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Nadu, INDIA

Abstract. This paper investigates delay-dependent robust stability problem
of fuzzy stochastic Hopfield neural networks with random time-varying de-
lays. Moreover, in this paper, the stochastic delay is assumed to satisfy a
certain probability distribution. By introducing a stochastic variable with
Bernoulli distribution, the neural networks with random time delays is trans-
formed into one with deterministic delays and stochastic parameters. Based
on a Lyapunov-Krasovskii functional and stochastic analysis approach, delay-
probability-distribution-dependent stability criteria have been derived in terms
of linear matrix inequalities (LMIs), which can be checked easily by the LMI
control toolbox. Finally two numerical examples are given to illustrate the
effectiveness of the theoretical results.

1. Introduction

In recent decades, Neural Networks (NNs) especially recurrent neural networks
(RNNs) and Hopfield neural networks (HNNs) have been successfully applied in
various fields such as pattern recognition, optimization problems, associative mem-
ories, signal processing, etc., see [1] - [18]. One of the best important works is to
study the stability of the equilibrium point of NNs. Since time delays as a source
of instability and poor performance always appear in many neural networks owing
to the finite speed of information processing, the stability analysis for the delayed
neural network has received considerable attention [3—7].
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On the other hand, the stability analysis of stochastic systems with time de-
lays has been investigated by many researchers since stochastic modelling plays an
important role in many fields of science and engineering applications [8—16]. In
a real system, time delay often exists in a random form, that is, some values of
the time delay are very large. However the probability of the delay taking such
large values is very small and it may lead to a more conservative result, only if
the information of variation range of the time delay is considered. In addition, its
probabilistic characteristic such as Bernoulli distribution and the Poisson distrib-
ution can also be obtained by statistical methods. Therefore, it is necessary and
realizable to investigate the probability-distribution delay and therefore in recent
years, the stability problems of NNs with probability-distribution delay have been
widely investigated [17,18].
It is well known that fuzzy logic theory has shown to be an appealing and effi cient

approach to dealing with the analysis and synthesis problems for complex nonlinear
systems. The well-known Takagi-Sugeno (T-S) fuzzy model [19], is a popular and
convenient tool to transform a complex nonlinear system to a set of linear sub-
models via some fuzzy models by defining a linear input/output relationship as its
consequence of individual plant rule. Recently, a lot of research works have been
produced on T-S fuzzy model in the existing available literature [20—22].
Based on the above discussion, we consider the problem of delay-dependent ro-

bust stability analysis for uncertain fuzzy stochastic Hopfield neural networks with
time-varying delays. Some suffi cient condition for delay-probability-distribution-
dependent stability criteria of the addressed system have been derived in terms of
linear matrix inequalities by constructing proper Lyapunov-Krasovskii functional
and stochastic theory. Finally, numerical examples are provided to show the effec-
tiveness of the theoretical results.
Notations: Throughout this paper, Rn and Rn×n denote, respectively, the n-

dimensional Euclidean space and the set of all n×n real matrices. The superscript
T denotes the transposition and the notation X ≥ Y (respectively, X > Y ), where
X and Y are symmetric matrices, means that X − Y is positive semi-definite (re-
spectively, positive definite). In is the n× n identity matrix. ‖ · ‖ is the Euclidean
norm in Rn. Moreover, let

(
Ω,F , {Ft}t≥0, P

)
be a complete probability space with

a filtration {Ft}t≥0 satisfying the usual conditions (i.e. the filtration contains all
P -null sets and is right continuous). Denoted by LpF0

(
[−τ̄ , 0];Rn

)
the family of all

F0-measurable C
(
[−τ̄ , 0];Rn

)
-valued random variables ξ = {ξ(θ) : −τ̄ ≤ θ ≤ 0}

such that sup−τ̄≤θ≤0E|ξ(θ)|p <∞, where E{.} stands for the mathematical expec-
tation operator with respect to the given probability measure P .

2. Problem description and preliminaries

Consider the following uncertain stochastic HNNs with time—varying delays

dx(t) =
[
−A(t)x(t) +B(t)f(x(t)) +W (t)f(x(t− τ(t)))

]
dt
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+
[
H0(t)x(t) +H1(t)x(t− τ(t))

]
dω(t),

x(t) = φ(t), ∀t ∈ [−τ̄ , 0], (1)

where x(t) ∈ Rn is the neural state vector, f(x(t)) =
[
f1(x1(t)), . . . , fn(xn(t))

]T
∈

Rn is the neuron activation function with initial condition f(0) = 0. The time-
varying delay τ(t) satisfies

0 ≤ τ(t) ≤ τ̄ , τ̇(t) ≤ µ, (2)

where τ̄ and µ are constants. In (1), A(t) = A + ∆A(t), B(t) = B + ∆B(t),
W (t) = W + ∆W (t), H0(t) = H0 + ∆H0(t) and H1(t) = H1 + ∆H1(t). Further
A = diag{a1, a2, . . . , an} has positive entries ai > 0, B, W , H0, H1 are connection
weight matrices with appropriate dimensions and ∆A(t), ∆B(t), ∆W (t), ∆H0(t)
and ∆H1(t) denote the time-varying and norm-bounded uncertainties.
Assumption 2.1 The neuron activation function fi(xi) satisfies

