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Dementias are known as neuropsychiatric disorders. Two-dimensional sliced brain scans 
can be generated via magnetic resonance imaging. Three-dimensional measurements of 
regions can be reached from those scans. Numerical brain features can be extracted 
through operating the Freesurfer tool. Parametrizing those features and demographic 
information in learning algorithms can label an unknown sample as healthy or dementia. 
On the other hand, some of the features in the initial set may be less practical than others. 
In this research, the aim is to decrease the input feature-count, a total of 2939 attributes, 
as a first step to determine the most distinctive dementia characteristics.  To that end, a 
total of 2264 ADNI dataset samples (471 AD, 428 lMCI, 669 eMCI, 696 healthy controls) 
are divided into two sets: 65% training set (1464 samples) and 35% test set (800 
samples). Various filter feature selection algorithms (Information Gain, Gain Ratio, 
Symmetrical Uncertainty, Pearson’s Correlation, Correlation-based Feature Subset 
Selection) are tested over different parameters together with multiple Bayesian-based 
and tree-based classifiers. Test performance accuracy rates up to 76.50% are analyzed 
in detail. Instead of processing the whole feature set, the overall performance tends to 
increase with correctly fewer attributes taken. 

 

DEMANS ÖZELLİKLERİNİN BELİRLENMESİ İÇİN  
FİLTRE ÖZNİTELİK SEÇİM ANALİZİ 

Anahtar Kelimeler Öz 
Alzheimer hastalığı 
Demans 
Filtre öznitelik seçimi 
ADNI 
Freesurfer 

Demans hastalıkları nöropsikiyatrik bozukluklar olarak tanımlanır. Manyetik rezonans 
görüntüleme teknikleri ile iki boyutlu dilimlenmiş beyin taramaları oluşturulabilir. Bu 
taramalar üzerinden bölgelerin üç boyutlu ölçümlerine ulaşılabilir. Sayısal beyin 
özellikleri Freesurfer aracı kullanılarak çıkarılabilmektedir. Bu özelliklerin ve 
demografik verinin öğrenme algoritmalarında parametreler olarak yer almasıyla, 
bilinmeyen bir örnek, sağlıklı veya demans olarak etiketlenebilir. Öte yandan, tüm özellik 
setindeki bazı öznitelikler diğerlerine göre daha az yararlı veya direkt etkisiz olabilir. Bu 
araştırmanın amacı, en belirgin demans özelliklerini belirlemek adına ilk adım olarak 
toplamda 2939 olan girdi özniteliklerinin sayısını azaltmaktır. Bu amaçla, ADNI veri 
setindeki toplam 2264 numune (471 AH, 428 gHBB, 669 eHBB, 696 sağlıklı kontrol), %65 
eğitim seti (1464 numune) ve %35 test seti (800 numune) olmak üzere iki gruba 
ayrılmaktadır. Çeşitli filtre öznitelik seçim algoritmaları (Bilgi Kazanımı, Kazanç Oranı, 
Simetrik Belirsizlik, Pearson Korelasyonu, Korelasyona Dayalı Öznitelik Alt Kümesi 
Seçimi), Bayes tabanlı ve ağaç tabanlı sınıflandırıcılarla birlikte farklı parametreler 
üzerinden test edilmektedir. %76,50'ye varan test performans doğruluğu oranları 
ayrıntılı olarak analiz edilmektedir. Öznitelik setinin tamamını işlemek yerine, doğru 
şekilde daha az öznitelik alındığında genel performans artış eğilimindedir. 
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1. Introduction  

