Talha KABAKUŞ; talhakabakus@duzce.edu.tr; Tel: (0380) 542 10 36; orcid.org/0000-0003-2181-4292

ISSN: 2146-538X http://dergipark.gov.tr/gumusfenbil

GÜFBED/GUSTIJ (2020) 10 (3): 844-852 Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi
DOI: 10.17714/gumusfenbil.637942 Araştırma Makalesi / Research Article

A Performance Comparison of Java Cache Memory Implementations

Java Ön Bellek Gerçekleştirmelerinin Bir Performans Karşılaştırması

Abdullah Talha KABAKUŞ*
Düzce Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, 81620, Düzce, Türkiye

• Geliş tarihi / Received: 24.10.2019 • Düzeltilerek geliş tarihi / Received in revised form: 21.06.2020 • Kabul tarihi / Accepted: 23.06.2020

Abstract
Nowadays the information systems are substantially data-intensive and the data is going to be more critical than before.
For these systems, which are intolerant in terms of time latency, the way of accessing data becomes more critical. In
these situations, an additional data layer named cache memory is used. There are various both open-source and
commercial Java cache memory implementations based on the specifications defined by Java Community Process. In
this study, the most widely used Java cache memory implementations are evaluated in order to compare their
performances in terms of elapsed time and memory consumption. The experimental results imply that the architectural
design of cache memory has a great effect on performance and there is no winner that provides the best performance for
all data operations.

Keywords: Cache, Cache Memory, Caching, Data, Java

Öz
Günümüzde bilgi sistemleri ciddi miktarda veri ağırlıklıdır ve bu veri gitgide daha kritik hale gelmektedir. Bu tip veriye
erişimde gecikmeye toleransı olmayan sistemlerde, veriye ulaşım yöntemi çok daha kritik hale gelmektedir. Bu tip
durumlarda, ön bellek hafızası ismi verilen ek bir veri katmanı kullanılmaktadır. Java Community Process tarafından
tanımlanan şartlara uyan gerek açık kaynak kodlu gerekse ticari çeşitli Java ön bellek gerçekleştirmeleri mevcuttur. Bu
çalışmada, en çok kullanılan Java ön bellek gerçekleştirmeleri ihtiyaç duyduğu zaman ve bellek tüketim açısından
performans karşılaştırması yapmak üzere değerlendirilmiştir. Deneysel sonuçlar ön bellek mimari tasarımının
performans üzerine ciddi etkisi olduğunu ve tüm veri işlemleri için en iyi performansı gösteren tek bir kazananın
olmadığını göstermiştir.

Anahtar kelimeler: Ön Bellek, Ön Bellek Hafızası, Ön Bellekleme, Veri, Java

Kabakuş / GUFBED 10(3) (2020) 844-852

845

1. Introduction

With the investment of Web 2.0, the data
generated by the online resources has increased
enormously since Web 2.0 harnesses the Web in a
more interactive, responsive and collaborative
way, emphasizing peers’ social interaction and
collective intelligence, and presents new
opportunities for leveraging the Web and
engaging its users more effectively (Murugesan,
2007). As a result of this interaction, a huge
amount of data is being generated daily by the
Web 2.0 services such as social networks and
financial markets (Jose et al., 2011). According to
a recent report, while Facebook stores, accesses,
and analyzes 30 ൅ Petabytes of user-generated
data with the increase of 100 terabytes of data
uploaded daily, YouTube users upload 48 hours of
new video every minute of the day (Mark
Mulcahy, 2017). A requirement of the interaction
between the browser and the end-user, which is
introduced by Web 2.0, is processing the data
quickly in order to provide lower latency response
times (Carra and Michiardi, 2014). The traditional
data-intensive information systems tend to use a
database management system in order to store
their data on persistent storage such as hard disks.
The idea of using cache memories comes from
that an additional layer, which stores the most
frequently/recently used data on a memory area
which is much faster than random access memory
(RAM), could only improve the speed to access
the data and bridge the performance gap between
processor and RAM (Swain et al., 2018). For this
reason, fetching data from cache plays an
important role in increasing system performance
(Akbari Bengar et al., 2020). Therefore, modern
information systems, which are data-intensive in
terms of their business model, tend to use cache
memories alongside the persistent storage. In a
similar fashion, processing in memory (PIM) has
been used with in-memory computing for
processing large data-intensive applications such
as machine learning, graph processing, social
network analysis, and image processing (Ahn et
al., 2015; Chi et al., 2016; Fattahi et al., 2019;
Martins et al., 2017; Nai et al., 2017). In addition
to providing faster access to the data, cache
memory also plays a critical role in power
reduction (Panda et al., 2016). There exist various
both open-source or commercial cache memory
implementations. In this study, the most widely
used Java cache memory implementations are
evaluated in order to shed light on their
performances in terms of both (1) the amount of
memory used to complete data operations, and (2)
the elapsed time to complete each operation. The