0 ≤ fi(xi)− fi(yi)
xi − yi

≤ li ∀xi, yi ∈ R, xi 6= yi, i = 1, ..., n (3)

Assumptions 2.2 Considering the information of probability distribution of the
time delay τ(t), two sets and functions are defined by

Ω1 = {t : τ(t) ∈ [0, τ0)} and Ω2 = {t : τ(t) ∈ [τ0, τ̄ ]}

τ1(t) =

{
τ(t), for t ∈ Ω1

τ̄1, for t ∈ Ω2,
and τ2(t) =

{
τ(t), for t ∈ Ω2

τ̄2, for t ∈ Ω1,
(4)

τ̇1(t) ≤ µ1 < 1, τ̇2(t) ≤ µ2 < 1, (5)

where τ0 ∈ [0, τ̄ ], τ̄1 ∈ [0, τ0) and τ̄2 ∈ [τ0, τ̄ ]. It is easy to know t ∈ Ω1 means
the event τ(t) ∈ [0, τ0) occurs and t ∈ Ω2 means the event τ(t) ∈ [τ0, τ̄ ] occurs.
Therefore, a stochastic variable α(t) can be defined as

α(t) =

{
1, for t ∈ Ω1

0, for t ∈ Ω2.
(6)

Assumption 2.3 α(t) is a Bernoulli distributed sequence with

Prob{α(t) = 1} = E{α(t)} = α0, Prob{α(t) = 0} = 1− E{α(t)} = 1− α0,

where 0 ≤ α0 ≤ 1 is a constant and E{α(t)} is the expectation of α(t).

Remark 2.4 From Assumption 2.3, it is easy to know that

E{α(t)− α0} = 0, E{(α(t)− α0)2} = α0(1− α0).

By Assumption 2.2 and 2.3, the system (1) can be rewritten as

dx(t) =
[
−A(t)x(t) +B(t)f(x(t)) + α(t)W (t)f(x(t− τ1(t)))
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+(1− α(t))W (t)f(x(t− τ2(t)))
]
dt

+
[
H0(t)x(t) + α(t)H1(t)x(t− τ1(t)) + (1− α(t))H1(t)x(t− τ2(t))

]
dω(t), (7)

x(t) = ξ(t), t ∈ [−τ̄ , 0],

which is equivalent to

dx(t) =
[
−A(t)x(t) +B(t)f(x(t)) + α0W (t)f(x(t− τ1(t)))

+(1− α0)W (t)f(x(t− τ2(t)))

+(α(t)− α0)
(
W (t)f(x(t− τ1(t)))−W (t)f(x(t− τ2(t)))

)]
dt

+
[
H0(t)x(t) + α0H1(t)x(t− τ1(t)) + (1− α0)H1(t)x(t− τ2(t))

+(α(t)− α0)
(
H1(t)x(t− τ1(t))−H1(t)x(t− τ2(t))

)]
dω(t), (8)

x(t) = ξ(t), t ∈ [−τ̄ , 0].

Remark 2.5 In this paper, the probability distribution of the delay taking values
in some interval is assumed to be known in advance. Further, a new model of the
SNNs (8) has been derived, which can be seen as an extension of the common SNNs
(1). Specially, in the case of α(t) ≡ 1, system (8) becomes system (1). Moreover,
when the probability of time delay taking values is known a priori, the possible
values that the delay takes may be larger than those previously obtained results
based on the traditional methods, which will be illustrated via example later.
In this paper, we consider the following neural network with parameter uncertainties
and stochastic perturbations which is represented by a T-S fuzzy model. The kth
rule of the T-S fuzzy model is of the following form:
Plant Rule k:
IF θ1(t) is ηk1 and . . . and θp(t) is η

k
p

THEN

dx(t) =
[
−Ak(t)x(t) +Bk(t)f(x(t)) + α0Wk(t)f(x(t− τ1(t)))

+(1− α0)Wk(t)f(x(t− τ2(t)))

+(α(t)− α0)
(
Wk(t)f(x(t− τ1(t)))−Wk(t)f(x(t− τ2(t)))

)]
dt

+
[
H0k(t)x(t) + α0H1k(t)x(t− τ1(t)) + (1− α0)H1k(t)x(t− τ2(t))

+(α(t)− α0)
(
H1k(t)x(t− τ1(t))−H1k(t)x(t− τ2(t))

)]
dω(t), (9)

x(t) = ξ(t), t ∈ [−τ̄ , 0], k = 1, 2, ..., r,
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where ηki (i = 1, 2, ..., p) is the fuzzy set, θ(t) =
[
θ1(t), θ2(t), ..., θp(t)