Dementia diseases are defined as neuropsychiatric 
disorders and are among the most significant problems 
of old age. It is stated that as the age gets older, the rate 
of individuals getting dementia diseases is quite high, 
and the number of occurrences of such disorders 
increases day by day (Alam, Kwon, & Initi, 2017). 
Despite being aware of the importance of Alzheimer’s 
disease (AD), the well-known subtype of dementia, 
there is currently no cure for its healing effect. However, 
only prescription medications can help delay the 
progress of the condition (Lama, Gwak, Park, & Lee, 
2017). Mild cognitive impairment (MCI) is another one 
of the subtypes of those disorders and characterized by 
memory impairment in the absence of dementia (Yao, 
Calhoun, Fu, Du, & Sui, 2018). MCI is also known as age-
related cognitive decline and the transition phase to AD. 
Early (eMCI)/late (lMCI) may be defined as the clinically 
detectable early stages of progression to dementia or AD 
(Moradi et al., 2015).  

Magnetic resonance imaging (MRI) is one of the 
visualization techniques that give the advantage to 
understand body anatomy. Two-dimensional sliced 
dicom-type (Digital Imaging and Communications in 
Medicine) scans can be generated via MRI devices. 
During medical examinations, clinical measurements 
such as cortical volume, thickness, and surface area are 
observed, and clinical decision about likely to have one 
of the dementia diseases is tried to be diagnosed. 
Technological refinements, either hardware or 
software, are always needed to facilitate clinical 
diagnosis procedures. 

Machine learning is one of the most critical 
developments in the last decade in terms of computing 
workload within the scope of neuroimaging, as in other 
disciplines. It can offer neuroscientists, radiologists, and 

clinicians with tools for automatic and early diagnosis of 
brain diseases (Dimitriadis, Liparas, & Initi, 2018). 
Multivariate pattern analysis provides powerful options 
for creating useful image-based prediction models for 
classification. In theory, when the features are selected 
correctly, they may be benefited better than individual 
radiological evaluation to estimate the clinical score 
(Doan et al., 2017). By analyzing two-dimensional sliced 
brain scans, three-dimensional region measurements 
can be expressed, and desired features can be extracted. 

In machine learning studies, some of the features in the 
initial set may be more valuable than others. On the 
contrary, some features may have no positive effect on 
the designed application. Accordingly, studies 
examining the sub-feature sets through blind search 
become essential, to facilitate the clinical diagnosis of 
doctors, and to make the health status prediction of an 
unlabeled sample more successful. Thus, such 
researches in this field may be described as much more 
helpful in order to give perspective to other studies to 
be conducted. Furthermore, feature analysis or selection 
algorithms gain great importance, especially when the 
features are desired to analyze within themselves. In 
some researches on this subject, it is observed that the 
brain characteristics are evaluated by weight 
coefficients via operating methods such as analysis and 
comparison (Dimitriadis, Liparas, Tsolaki, & Initia, 
2018). However, when the beneficial attributes listed in 
the neuroimaging literature are examined, approaches 
using feature selection algorithms are not frequently 
encountered. 

Feature selection approaches are needed in many aims, 
such as reducing the size of the input matrix, finding 
valuable subsets, or excluding ineffective ones. The 
wrapper approaches, in which classification algorithms 
are integrated with, appear in the literature. The filter 
feature selection approaches, such as regression, etc., 

Table 1 

Summary of the Literature (The Most Similar Studies) 
Publication Dataset Feat. Ext. Initial Feature Set Feat. Selection Classifier Performance 

Yao et al., 
2018 
DOI 

ADNI - 400 samples 

(60 HC, 60 eMCI, 

60 lMCI, 60 AD, 

40×4 unlabeled) 

FS v5.3.0 
426 morphometric, 

3 demographic 

Wrapper 

method 

(own proposal) 

Various 

(SVM, NB, RF, 
…) 

54.38% 

(4-class 

Kaggle competition) 

Sorensen  

et al., 2017 

DOI 

ADNI - 504 samples 
(169 HC, 234 MCI, 101 AD)  

and AIBL (…) 
FS v5.1.0 

cortical thickness, volumetric 
measures, hippocampal shape, 

hippocampal tissue 
SFS LDA 

63% 
(Multi-class 

classification) 