operations were determined as (1) querying the
cache for entry of a given key, (2) adding a new
entry into the cache, (3) removing an entry from
the cache through the given key, and (4) getting
whole available data from the cache. The rest of
the paper is structured as follows: Section 2
introduces the cache memory implementations
used in this study. Section 3 presents the
experimental results and discussion. Finally,
Section 4 concludes the paper by summarizing the
findings with directions for future work.

2. Java Cache Implementations

Java Specification Request (JSR)-107, also
referred to as JCache, is a specification that
defines javax.cache API and semantics for
temporary, in-memory caching of Java objects
(URL-1, 2017). There are some both open-source
and commercial implementations of JSR-107.
These implementations use different eviction
algorithms that are used when the cache is full in
terms of storage and a new entry is needed to be
inserted into the cache. In the following
subsections, the most widely used Java cache
memory implementations based on JSR-107,
which are also used in this study, are briefly
introduced.

2.1. EhCache

Ehcache is an open-source implementation of the
JSR-107, which is reported to be the most used
Java-based cache (URL-2, 2020). Ehcache uses
the least recently used (LRU) algorithm to insert a
new entry when the cache is full in terms of
storage. While the LRU eviction algorithm
removes the least recently used entities from the
cache, the least frequently used (LFU) algorithm
removes the least frequently used entities from the
cache when the cache is full in terms of storage.
The LRU algorithm assumes the cache line, which
is used least in the recent past, is used in the near
future with the least probability (Yeung and Ng,
1997).

2.2. Guava

Guava is the Java cache implementation provided
by Google. Similar to Ehcache, Guava also uses
LRU as the eviction algorithm. Guava provides
various collection types, a graph library,
functional types, APIs for concurrency,
input/output, hashing alongside in-memory cache
(URL-3, 2020).

Kabakuş / GUFBED 10(3) (2020) 844-852

846

2.3. Cache2K

Cache2K is a high-performance Java cache that
serves inside Java virtual machine (JVM).
Cache2K uses a modern eviction algorithm, that
utilizes both the recency and frequency aspects,
which is also referred to as Least Recently
Frequently Used (LRFU) (Alghazo et al., 2004).
The LFRU algorithm associates each block in the
cache with a value called Combined Recency and
Frequency (CRF) which is used to exploit
temporal locality and reference popularity (Bahn
and Noh, 2003). Then it replaces the block in the
cache with the minimum CRF value (Donghee
Lee et al., 2001; Hennessy and Patterson, 1998;
Jinhyuk Yoon et al., 2002; Lee et al., 1999; Wang
et al., 2002; Wong and Baer, 2000). According to
the various performance experiments, Cache2K is
reported as one of the fastest caches available for
Java (URL-4, 2020). Cache2K utilizes the LFU
eviction algorithm, which uses the history of
accesses to predict the probability of a subsequent
reference (Yeung and Ng, 1997) alongside the
LRU eviction algorithm.

2.4. Memcached

Memcached is an open-source, high-performance,
distributed memory object cache. Similar to
Ehcache and Guava, Memcached uses LRU as the
eviction algorithm. Memcached is commonly used
to speed up dynamic web applications by
alleviating the database load (Fitzpatrick, 2004).
Facebook is one of the most popular users of
Memcached as it was reported in 2008 that
Facebook had 800 Memcached servers with up to
28 Terabytes of data in their cache (Hoff, 2009).
One of the biggest advantages of Memcached is
that it is platform-independent and scalable since

the clients connect to the cache via sockets
(Petrovič, 2008). Thanks to this architectural
design, Memcached is able to combine the
performance of message-passing systems and the
simplicity of distributed shared memory.

2.5. Ignite

Ignite is the in-memory computing platform
provided by Apache which is durable, strongly
consistent, and highly available. Ignite uses both
LRU and FIFO (First In, First Out) as the eviction
algorithms. Despite serving from the memory,
Ignite contains some differences from NoSQL
(Not Only SQL) databases such as (1) Ignite
supports SQL (Structured Query Language), (2)
Ignite supports collocated processing, and (3)
Ignite provides strong consistency while NoSQL
databases provide eventual consistency (URL-5,
2020).