]T
is the

premise variable vector and r is the number of IF-THEN rules. ω(t) is a one-

dimensional Brownian motion defined on
(

Ω,Ft, {Ft}t≥0, P
)
. ξ ∈ L2

F0([−τ̄ , 0];Rn)

is the initial value of (9). Ak, Bk, Wk, H0k and H1k are constant known real
matrices. ∆Ak(t), ∆Bk(t), ∆Wk(t), ∆H0k(t) and ∆H1k(t) denote the time-varying
parameter uncertainties and we make the following assumption.
The parameter uncertainties ∆Ak(t), ∆Bk(t), ∆Wk(t), ∆H0k(t) and ∆H1k(t) are
of the form: [

∆Ak(t) ∆Bk(t) ∆Wk(t) ∆H0k(t) ∆H1k(t)
]

= GF (t)
[
EAk EBk EWk EH0

k EH1

k

]
, (10)

where G, EAk , E
B
k , E

W
k , E

H0

k and EH1

k are known real constant matrices with ap-
propriate dimensions, and F (t) is the time-varying uncertain matrix which satisfies

FT (t)F (t) ≤ I. (11)

The defuzzified output of the T-S fuzzy system (9) is represented as follows:

dx(t) =

r∑
k=1

µk(θ(t))
{[
−Ak(t)x(t) +Bk(t)f(x(t)) + α0Wk(t)f(x(t− τ1(t)))

+(1− α0)Wk(t)f(x(t− τ2(t)))

+(α(t)− α0)
(
Wk(t)f(x(t− τ1(t)))−Wk(t)f(x(t− τ2(t)))

)]
dt

+
[
H0k(t)x(t) + α0H1k(t)x(t− τ1(t)) + (1− α0)H1k(t)x(t− τ2(t))

+(α(t)− α0)
(
H1k(t)x(t− τ1(t))−H1k(t)x(t− τ2(t))

)]
dω(t)

}
, (12)

where

µk(θ(t)) =
υk(θ(t))
r∑
j=1

υj(θ(t))
, υk(θ(t)) =

p∏
j=1

ηkj (θj(t))

in which ηkj (θj(t)) is the grade of membership of θj(t) in ηkj . According to the
theory of fuzzy sets, we have

υk(θ(t)) ≥ 0, k = 1, 2, ..., r,
r∑

k=1

υk(θ(t)) > 0 for all t. Therefore, it implies

µk(θ(t)) ≥ 0, k = 1, 2, ..., r,
r∑

k=1

µk(θ(t)) = 1 for all t.

Let x(t; ξ) denotes the state trajectory of system (12) from the initial value x(θ) =
ξ(θ) on −τ̄ ≤ θ ≤ 0 in L2

F0([−τ̄ , 0];Rn). It is easy to see that system (12) admits a



1290 N. GOPALAKRISHNAN

trivial solution x(t; 0) ≡ 0.

The following definition and lemmas are used to prove our main result.

Definition 2.6 [22] For system (9) and every ξ ∈ L2
F0([−∞, 0];Rn), the trivial

solution is asymptotically stable in the mean square if

lim
t→∞

E|x(t; ξ)|2 = 0.

Lemma 2.7 [23] Let D and N be real constant matrices of appropriate di-
mensions, matrix F (t) satisfies FT (t)F (t) ≤ I. Then (i) for any scalar ε > 0,
DF (t)N +NTFT (t)DT ≤ ε−1DDT + εNTN .
(ii) For any P > 0, 2aT b ≤ aTP−1a+ bTPb.

Lemma 2.8 [24] For any constant matrix M ∈ Rn×n, M = MT > 0, scalar
η > 0, vector function ω : [0, η] → Rn such that the integrations are well defined,
the following inequality holds(∫ η

0

ω(s)ds
)T
M
(∫ η

0

ω(s)ds
)
≤ η

∫ η

0

ωT (s)Mω(s)ds.

Lemma 2.9 [25] Let M , P , Q be the given matrices such that Q > 0, then[
P MT

M −Q

]
< 0 ⇐⇒ P +MTQ−1M < 0.

Lemma 2.10 [26] Let U , V (t), W andM be real matrices of appropriate dimen-
sion with M satisfying M = MT , then

M + UV (t)W +WTV T (t)UT < 0 forall V T (t)V (t) ≤ I,
if and only if there exists a scalar ε > 0 such that

M + ε−1UUT + εWTW < 0.

Lemma 2.11 [27] Assume that a(·) ∈ Rna , b(·) ∈ Rnb and N ∈ Rna×nb are
defined on the interval Ω. Then for any matrices X ∈ Rna×na , Y ∈ Rna×nb and
Z ∈ Rnb×nb , the following holds

−2

∫
Ω

aT (α)Nb(α)dα ≤
∫
Ω

[
a(α)
b(α)

]T [
X Y −N

Z

] [
a(α)
b(α)

]
dα, where

[
X Y

Z

]
≥ 0.