Dimitriadis  

et al., 2018 

DOI 

ADNI - 400 samples 
(60 HC, 60 eMCI,  
60 lMCI, 60 AD,  

40×4 unlabeled) 

FS v5.3.0 

thickness, surface area, cortical 
curvature, grey matter density, 
cortical and subcortical volume, 

hippocampus shape and area 
volumes, MMSE, age 

RF RF 
61.9% 

(4-class 
Kaggle competition) 

Ramirez  

et al., 2018 

DOI 

ADNI - 400 samples  
(60 HC, 60 eMCI,  
60 lMCI, 60 AD,  

40×4 unlabeled) 

FS v5.3.0 
429 morphometric and 

demographic 

ANOVA feature 
selection, PLS 

feature 
reduction 

Various  
(SVM, RF, …) 

56.25% 
(4-class  

Kaggle competition) 

 

https://www.doi.org/10.1016/j.jneumeth.2018.03.008
https://www.doi.org/10.1016/j.nicl.2016.11.025
https://www.doi.org/10.1016/j.jneumeth.2017.12.010
https://www.doi.org/10.1016/j.jneumeth.2017.12.005
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which are independent of classifiers and run quickly, are 
also popular. 

The most similar studies in neuroimaging literature by 
(Yao et al., 2018), (Sorensen et al., 2017), (Dimitriadis, 
Liparas, Tsolaki, et al., 2018), (Ramirez et al., 2018) are 
summarized in Table 1.  

In this experimental research, it is aimed to decrease the 
feature-count of the dataset as a first step to determine 
the most valuable brain characteristics that distinguish 
dementia diseases from each other. Classification tests 
are carried out to determine more practical algorithms, 
also more correct parameters, where the number of 
features is reduced to reasonable levels. The 
preliminary results obtained in this article are intended 
to guide future studies. 

The article is organized as follows. In the first section, 
the methodology of the aging problem and the 
neuroimaging field is introduced. Also, the literature is 
reviewed. The dataset is pointed out in Section 2. The 
virtual brain modeling, feature extraction, feature set 
preprocessing, and classification processes are 
theoretically explained in Section 3. In Section 4, 
experimental tests and the findings are reported. In the 
last section, the conclusion is drawn, and future work is 
planned. 

 
2. The Dataset  

Data used in the preparation of this article were 
obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (adni.loni.usc.edu, 
ADNI1Complete1Yr1.5T). The ADNI was launched in 
2003 as a public-private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The primary goal 
of ADNI has been to test whether serial MRI, positron 
emission tomography (PET), other biological markers, 
and clinical and neuropsychological assessment can be 
combined to measure the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease (AD). 
For up-to-date information, see http://www.adni-

info.org. The dataset is described as free-access. Two-
dimensional and sliced brain scans of anonymous 
patients are available for download to researchers 
without any charge. The use of the dataset does not pose 
any ethical problems (http://adni.loni.usc.edu/data-
samples/access-data/). 

Since the number of the individuals in the dataset is 
large enough, the samples are automatically separated 
into two for once, approximately 65% training and 35% 
test sets for each class. Next, all standalone tests are 
performed utilizing the same split data. In Table 2, 
information is given about the distribution of the class 
labels and genders in the dataset. 

 

3. Methodology  

In this study, research and publication ethics principles 
were followed. The methods applied in the substeps of 
this research are detailed in the following subsections. 

 

3.1. Feature Extraction  

The feature extraction step of this work is performed by 
executing the Freesurfer (FS) software tool for each 
sample of the dataset. FS (Fischl, 2012) is known as a 
software analysis tool widely preferred in medical 
researches, and it is detailly functional for virtual three-
dimensional modeling of brain anatomy. It is briefly a 
set of algorithms that contain some image processing, 
numerical, etc. algorithms and facilitate the structural 
analysis of the human brain. The tool is developed at the 
Athinoula A. Martinos Biomedical Imaging Center for 
analysis of structural and functional neuroimaging data 
(Delgado et al., 2014; Fischl, 2012). It can be licensed for 
free by downloading the appropriate version from 
http://surfer.nmr.mgh.harvard.edu/fswiki (Delgado et 
al., 2014).  