2.6. Hazelcast

Hazelcast is an open-source, in-memory
distributed data grid based on Java. Hazelcast
should not be considered as purely a cache as it
supports a number of distributed collections and
features such as specialized collections,
concurrency utilities, and listeners (Johns, 2015).
Hazelcast can be configured to use both LRU and
LFU as the eviction algorithm.

While Cache2K, Ehcache, Guava, and Ignite
directly service from the source code, Hazelcast,
and Memcached require an external process
running on the operating system. The comparison
of Java cache memory implementations which are
introduced above is listed in Table 1.

Table 1. The comparison of Java cache memory implementations
Cache Memory Eviction Algorithm Supports Distributed

Architecture?
Directly Service from
Source Code

Cache2K LRU, LFU No Yes
Ehcache LRU Yes Yes
Memcached LRU Yes No
Guava LRU No Yes
Ignite LRU, FIFO Yes Yes
Hazelcast LRU, LFU Yes No

3. Experimental Results and Discussion

In order to reveal the performance of cache
memories, each implementation was evaluated
with four different experiments: (1) Querying the

cache for an entity through a given key, (2)
inserting a new entry into the cache, (3) deleting
an existing entry through a given key, and (4)
getting the whole entries available in the cache.
The whole experiments were carried out on the

Kabakuş / GUFBED 10(3) (2020) 844-852

847

same machine whose hardware and software
details are listed in Table 2. The elapsed times to
complete experiments were calculated by
determining the time interval by retrieving the
current time through the
𝑗𝑎𝑣𝑎. 𝑙𝑎𝑛𝑔. 𝑆𝑦𝑠𝑡𝑒𝑚. 𝑛𝑎𝑛𝑜𝑇𝑖𝑚𝑒 method, which
returns the current time in the most precise way
(in nanoseconds) just before and after each
experiment. All cache memories were run in the
single-node mode (a.k.a. standalone) since not all
cache memories support the distributed
architecture. Therefore, the effect of the
distributed architecture on the performance of
cache memory is out of the scope of this study.
The Stack Exchange Data Dump (URL-6, 2009)
was downloaded for the sake of performance

comparison of cache memories. Before
conducting each designed experiment, the data,
which is stored in an XML file, was read and
stored in Java collections (e.g., 𝑀𝑎𝑝𝑠). Then, each
designed experiment was conducted to reveal the
performances of the cache memories for the
different data operations. It is worth to mention
that all experiments were run for 5 times and the
average performance was regarded as the final
performance of each cache memory in order to
ensure that any other running processes on the
CPU has not affected the performance. The block
diagram of the proposed approach is presented in
Fig. 1.

Figure 1. The block diagram of the proposed approach

 Table 2. The hardware and software details of the machine which the experiments were carried out on

Operating System Ubuntu 14.04 (64-bit)
CPU Intel Core i7-4710MQ 4-Cores; 6 MB L3; 2.50 GHz>3.50 GHz
Memory 16 GB DDR3
Disk 7200 RPM SATA-3
Java Virtual Machine Oracle Java 1.8.0_121

3.1. Experiment #1 – Querying for an entity
through a given key

In order to compare the required time to retrieve
an entity, all caches were queried for the same
entity through a given key. Before evaluating this
experiment, the whole data (see Section 3.2 for
more detail) was inserted into the cache
memories. For the sake of this experiment, a 𝑢𝑠𝑒𝑟
was queried through his/her 𝐼𝑑, which was
randomly chosen from the available set of keys.
As the experimental result is presented in Fig. 2,
Cache2K and Ehcache provided the best
performance in terms of the elapsed time. Guava
was found as the worst cache memory as it was
able to complete the query 1,000 times fold later
than Cache2K and Ehcache.