3. Main Results

In this section, we consider a general stochastic system dx(t) = f(x(t), t)dt +
g(x(t), t)dω(t) on t ≥ t0 with initial value x(t0) = x0 ∈ Rn, where f : Rn ×
R+ → Rn and g : Rn × R+ → Rn×m. Let C2,1(Rn × R+;R+) denotes the family
of all nonnegative functions V (x(t), t) on Rn × R+ which are continuously twice
differentiable in x and once differentiable in t. Let V ∈ C2,1(Rn × R+;R+), an
operator LV is defined from Rn × R+ to R by

LV (x(t), t) = Vt(x(t), t) + Vx(x(t), t)f(x(t), t)
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+
1

2
trace

[
gT (x(t), t)Vxx(x(t), t)g(x(t), t)

]
,

where

Vt(x(t), t) =
∂V (x(t), t)

∂t
, Vx(x(t), t) =

(∂V (x(t), t)

∂x1
, ...,

∂V (x(t), t)

∂xn

)
,

Vxx(x(t), t) =
(∂2V (x(t), t)

∂xi∂xj

)
n×n

.

Then, by Ito’s formula, one can have

EV (x(t), t) = EV (x0, t0) + E
t∫

t0

LV (x(s), s)ds. (13)

Now, we define the following variables:

Ā+ ∆Ā(t) =

r∑
k=1

µk(θ(t))
(
Ak + ∆Ak(t)

)
, B̄ + ∆B̄(t) =

r∑
k=1

µk(θ(t))
(
Bk + ∆Bk(t)

)
,

W̄ + ∆W̄ (t) =

r∑
k=1

µk(θ(t))
(
Wk + ∆Wk(t)

)
,

H̄0 + ∆H̄0(t) =

r∑
k=1

µk(θ(t))
(
H0k + ∆H0k(t)

)
,

H̄1 + ∆H̄1(t) =

r∑
k=1

µk(θ(t))
(
H1k + ∆H1k(t)

)
,

by using the above notations and parameter uncertainties are not taken into ac-
count, then system (12) can be rewritten as

dx(t) =
[
− Āx(t) + B̄f(x(t)) + α0W̄f(x(t− τ1(t))) + (1− α0)W̄f(x(t− τ2(t)))

+(α(t)− α0)
(
W̄f(x(t− τ1(t)))− W̄f(x(t− τ2(t)))

)]
dt

+
[
H̄0x(t) + α0H̄1x(t− τ1(t)) + (1− α0)H̄1x(t− τ2(t))

+(α(t)− α0)
(
H̄1x(t− τ1(t))− H̄1x(t− τ2(t))

)]
dω(t). (14)

Now, we discuss the stability criteria for stochastic neural network (14) without
uncertainties as follows

Theorem 3.1 For given scalars τ̄1, τ̄2, µ1, µ2, and 0 < α0 < 1 satisfying
α0µ1 < 1, the SNNs (14) is globally asymptotically stable in the mean square,
if there exist symmetric positive definite matrices P > 0, Qi > 0 (i = 1, 2, 3, 4, 5, 6),
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R1 > 0, R2 > 0, Z1 > 0, and Z2 > 0, for any matrices X, Y and positive diagonal
matrices K1 > 0, K2 > 0 and K3 > 0 such that the following LMIs

[
X Y

Z1

]
≥ 0 and

[
X Y

Z2

]
≥ 0 (15)

Υk =



Ωk τ̄1η1Z1 στ̄1η2Z1 τ̄2η1Z2 στ̄2η2Z2 ϑ1P̄ σϑ2P̄ Y Y
−τ̄1Z1 0 0 0 0 0 0 0
∗ −τ̄1Z1 0 0 0 0 0 0
∗ ∗ −τ̄2Z2 0 0 0 0 0
∗ ∗ ∗ −τ̄2Z2 0 0 0 0
∗ ∗ ∗ ∗ −P̄ 0 0 0
∗ ∗ ∗ ∗ ∗ −P̄ 0 0
∗ ∗ ∗ ∗ ∗ ∗ −R1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −R2