FS, for the first substep of the technical procedure, 
structurally combines the sliced medical image files of 
dicom or nii types, handling the header information. 
Then, virtual brains are generated in three-dimensions 
by managing image processing techniques numerically 
and iteratively (Reuter, Schmansky, Rosas, & Fischl, 
2012). Nevertheless, the needed duration required for 
just one virtual modeling process to complete can take 
much time. 

The measurements of brain regions on sliced scans were 
obtained as raw statistical files with parallel design 
study and reported in February 2018. A parallel 
approach to virtually 3D model all the samples in the 
dataset within a reasonable time was proposed. In other 
words, an algorithm was developed that could perform 
the feature extraction step for different individuals 
simultaneously. ADNI dataset containing 2292 samples 
were processed with carrying out the Message Passing 
Interface (MPI) library. With the launch of a 160-core 

Table 2 

Distribution of the Class Labels and Genders 
 Train Test Total 

 ♂ ♀ ♂ ♀ ♂ ♀ 

AD 
308 163 471 

157 151 95 68 252 219 

lMCI 
280 148 428 

198 82 94 54 292 136 

eMCI 
434 235 669 

276 158 133 102 409 260 

HC 
442 254 696 

237 205 124 130 361 335 

Total 
1464 800 2264 

868 596 446 354 1314 950 

 

http://adni.loni.usc.edu/
http://www.adni-info.org/
http://www.adni-info.org/
http://adni.loni.usc.edu/data-samples/access-data/
http://adni.loni.usc.edu/data-samples/access-data/
http://surfer.nmr.mgh.harvard.edu/fswiki
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computer cluster in total, the entire workload could take 
about two consecutive years in theory, while the 
proposed algorithm was completed in just seven days. 
With only a few exceptions, all the morphometric 
features of the samples were successfully extracted 
(Okyay & Adar, 2018). 

 

3.2. Initial Feature Set 

Most of the studies, such as exemplified in the literature 
part, begin their works by choosing only certain features 
in the data preprocessing step (see Table 1). Besides, a 
large part of such studies evaluates the performance 
only with the accuracy metric. Within the scope of the 
research described in this article and its continuation, in 
the big picture, the most valuable attributes that 
distinguish diseases are tried to be determined. 
Therefore, 2939 different values obtained from a total of 
2292 samples are analyzed through blind search logic. 
In detail, these features are all morphometric features 
extracted from the FS software tool and demographic 
information, including gender, age, and different test 
results such as CDR (Clinical Dementia Rating), MMSE 
(Mini-Mental State Examination), FAQ (Functional 
Assessment Questionnaire). 

 

3.3. Preprocessing 

The preprocessing steps are carried out after a few 
steps. First of all, thirty-one inefficacious attributes of 
various types such as date, naming, and identifiers are 
manually eliminated from the 2292×2939 sized dataset. 
Afterward, the values of the attributes are examined, 
and more than two hundred characteristics found to be 
useless are automatically removed. Moreover, it is 
observed that twenty-eight samples do not contain 
enough information. As a result of all these elimination 
processes, a feature matrix of 2264×2691 elements is 
obtained. Since filtering approaches are performed to 
evaluate how attribute values distributed within the 
samples, no normalization technique is applied to the 
feature matrix. 

 

3.4. Filter Feature Selection 

In the filter feature selection approach, the data is 
analyzed independently of learning algorithms. In this 
study, various filtering methods are evaluated to reduce 
the data size, the feature vector length, at an appropriate 
threshold. The basis of some of the algorithms is based 
on the entropy calculation, which expresses the 
irregularity of the system and uses the possibilities in 
the relation of between the features and the class labels 
(1).  