3.2. Experiment #2 – Inserting bulk data into the
caches

The Stack Exchange Data Dump contains several
XML files that represent the data of the Stack
Exchange platform and the part related to
“𝑢𝑠𝑒𝑟𝑠”, which contains 86,110 𝑢𝑠𝑒𝑟𝑠, was
stored in the caches. The size of the dump is 1.15
GB and it contains the profile data of the 𝑢𝑠𝑒𝑟𝑠 of
Stack Exchange. The attributes of 𝑢𝑠𝑒𝑟𝑠 are 𝐼𝑑,
𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛, 𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑒, 𝐷𝑖𝑠𝑝𝑙𝑎𝑦𝑁𝑎𝑚𝑒,
𝐿𝑎𝑠𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑒, 𝑊𝑒𝑏𝑠𝑖𝑡𝑒𝑈𝑟𝑙, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐴𝑔𝑒,
𝐴𝑏𝑜𝑢𝑡𝑀𝑒, 𝑉𝑖𝑒𝑤𝑠, 𝑈𝑝𝑉𝑜𝑡𝑒𝑠, and 𝐷𝑜𝑤𝑛𝑉𝑜𝑡𝑒𝑠.
For the sake of experiments, the 𝐼𝑑, and
𝐷𝑖𝑠𝑝𝑙𝑎𝑦𝑁𝑎𝑚𝑒 attributes of each 𝑢𝑠𝑒𝑟 were
stored as “key-value” pairs in the cache memories.
This operation is also known as the “𝑝𝑢𝑡 𝑎𝑙𝑙”

Kabakuş / GUFBED 10(3) (2020) 844-852

848

operation. As the experimental result is presented
in Fig. 3, Ignite, Guava, and Cache2K provided
quite better performance in terms of elapsed time

to insert the bulk data compared to other caches.
Memcached was found as the slowest cache
memory in terms of writing data.

Figure 2. The elapsed times to query the cache through the provided key

Figure 3. The elapsed times to insert entries into the caches

3.3. Experiment #3 – Deleting an entry from the
cache through the given key

In order to compare the entity deletion
performances of caches, the same entry was
deleted from each cache through its key, which
was the 𝐼𝑑 of the 𝑢𝑠𝑒𝑟. Similar to Experiment #1,
the key was randomly chosen from the available
set of keys. As the experimental result is
presented in Fig. 4, Cache2K and Guava provided
quite better performance in terms of elapsed time

compared to the other caches. Ignite was found as
the slowest cache memory in terms of elapsed
time to delete an entry.

3.4. Experiment #4 – Get the whole data from
the cache

Despite each cache contains the same data which
was the previously inserted 86,110 entries, the
elapsed times to get the whole data were
calculated quite unusual as the experimental result

Kabakuş / GUFBED 10(3) (2020) 844-852

849

is presented in Fig. 5. Cache2K was found as the
fastest cache memory in terms of reading bulk
data from the cache.

The other aspect of the performance evaluation is
the memory consumption of each cache memory
implementation while storing or manipulating the
data. Since all caches stored the same data, the
amount of memory each cache consumes can be

used to compare the memory usage of caches. The
consumed memory was monitored using an open-
source tool, namely, VisualVM (Sedlacek and
Hurka, 2020). As the memory consumptions of
the caches are presented in Fig. 6, Guava and
Cache2K were found as the two most efficient
cache memories in terms of memory
consumption.

Figure 4. The elapsed times to delete an entry from the cache through the given key

 Figure 5. The elapsed times to get all the data available in caches

When all experimental results are reviewed, it is
safe to make a conclusion like that Cache2K and
Guava provide the best overall performance in
terms of elapsed times to complete operations.
The performance differences between the cache
memories became more evident when the number
of entries that are going to be operated was
increased. A limitation of Memcached is that it

does not provide any methods to get the whole
available data. For this operation, the whole data
of the cache was retrieved through a loop, which
means extra operations that eventually extend the
duration of the operation. This limitation could be
one of the reasons for Memcached for being much
slower than most of the cache memories while
reading the whole data in the cache. The

Kabakuş / GUFBED 10(3) (2020) 844-852

850

limitation of Cache2K and Guava is that they do
not support service in a distributed architecture
which could be necessary when the stored data is
huge and intolerant in terms of loss. Guava and
Cache2K provided better performance when it

comes to efficient memory management. Ignite
was found as the worst cache memory by
consuming 1.8 times more memory than Guava.

Figure 6. The memory consumptions of cache memories (in MB) to store
86,110 entries

4. Conclusion

Cache memories are commonly used within the
data-intensive systems in order to accelerate the
speed of the queried data. In this study, several
experiments were evaluated in order to reveal
their performances in terms of elapsed time to
complete each experiment and memory
consumption since there are various cache
memory implementations. According to the
experimental results, the architecture of the cache
memory has a great effect on the performance.
Additionally, as the experimental result proved,
there is no clear winner among the Java cache
implementations when it comes to performance. A
hybrid of Java cache memories may be used in
order to provide the best performance through the
different data operations. According to the
experimental results, supporting distributed
caching comes with an overhead in elapsed time.
As future work, the cache memory
implementations which are able to service in
distributed mode may be evaluated in order to
reveal the effect of the data distribution and the
distribution strategy on the performance. Also, the
architectural design of each evaluated cache
memory is needed to be inspected in detail in
order to reason the differences between the
experimental results. Finally, the cache memories
can be evaluated with different eviction scenarios
to reveal the performances of cache memories for
specific scenarios.