< 0

(16)
hold for k = 1, 2, ..., r, where Ωk = (Ωki,j)12×12 with

Ωk1,1 = −PAk −AkP + α0τ̄1X + (1− α0)τ̄2X + 2Y +Q1 +Q2 +Q3 +Q4 +Q5 +Q6,

Ωk1,2 = 0, Ωk1,3 = −α0Y, Ωk1,4 = 0, Ωk1,5 = −(1− α0)Y, Ωk1,6 = Ωk1,7 = 0,

Ωk1,8 = PBk + LK1, Ωk1,9 = α0PWk, Ωk1,10 = (1− α0)PWk, Ωk1,11 = Ωk1,12 = 0,

Ωk2,2 = −(1− α0µ1)Q1, Ωk2,3 = 0,

Ωk2,4 = Ωk2,5 = Ωk2,6 = Ωk2,7 = Ωk2,8 = Ωk2,9 = Ωk2,10 = Ωk2,11 = Ωk2,12 = 0,

Ωk3,3 = −(1− µ1)Q5, Ωk3,4 = Ωk3,5 = Ωk3,6 = Ωk3,7 = Ωk3,8 = 0,

Ωk3,9 = LK2, Ωk3,10 = Ωk3,11 = Ωk3,12 = 0, Ωk4,4 = −Q2,

Ωk4,5 = Ωk4,6 = Ωk4,7 = Ωk4,8 = Ωk4,9 = Ωk4,10 = Ωk4,11 = Ωk4,12 = 0,

Ωk5,5 = −(1− µ2)Q6, Ωk5,6 = 0, Ωk5,7 = Ωk5,8 = Ωk5,9 = 0, Ωk5,10 = LK3,

Ωk5,11 = Ωk5,12 = 0, Ωk6,6 = −Q3, Ωk6,7 = Ωk6,8 = Ωk6,9 = 0,

Ωk6,10 = Ωk6,11 = Ωk6,12 = 0, Ωk7,7 = −(1− α0µ2)Q4,

Ωk7,8 = Ωk7,9 = Ωk7,10 = Ωk7,11 = Ωk7,12 = 0, Ωk8,8 = −2K1,

Ωk8,9 = Ωk8,10 = Ωk8,11 = Ωk8,12 = 0, Ωk9,9 = −2K2,

Ωk9,10 = Ωk9,11 = Ωk9,12 = 0, Ωk10,10 = −2K3, Ωk10,11 = Ωk10,12 = 0,
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Ωk11,11 = −
(1− α0

τ̄1

)
Z1, Ωk11,12 = 0,

Ωk12,12 = −
(α0

τ̄2

)
Z2,

η1 =
[
−Ak 0 0 0 0 0 0 Bk α0Wk (1− α0)Wk 0 0

]T
,

η2 =
[
0 0 0 0 0 0 0 0 Wk −Wk 0 0

]T
,

ϑ1 =
[
H0k 0 α0H1k 0 (1− α0)H1k 0 0 0 0 0 0 0

]T
,

ϑ2 =
[
0 0 H1k 0 −H1k 0 0 0 0 0 0 0

]T
,

σ =
√
α0(1− α0), P̄ = P + τ̄1R1 + τ̄2R2.

Proof: Denoting,

y(t) = −Āx(t) + B̄f(x(t)) + α0W̄f(x(t− τ1(t))) + (1− α0)W̄f(x(t− τ2(t)))

+(α(t)− α0)
(
W̄f(x(t− τ1(t)))− W̄f(x(t− τ2(t)))

)
, (17)

g(t) = H̄0x(t) + α0H̄1x(t− τ1(t)) + (1− α0)H̄1x(t− τ2(t))

+(α(t)− α0)
(
H̄1x(t− τ1(t))− H̄1x(t− τ2(t))

)
. (18)

The system (14) can be written as

dx(t) = y(t)dt+ g(t)dω(t). (19)

Integrating (19) from t − τ1(t) to t, and from t − τ2(t) to t, we get the following
equalities

x(t− τ1(t)) = x(t)−
t∫

t−τ1(t)

y(s)ds−
t∫

t−τ1(t)

g(s)dω(s) (20)

x(t− τ2(t)) = x(t)−
t∫

t−τ2(t)

y(s)ds−
t∫

t−τ2(t)

g(s)dω(s), (21)

we can rewrite (14) as

dx(t) =
[
− Āx(t) + B̄f(x(t)) + α0W̄G(x(t− τ1(t)))x(t− τ1(t))

+(1− α0)W̄G(x(t− τ2(t)))x(t− τ2(t))

+
(
α(t)− α0

)(
W̄f(x(t− τ1(t)))− W̄f(x(t− τ2(t)))

)]
dt
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+
[
H̄0x(t) + α0H̄1x(t− τ1(t)) + (1− α0)H̄1x(t− τ2(t))

+
(
α(t)− α0

)(
H̄1x(t− τ1(t))

−H̄1x(t− τ2(t))
)]
dω(t), (22)

where G(x(t)) = diag
(
h1(x1(t)), h2(x2(t)), ..., hn(xn(t))

)
and 0 ≤ hj(xj(t)) =

fj(xj(t))/(xj(t)) ≤ lj . Moreover, by substituting (20) and (21) into (22), we obtain

dx(t) =
[
− Āx(t) + B̄f(x(t)) + α0W̄G(x(t− τ1(t)))x(t)

−α0W̄G(x(t− τ1(t)))

t∫
t−τ1(t)

y(s)ds− α0W̄G(x(t− τ1(t)))

t∫
t−τ1(t)

g(s)dω(s)

+(1− α0)W̄G(x(t− τ2(t)))x(t)− (1− α0)W̄G(x(t− τ2(t)))

t∫
t−τ2(t)

y(s)ds

−(1− α0)W̄G(x(t− τ2(t)))

t∫
t−τ2(t)

g(s)dω(s)

+
(
α(t)− α0

)(
W̄f(x(t− τ1(t)))− W̄f(x(t− τ2(t)))

)]
dt

+
[
H̄0x(t) + α0H̄1x(t− τ1(t)) + (1− α0)H̄1x(t− τ2(t))+(
α(t)− α0

)(
H̄1x(t− τ1(t))− H̄1x(t− τ2(t))

)]
dω(t). (23)