 

𝐻(𝑥) = − ∑ (𝑝(𝑋𝑖) × log2 𝑝(𝑋𝑖))
𝑁

𝑖=1
  (1) 

 

The algorithms utilized in this study are detailed in the 
following subsections. 

 

3.4.1. Information Gain 

Calculates the weight of an attribute by measuring the 
gain of information according to its relationship with 
class values (2). 

 
𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝑐𝑙𝑠, 𝑓𝑒𝑎𝑡) = 𝐻(𝑐𝑙𝑠) − 𝐻(𝑐𝑙𝑠|𝑓𝑒𝑎𝑡) (2) 

 

3.4.2. Gain Ratio 

Calculates the weight of an attribute by measuring the 
rate of earnings based on class values (3). 

 
𝐺𝑅𝑎𝑡𝑖𝑜(𝑐𝑙𝑠, 𝑓𝑒𝑎𝑡) = 

(𝐻(𝑐𝑙𝑠) − 𝐻(𝑐𝑙𝑠|𝑓𝑒𝑎𝑡))/𝐻(𝑓𝑒𝑎𝑡) (3) 

 

3.4.3. Symmetrical Uncertainty 

Calculates the weight of an attribute by measuring the 
symmetrical uncertainty concerning the class values (4). 

 
𝑆𝑦𝑚𝑈(𝑐𝑙𝑠, 𝑓𝑒𝑎𝑡) = 

2 ×
(𝐻(𝑐𝑙𝑠) − 𝐻(𝑐𝑙𝑠|𝑓𝑒𝑎𝑡))

𝐻(𝑐𝑙𝑠)
+  𝐻(𝑓𝑒𝑎𝑡) 

(4) 

 

3.4.4. Pearson’s Correlation 

Calculates the weight of an attribute by measuring the 
Pearson’s correlation between it and the class values 
(5). The result up to +1 means a positive correlation, 
while down to -1 means a negative relationship. 

 
𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝐶𝑜𝑟(𝑐𝑙𝑠, 𝑓𝑒𝑎𝑡) = 

∑ ((𝑐𝑙𝑠𝑖 − 𝑐𝑙𝑠) ×  (𝑓𝑒𝑎𝑡𝑖 − 𝑓𝑒𝑎𝑡))𝑖

√∑ (𝑐𝑙𝑠𝑖 −  𝑐𝑙𝑠)
2

𝑖  × √∑ (𝑓𝑒𝑎𝑡𝑖 − 𝑓𝑒𝑎𝑡)
2

𝑖

 (5) 

 

3.4.5. Correlation-based Feature Subset Selection 

Calculates the worthiness of a feature subset through 
the predictive ability of each attribute along with the 
degree of redundancy between them. Unlike the other 
filter feature selection algorithms previously mentioned 
on subsections, subsets of highly correlated attributes 
with the class while having low intercorrelation are 
directly computed (Hall & Smith, 1998). 
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The highest scores obtained as the intermediate results 
of the filter feature selection algorithms are listed in 
Table 3. Since the CFS algorithm directly produces an 
optimal attribute subset result, all of its features are 
listed. Top10 scores are selected for other methods. 

The cut-off points at different thresholds of the filtered 
feature set and the elimination parameters are analyzed 
in the next section with the learning algorithms detailed 
in the following subsection. 