References

Ahn, J., Yoo, S., Mutlu, O., and Choi, K. (2015). PIM-
Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory
Architecture. Proceedings of the 2015
ACM/IEEE 42nd Annual International
Symposium on Computer Architecture (ISCA
2015), 336–348.
https://doi.org/10.1145/2749469.2750385

Akbari Bengar, D., Ebrahimnejad, A., Motameni, H.,
and Golsorkhtabaramiri, M. (2020). A Page
Replacement Algorithm based on a Fuzzy
Approach to Improve Cache Memory
Performance. Soft Computing, 24, 955–963.
https://doi.org/10.1007/s00500-019-04624-w

Alghazo, J., Akaaboune, A., and Botros, N. (2004). SF-
LRU Cache Replacement Algorithm. Records
of the IEEE International Workshop on Memory
Technology, Design and Testing, 19–24.
https://doi.org/10.1109/MTDT.2004.1327979

Bahn, H., and Noh, S. H. (2003). Characterization of
Web Reference Behavior Revisited: Evidence
for Dichotomized Cache Management.
Information Networking, Networking
Technologies for Enhanced Internet Services
International Conference 2003 (ICONN 2003),
1018–1027. https://doi.org/10.1007/978-3-540-
45235-5_100

Carra, D., and Michiardi, P. (2014). Memory
Partitioning in Memcached: An Experimental
Performance Analysis. 2014 IEEE International

Kabakuş / GUFBED 10(3) (2020) 844-852

851

Conference on Communications (ICC 2014),
1154–1159.
https://doi.org/10.1109/ICC.2014.6883477

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y.,
Wang, Y., and Xie, Y. (2016). PRIME: A Novel
Processing-In-Memory Architecture for Neural
Network Computation in ReRAM-Based Main
Memory. Proceedings of the 2016 43rd
International Symposium on Computer
Architecture (ISCA 2016), 27–39.
https://doi.org/10.1109/ISCA.2016.13

Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Noh, S.
H., Sang Lyul Min, Yookun Cho, and Chong
Sang Kim. (2001). LRFU: A Spectrum of
Policies that Subsumes the Least Recently Used
and Least Frequently Used Policies. IEEE
Transactions on Computers, 50(12), 1352–1361.
https://doi.org/10.1109/TC.2001.970573

Fattahi, S., Yazdani, R., and Vahidipour, S. M. (2019).
Discovery of Society Structure in a Social
Network Using Distributed Cache Memory.
Proceedings of the 2019 5th International
Conference on Web Research (ICWR 2019),
264–269.
https://doi.org/10.1109/ICWR.2019.8765289

Fitzpatrick, B. (2004). Distributed Caching with
Memcached. Linux Journal, 2004(124), 5.

Hennessy, J. L., and Patterson, D. A. (1998). Computer
Organization & Design, The Hardware/Software
Interface. Morgan Kaufmann Publishers.

Hoff, T. (2009). Facebook’s Memcached Multiget
Hole: More Machines != More Capacity. High
Scalability.
http://highscalability.com/blog/2009/10/26/face
books-memcached-multiget-hole-more-
machines-more-capacit.html

Jinhyuk Yoon, Sang Lyul Min, and Yookun Cho.
(2002). Buffer Cache Management: Predicting
the Future from the Past. Proceedings
International Symposium on Parallel
Architectures, Algorithms and Networks 2002
(I-SPAN’02), 105–110.
https://doi.org/10.1109/ISPAN.2002.1004268

Johns, M. (2015). Getting Started with Hazelcast (2nd
ed.). Packt Publishing.