Choose a Lyapunov-Krasovskii functional candidate as follows

V (x(t), t) = xT (t)Px(t) +

t∫
t−α0τ1(t)

xT (s)Q1x(s)ds+

t∫
t−τ0

xT (s)Q2x(s)ds

+

t∫
t−τ̄

xT (s)Q3x(s)ds+

t∫
t−α0τ2(t)

xT (s)Q4x(s)ds+

t∫
t−τ1(t)

xT (s)Q5x(s)ds

+

t∫
t−τ2(t)

xT (s)Q6x(s)ds+

0∫
−τ̄1

t∫
t+β

yT (α)Z1y(α)dαdβ +

0∫
−τ̄2

t∫
t+β

yT (α)Z2y(α)dαdβ
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+

0∫
−τ̄1

t∫
t+β

gT (α)R1g(α)dαdβ +

0∫
−τ̄2

t∫
t+β

gT (α)R2g(α)dαdβ. (24)

By Ito’s formula, we can calculate LV (x(t), t) along with (24), then we have

dV (x(t), t) = LV (x(t), t) + 2xT (t)Pg(t)dω(t), (25)

where

LV (x(t), t) ≤ 2xT (t)P
[
− Āx(t) + B̄f(x(t)) + α0W̄G(x(t− τ1(t)))x(t)

−α0W̄G(x(t− τ1(t)))

t∫
t−τ1(t)

y(s)ds− α0W̄G(x(t− τ1(t)))

t∫
t−τ1(t)

g(s)dω(s)

+(1− α0)W̄G(x(t− τ2(t)))x(t)− (1− α0)W̄G(x(t− τ2(t)))

t∫
t−τ2(t)

y(s)ds

−(1− α0)W̄G(x(t− τ2(t)))

t∫
t−τ2(t)

g(s)dω(s)

+
(
α(t)− α0

)(
W̄f(x(t− τ1(t)))− W̄f(x(t− τ2(t)))

)]
+gT (t)Pg(t) + xT (t)Q1x(t)− (1− α0µ1)xT (t− α0τ1(t))Q1x(t− α0τ1(t))

+xT (t)Q2x(t)− xT (t− τ0)Q2x(t− τ0) + xT (t)Q3x(t)− xT (t− τ̄)Q3x(t− τ̄)

+xT (t)Q4x(t)− (1− α0µ2)xT (t− α0τ2(t))Q4x(t− α0τ2(t))

+xT (t)Q5x(t)− (1− µ1)xT (t− τ1(t))Q5x(t− τ1(t)) + xT (t)Q6x(t)

−(1− µ2)xT (t− τ2(t))Q6x(t− τ2(t))

+τ̄1y
T (t)Z1y(t)−

t∫
t−τ̄1

yT (s)Z1y(s)ds

+τ̄2y
T (t)Z2y(t)−

t∫
t−τ̄2

yT (s)Z2y(s)ds+ τ̄1g
T (t)R1g(t)
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−
t∫

t−τ̄1

gT (s)R1g(s)ds+ τ̄2g
T (t)R2g(t)−

t∫
t−τ̄2

gT (s)R2g(s)ds. (26)

Define a(·), b(·) andN in Lemma 2.11 as a(α) = x(t), b(α) = y(s), N = PW̄G(x(t−
τ1(t))) and using (20), then

−2α0x
T (t)PW̄G(x(t− τ1(t)))

t∫
t−τ1(t)

y(s)ds

≤ α0

t∫
t−τ1(t)

[
x(t)
y(s)

]T [
X Y − PW̄G(x(t− τ1(t)))

Z1

] [
x(t)
y(s)

]
ds

≤ α0

{
τ̄1x

T (t)Xx(t) + 2xT (t)[Y − PW̄G(x(t− τ1(t)))]

t∫
t−τ1(t)

y(s)ds

+

t∫
t−τ1(t)

yT (s)Z1y(s)ds
}

≤ α0τ̄1x
T (t)Xx(t) + 2α0x

T (t)Y x(t)− 2α0x
T (t)Y x(t− τ1(t))

−2α0x
T (t)Y

t∫
t−τ1(t)

g(s)dω(s)− 2α0x
T (t)PW̄G(x(t− τ1(t)))x(t)

2 + α0x
T (t)PW̄f(x(t− τ1(t))) + 2α0x

T (t)PW̄G(x(t− τ1(t)))

t∫
t−τ1(t)

g(s)dω(s)

+α0

t∫
t−τ1(t)

yT (s)Z1y(s)ds. (27)

Define a(.), b(.) andN in Lemma 2.11 as a(α) = x(t), b(α) = y(s), N = PW̄G(x(t−
τ2(t))) and using (21), then

−2(1− α0)xT (t)PW̄G(x(t− τ2(t)))

t∫
t−τ2(t)

y(s)ds
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≤ (1− α0)

t∫
t−τ2(t)

[
x(t)
y(s)

]T [
X Y − PW̄G(x(t− τ2(t)))

Z2

] [
x(t)
y(s)

]
ds

≤ (1− α0)τ̄2x
T (t)Xx(t) + 2(1− α0)xT (t)Y x(t)− 2(1− α0)xT (t)Y x(t− τ2(t))