 
Table 3 

Top Scores of Filter Feature Selection Algorithms 

Information Gain  
Top 10 

 Gain Ratio  

Top 10 

Feature Unit Ratio  Feature Unit Ratio 

CDR test scr. 0.929  CDR test scr. 0.654 

MMSE test scr. 0.522  left parsoperc. volume 0.242 

FAQ test scr. 0.245  left parsoperc. nm voxl 0.242 

left hippocam. volume 0.213  rgt occipitl ant nm vrtc 0.242 

left entorhinal thk avg 0.208  4. ventricle nrm rng 0.235 

left inferiorte. thk avg 0.205  left cuneus thk std 0.233 

left hippocam. nm voxl 0.203  left cingl mar. mn crv 0.227 

rght middlete. thk avg 0.200  left front inf srf area 0.219 

left entorhinal thk avg 0.194  left temp. tran. srf area 0.208 

rght hippoca. volume 0.192  right chor. plx. nm vxl 0.200 

 
Symmetrical Uncertainty 

Top 10 

 Pearson’s Correlation 

Top 10 

Feature Unit Ratio  Feature Unit Ratio 

CDR test scr. 0.548  CDR test scr. 0.407 

MMSE test scr. 0.224  MMSE test scr. 0.320 

FAQ test scr. 0.119  left inferiorte. thk avg 0.262 

left hippocam. volume 0.108  FAQ test scr. 0.259 

left temp. inf. thk avg 0.108  left hippocam. volume 0.254 

left inferiorte. thk avg 0.107  left temp. inf. thk avg 0.249 

left entorhinal thk avg 0.105  left hippocam. nm voxl 0.249 

left hippocam. nm voxl 0.104  rght entorhinl thk avg 0.247 

rght entorhinl thk avg 0.102  left entorhinal thk avg 0.247 

rght oc-temp. thk avg 0.101  left middlete. thk avg 0.246 

 
Correlation-based Feature Subset Selection 

All Features 

Feature Unit Feature Unit Feature Unit 

CDR test scr. left temp. tra. srf area left entorhinl thk std 

subject age year left pole occi. thk avg left middlete. w-mean 

posterior norm avg left oc temp. thk avg rght inf-oper. gray vol 

optic chiasm norm min left caudalan. gaus curv rght occipital mean crv 

rght pallidum norm std left parsoper. gray vol rght subcallo. mean crv 

rght amygdala nm voxl left middlete. mean crv rght lat-fis-a. mean crv 

left precentrl gaus curv left cuneus srf area rght inf-angu. nm vert 

left interm gray vol left fusiform srf area rght temporal thk avg 

left subparietl mean crv left parahipp. thk avg   

 

3.5. Classification 

Learning algorithms based on different principles are 
adopted to measure the success rate of variable reduced 
feature counts created with varying algorithms of 
filtering. In order to analyze the probability of being 
included in classes, performances are comparably 
tested with Bayesian-based Naïve Bayes and BayesNet 
classifiers. Furthermore, to extract rule-based 
relationships between attributes, decision tree-based 
Random Tree and J48 Tree learning algorithms are 
experimented. 

 

3.5.1. NaïveBayes 

This algorithm is also recognizable as a conditional 
classifier. Given in the Bayes rule, it is assumed that pure 
independence assumption and all features are 
independent of each other. In the classification stage, 
conditional probabilities are computed for all possible 
class labels in which the test sample can be put in. The 
class with the maximum likelihood determines the tag 
on which the individual sample will be involved (Rish, 
2001). 

 

3.5.2. BayesNet 

This algorithm is known as statistical networks, and the 
edges that switch between different nodes are selected 
statistically. The method practices to procure a 
connectional graph that focuses on meeting all the 
criteria, including conditional dependencies in the data 
(Murphy, 2001).  

 

3.5.3. Random Tree 

The algorithm has no pruning and tries to operate class 
probabilities that can be contained in the test feature 
vector. During computations, it processes a pre-defined 
number of randomly selected features on nodes (Aldous, 
1991). 