Jose, J., Subramoni, H., Luo, M., Zhang, M., Huang, J.,
Wasi-Ur-Rahman, M., Islam, N. S., Ouyang, X.,
Wang, H., Sur, S., and Panda, D. K. (2011).
Memcached Design on High Performance
RDMA Capable Interconnects. Proceedings of
the 2011 International Conference on Parallel
Processing (ICPP ’11), 743–752.
https://doi.org/10.1109/ICPP.2011.37

Lee, D., Choi, J., Kim, J.-H., Noh, S. H., Min, S. L.,
Cho, Y., and Kim, C. S. (1999). On the
Existence of a Spectrum of Policies that
Subsumes the Least Recently Used (LRU) and
Least Frequently Used (LFU) Policies.
Proceedings of the 1999 ACM SIGMETRICS
International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS
’99), 134–143.
https://doi.org/10.1145/301453.301487

Mark Mulcahy. (2017). Big Data - Interesting
Statistics, Facts & Figures.
https://www.waterfordtechnologies.com/big-
data-interesting-facts/

Martins, A., Penny, W., Weber, M., Palomino, D.,
Mattos, J., Porto, M., Agostini, L., and Zatt, B.
(2017). Cache Memory Energy Efficiency
Exploration for the HEVC Motion Estimation.
Proceedings of the 2017 VII Brazilian
Symposium on Computing Systems
Engineering (SBESC).
https://doi.org/10.1109/SBESC.2017.11

Murugesan, S. (2007). Understanding Web 2.0. IT
Professional, 9(4), 34–41.
https://doi.org/10.1109/MITP.2007.78

Nai, L., Hadidi, R., Sim, J., Kim, H., Kumar, P., and
Kim, H. (2017). GraphPIM: Enabling
Instruction-Level PIM Offloading in Graph
Computing Frameworks. Proceedings of the
2017 International Symposium on High-
Performance Computer Architecture (HPCA
2017), 457–468.
https://doi.org/10.1109/HPCA.2017.54

Panda, P., Patil, G., and Raveendran, B. (2016). A
Survey on Replacement Strategies in Cache
Memory for Embedded Systems. Proceedings of
the 2016 IEEE International Conference on
Distributed Computing, VLSI, Electrical
Circuits and Robotics (DISCOVER 2016), 12–
17.
https://doi.org/10.1109/DISCOVER.2016.78062
18

Petrovič, J. (2008). Using Memcached for Data
Distribution in Industrial Environment. 3rd
International Conference on Systems (ICONS
2008), 368–372.
https://doi.org/10.1109/ICONS.2008.51

Sedlacek, J., and Hurka, T. (2020). VisualVM.
http://visualvm.github.io

Swain, D., Marar, S., Motwani, N., Hiwarkar, V., and
Valakunde, N. D. (2018). CWRP: An Efficient
and Classical Weight Ranking Policy for
Enhancing Cache Performance. Proceedings of
the 2017 4th International Conference on Image
Information Processing (ICIIP 2017), 394–399.
https://doi.org/10.1109/ICIIP.2017.8313747

Kabakuş / GUFBED 10(3) (2020) 844-852

852

URL-1, The Java Community Process(SM) Program -
JSRs: Java Specification Requests - detail JSR#
107. (2017). Java Community Process.
https://www.jcp.org/en/jsr/detail?id=107

URL-2, Ehcache. (2020). http://www.ehcache.org

URL-3, Guava: Google Core Libraries for Java.
(2020). Google.
https://github.com/google/guava

URL-4, Benchmarks. (2020). Cache2k.
https://cache2k.org/benchmarks.html

URL-5, Open Source In-Memory Computing Platform
- Apache Ignite. (2020). Apache.
https://ignite.apache.org

URL-6, May 2009 Stack Exchange Data Dump.
(2009). Stack Exchange.
https://archive.org/details/stackexchange-
ea45080eab61ab465f647e6366f775bf25f69a61

Wang, Z., McKinley, K. S., Rosenberg, A. L., and
Weems, C. C. (2002). Using the Compiler to
Improve Cache Replacement Decisions.
Proceedings of the 2002 International
Conference on Parallel Architectures and
Compilation Techniques (PACT ’02), 199.

Wong, W. A., and Baer, J.-L. (2000). Modified LRU
Policies for Improving Second-Level Cache
Behavior. Proceedings Sixth International
Symposium on High-Performance Computer
Architecture. HPCA-6 (Cat. No.PR00550), 49–
60. https://doi.org/10.1109/HPCA.2000.824338

Yeung, K. H., and Ng, K. W. (1997). An Optimal
Cache Replacement Algorithm for Internet
Systems. Proceedings of 22nd Annual
Conference on Local Computer Networks, 189–
194. https://doi.org/10.1109/LCN.1997.630987