−2(1− α0)xT (t)Y

t∫
t−τ2(t)

g(s)dω(s)− 2(1− α0)xT (t)PW̄G(x(t− τ2(t)))x(t)

+2(1− α0)xT (t)PW̄f(x(t− τ2(t))) + 2(1− α0)xT (t)PW̄G(x(t− τ2(t)))

×
t∫

t−τ2(t)

g(s)dω(s) + (1− α0)

t∫
t−τ2(t)

yT (s)Z2y(s)ds. (28)

Here

f(x(t− τ1(t))) = G(x(t− τ1(t)))x(t− τ1(t)), and

f(x(t− τ2(t))) = G(x(t− τ2(t)))x(t− τ2(t))

are used. Using (27) and (28) in (26), we have

LV (x(t), t) ≤ −2xT (t)PĀx(t) + 2xT (t)PB̄f(x(t)) + α0τ̄1x
T (t)Xx(t)

−2α0x
T (t)Y x(t− τ1(t))− 2α0x

T (t)Y

t∫
t−τ1(t)

g(s)dω(s)

+2α0x
T (t)PW̄f(x(t− τ1(t)))− (1− α0)

t∫
t−τ1(t)

yT (s)Z1y(s)ds

+(1− α0)τ̄2x
T (t)Xx(t) + 2xT (t)Y x(t)− 2(1− α0)xT (t)Y x(t− τ2(t))

−2(1− α0)xT (t)Y

t∫
t−τ2(t)

g(s)dω(s) + 2(1− α0)xT (t)PW̄f(x(t− τ2(t)))

−α0

t∫
t−τ2(t)

yT (s)Z2y(s)ds+ 2
(
α(t)− α0

)

×xT (t)P
(
W̄f(x(t− τ1(t)))− W̄f(x(t− τ2(t)))

)
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+gT (t)
(
P + τ̄1R1 + τ̄2R2

)
g(t) + xT (t)Q1x(t)

−(1− α0µ1)xT (t− α0τ1(t))Q1x(t− α0τ1(t))

+xT (t)Q2x(t)− xT (t− τ0)Q2x(t− τ0) + xT (t)Q3x(t)− xT (t− τ̄)Q3x(t− τ̄)

+xT (t)Q4x(t)− (1− α0µ2)xT (t− α0τ2(t))Q4x(t− α0τ2(t)) + xT (t)Q5x(t)

−(1− µ1)xT (t− τ1(t))Q5x(t− τ1(t))

+xT (t)Q6x(t)− (1− µ2)xT (t− τ2(t))Q6x(t− τ2(t))

+yT (t)
(
τ̄1Z1 + τ̄2Z2

)
y(t)

−
t∫

t−τ1(t)

gT (s)R1g(s)ds−
t∫

t−τ2(t)

gT (s)R2g(s)ds. (29)

For symmetric positive definite matrices R1, and R2, it follows from Lemma 2.7
that

1

α0

{
− 2xT (t)Y

t∫
t−τ1(t)

g(s)dω(s)
}
≤ 1

α0

{
xT (t)Y R−1

1 Y Tx(t)

+
( t∫
t−τ1(t)

g(s)dω(s)
)T
R1

( t∫
t−τ1(t)

g(s)dω(s)
)}
, (30)

1

1− α0

{
− 2xT (t)Y

t∫
t−τ2(t)

g(s)dω(s)
}
≤ 1

1− α0

{
xT (t)Y R−1

2 Y Tx(t)

+
( t∫
t−τ2(t)

g(s)dω(s)
)T
R2

( t∫
t−τ2(t)

g(s)dω(s)
)}
. (31)

It is clear from (3) that

fj(xj(t))
[
fj(xj(t))− ljxj(t)

]
≤ 0, (32)

fj(xj(t− τ i(t)))
[
fj(xj(t− τ i(t)))− ljxj(t− τ i(t))

]
≤ 0, j = 1, 2, .., n.(33)
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From inequalities (32) and (33), for any positive diagonal matricesKi = diag(ki1, ki2, ..., kin),
i = 1, 2, 3, the following inequalities hold

0 ≤ −2

n∑
j=1

k1jfj(xj(t))
[
fj(xj(t))− ljxj(t)

]
− 2

2∑
i=1

n∑
j=1

k(i+1)jfj(xj(t− τ i(t)))

×
[
fj(xj(t− τ i(t)))− ljxj(t− τ i(t))

]
= 2xT (t)LK1f(x(t))− 2fT (x(t))K1f(x(t))

+2xT (t− τ1(t))LK2f(x(t− τ1(t)))− 2fT (x(t− τ1(t)))

K2f(x(t− τ1(t))) + 2xT (t− τ2(t))LK3f(x(t− τ2(t)))

−2fT (x(t− τ2(t)))K3f(x(t− τ2(t))). (34)

where L = diag
(
l1, l2, ..., ln

)
. By Remark 2.4, it is easy to know

E
{

2
(
α(t)− α0

)
xT (t)P

(
W̄f(x(t− τ1(t)))− W̄f(x(t− τ2(t)))