 

3.5.4. J48 Tree 

This algorithm is known as a simple C4.5 decision tree 
(Sharma & Sahni, 2011).  The method ensures the 

functioning of the decision mechanism by constructing 

a binary tree (Patil & Sherekar). It is performed as a 
univariate decision tree in which a feature is assigned to 
each inner node (Bhargava, Sharma, Bhargava, & 
Mathuria, 2013). 
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4. Tests  

Information acquisition and correlation methods are 
applied within the scope of the goal of reducing the 
number of features at a specific ratio or threshold. 
Numerical evaluation is completed first for each 
attribute, and then those computations are ranked 
according to the weight scores. When sequential 
weights for all algorithms are examined analytically, 
apart from all features (T0), three critical weight values 
are determined. These are 0 (T1), 0.01 (T2), and 0.05 
(T3) weight score thresholds in order. Additionally, 
Top500 features (T4), Top250 features (T5), and Top100 
features (T6) are defined as experimental testing 
criteria.  

The classification results achieved after employing 
Information Gain, Gain Ratio, Symmetrical Uncertainty, 
Pearson’s Correlation, and Correlation-based Feature 
Subset Selection (CFS) filtering approaches for different 
parameters processing the same training and test 
samples are listed respectively in Table 4-8. The train 
and test performances for each learning algorithm, 
according to the corresponding cut-off or break-point 
(bp), are given in detail. 

When the findings are examined, depending on the 
decrease in the length of the features, the training 
performance results of different methods are not stable 
enough and are unconditionally fluctuating. While the 
training performance is generally on the rise, it may 
abruptly be contrary. Or vice versa. However, it should 
be strictly noted that instead of processing all the 
features in the dataset, the prediction accuracy in the 
test set tends to increase with fewer attributes taken as 
input, especially from the threshold of the Top250 

features. 

Comparing the learning algorithms with each other 
shows that rule-based learning algorithms perform 
considerably better than Bayesian-based ones. 
Furthermore, the J48 Tree algorithm slightly comes to 
the forefront.  

For the filtering algorithms, the Correlation-based 
Feature Subset Selection algorithm works well with 
Bayesian-based classifiers compared to the others. The 
results of the Pearson’s Correlation algorithm are not 
impressive. The Gain Ratio and Symmetrical 
Uncertainty filtering approaches ensure more correct 
results in general. 

The experimental test performance results are already 
comparable to previous studies. When examined in 
depth after a feature-count reduction method such as 
the Top250 focus threshold, follow-up researches 
promise more reliable correctness in the name of the 
neuroimaging literature. 

 

Table 4 

Classification Accuracy after Information Gain 

bp 

Feat 

Cnt 

NaïveBayes BayesNet 

Random 

Tree 

J48 

Tree 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

T0 2691 53.21 46.00 54.17 45.38 100 52.63 97.54 72.88 

T1 1575 52.80 45.00 54.03 45.50 100 57.25 97.61 72.63 

T2 1473 51.91 44.38 53.96 45.63 99.86 50.13 96.99 73.25 

T4 500 51.09 47.75 53.89 46.88 100 56.25 97.40 71.50 

T5 250 51.30 49.00 53.21 48.75 100 56.50 96.79 74.50 

T3 222 51.16 49.25 53.21 48.63 100 61.13 96.65 75.63 

T6 100 53.07 50.88 54.10 50.25 99.73 59.38 95.90 75.50 

  

 

Table 5 

Classification Accuracy after Gain Ratio 

bp 

Feat 

Cnt 

NaïveBayes BayesNet 

Random 

Tree 

J48 

Tree 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

T0 2691 53.21 46.00 54.17 45.38 100 52.63 97.54 72.88 

T1 1575 52.80 45.00 54.03 45.50 100 58.75 97.61 73.00 

T2 1568 52.73 45.00 54.03 45.50 100 55.38 97.75 72.00 

T4 500 53.07 48.63 55.19 49.00 100 54.75 97.40 72.88 

T3 356 53.89 50.37 54.20 50.13 99.86 57.38 96.93 72.50 

T5 250 56.08 53.38 55.60 51.88 99.93 60.50 96.99 75.88 

T6 100 62.16 59.25 63.80 62.50 100 69.38 96.31 74.13 

 

 

Table 6 

Classification Accuracy after Symmetrical Uncertainty 

bp 

Feat 

Cnt 

NaïveBayes BayesNet 

Random 

Tree 

J48 

Tree 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

T0 2691 53.21 46.00 54.17 45.38 100 52.63 97.54 72.88 

T1 1575 52.80 45.00 54.03 45.50 100 53.38 97.61 72.63 

T2 1190 51.23 45.00 54.37 45.75 100 55.25 97.75 71.13 

T4 500 51.71 48.00 53.76 47.25 100 59.38 97.06 71.63 

T5 250 50.82 49.38 53.42 48.63 100 59.88 96.72 74.38 

T3 109 52.66 51.50 53.96 50.38 100 61.25 96.11 76.50 

T6 100 53.76 52.00 54.92 50.63 100 71.38 95.70 74.25 

 

 

Table 7 

Classification Accuracy after Pearson’s Correlation 

bp 

Feat 

Cnt 

NaïveBayes BayesNet 

Random 

Tree 

J48 

Tree 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

T0 2691 53.21 46.00 54.17 45.38 100 52.63 97.54 72.88 

T1 2691 53.21 46.00 54.17 45.38 100 52.63 97.54 72.88 

T2 2668 53.21 46.13 54.17 45.38 100 50.00 97.47 73.38 

T3 1414 52.05 46.13 54.17 45.00 100 51.50 97.54 73.13 

T4 500 50.68 47.63 51.98 46.25 100 53.63 96.99 71.25 

T5 250 50.41 49.13 53.01 47.88 100 57.00 96.79 73.50 

T6 100 52.32 50.75 53.42 49.50 100 57.50 94.88 74.50 
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Table 8 

Classification Accuracy after CFS 

bp 

Feat 

Cnt 

NaïveBayes BayesNet 

Random 

Tree 

J48 

Tree 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

Train 

% 

Test 

% 

T0 2691 53.21 46.00 54.17 45.38 100 52.63 97.54 72.88 

- 26 65.16 60.88 74.25 69.50 100 66.88 96.17 75.50 

 

5. Conclusion and Future Plans  

Although there are many subtypes of dementia diseases, 
called neuropsychiatric disorders, the most familiar one 
is AD. Unfortunately, there is no cure method for its 
healing effect. In this direction, medical comments or 
computer-aided studies play a significant role in the 
analysis of the diseases. In neuroimaging science, it is 
substantial to establish relationships/rules between 
attributes and classes.  

In this study, which is the first stage of detecting the 
most valuable features that distinguish dementia 
diseases, filtering feature selection approaches are 
utilized with various types of learning algorithms. All 
the demographic and morphometric characteristics that 
are extracted via Freesurfer for all individuals in the 
ADNI1Complete1Yr1.5T dataset are evaluated through 
the blind search logic. The dataset is preprocessed first, 
and filtered top-weighted features are listed 
comparably. After eliminating the features at various 
thresholds with low scores with different filtering 
feature selection algorithms, it is observed that the 
reduced feature sets tend to give more successful 
results. As a result, rather than handling the entire 
feature set, the overall evaluation tends to be more 
accurate when lesser attributes are correctly taken. 

Many continuation plans exist in future work. Much 
more performance can be obtained in line with further 
detailed analysis to be made through the features 
specified with the threshold values reported in this 
article. Moreover, the statistical data among the 
morphometric features will be eliminated, and only 
physical measurements of the brain parts in the dataset 
will be analyzed. Besides, the determination of the 
relationship between measurement data and statistical 
data by repeating the tests on the relevant set can be 
specified as an essential research topic. In order to 
examine the dementia characteristics in more detail, 
studies with wrapper feature selection methods 
through the results obtained by filtering approaches are 
also in mind. With the realization of the planned studies, 
it is aimed to identify and list the most beneficial 
features that distinguish dementia diseases best. It is 
inevitable to produce more accurate performance 
prediction models with symbolic literature 
contributions to be made after determining the most 
valuable features.  
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