)}
= 0 (35)

E
{
yT (t)Z1y(t)

}
= E

{[
− Āx(t) + B̄f(x(t)) + α0W̄f(x(t− τ1(t)))

+(1− α0)W̄f(x(t− τ2(t)))
]T

×Z1

[
− Āx(t) + B̄f(x(t)) + α0W̄f(x(t− τ1(t))) + (1− α0)W̄f(x(t− τ2(t)))

]
+2(α(t)− α0)

[
− Āx(t) + B̄f(x(t)) + α0W̄f(x(t− τ1(t))) + (1− α0)W̄

×f(x(t− τ2(t)))
]
Z1

[
W̄f(x(t− τ1(t)))− W̄f(x(t− τ2(t)))

]
+
(
α(t)− α0

)2
×
[
W̄f(x(t− τ1(t)))− W̄f(x(t− τ2(t)))

]T
Z1

×
[
W̄f(x(t− τ1(t)))− W̄f(x(t− τ2(t)))

]}
=
[
− Āx(t) + B̄f(x(t)) + α0W̄f(x(t− τ1(t))) + (1− α0)W̄f(x(t− τ2(t)))

]T
Z1

×
[
− Āx(t) + B̄f(x(t)) + α0W̄f(x(t− τ1(t))) + (1− α0)W̄f(x(t− τ2(t)))

]
+α0(1− α0)

[
W̄f(x(t− τ1(t)))− W̄f(x(t− τ2(t)))

]T
Z1

×
[
W̄f(x(t− τ1(t)))− W̄f(x(t− τ2(t)))

]
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E
{
yT (t)Z1y(t)

}
= ζT (t)

{
η1Z1η

T
1 + α0(1− α0)η2Z1η

T
2

}
ζ(t). (36)

Similarly we have,

E
{
yT (t)Z2y(t)

}
= ζT (t)

{
η1Z2η

T
1 + α0(1− α0)η2Z2η

T
2

}
ζ(t), (37)

and

E
{
gT (t)(P + τ̄1R1 + τ̄2R2)g(t)

}
= ζT (t)

{
ϑ1P̄ ϑ

T
1 + α0(1− α0)ϑ2P̄ ϑ

T
2

}
ζ(t). (38)

E
{( t∫

t−τ1(t)

g(s)dω(s)
)T
R1

( t∫
t−τ1(t)

g(s)dω(s)
)}

= E
{ t∫
t−τ1(t)

gT (s)R1g(s)ds
}
(39)

E
{( t∫

t−τ2(t)

g(s)dω(s)
)T
R2

( t∫
t−τ2(t)

g(s)dω(s)
)}

= E
{ t∫
t−τ2(t)

gT (s)R2g(s)ds
}
.

(40)

Using Lemma 2.8 in (29) and substituting (29)-(31), (34) into (25) and taking
mathematical expectation on both sides of (25) then using (35)-(40), we can get

EdV (x(t), t) = E
{
LV (x(t), t)

}
≤ ζT (t)

{
Ω̄ + τ̄1η1Z1η

T
1 + τ̄1α0(1− α0)η2Z1η

T
2 + τ̄2η1Z2η

T
1

+τ̄2α0(1− α0)η2Z2η
T
2 + ϑ1P̄ ϑ

T
1 + α0(1− α0)ϑ2P̄ ϑ

T
2

+Y R−1
1 Y T + Y R−1

2 Y T
}
ζ(t), (41)

where

ζ(t) =
[
xT (t) xT (t− α0τ1(t)) xT (t− τ1(t)) xT (t− τ0) xT (t− τ2(t))

xT (t− τ̄) xT (t− α0τ2(t)) fT (x(t)) fT (x(t− τ1(t))) fT (x(t− τ2(t)))( t∫
t−τ1(t)

y(s)ds
)T ( t∫

t−τ2(t)

y(s)ds
)T ]T

.

Let us define,

Ῡ = Ω̄ + τ̄1η1Z1η
T
1 + τ̄1α0(1− α0)η2Z1η

T
2 + τ̄2η1Z2η

T
1

+τ̄2α0(1− α0)η2Z2η
T
2 + ϑ1P̄ ϑ

T
1 + α0(1− α0)ϑ2P̄ ϑ

T
2

+Y R−1
1 Y T + Y R−1

2 Y T < 0.
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Considering µk(θ(t)) ≥ 0 (k = 1, 2, ..., r) and Υk < 0 (k = 1, 2, ..., r) in Theorem

3.1, we have
r∑

k=1

µk(θ(t))Υk < 0. Noting that
r∑

k=1

µk(θ(t)) = 1. Where

Υk = Ωk + τ̄1η1Z1η
T
1 + τ̄1α0(1− α0)η2Z1η

T
2 + τ̄2η1Z2η

T
1

+τ̄2α0(1− α0)η2Z2η
T
2 + ϑ1P̄ ϑ

T
1

+α0(1− α0)ϑ2P̄ ϑ
T
2 + Y R−1

1 Y T + Y R−1
2 Y T < 0,

Ωk, η1, η2, ϑ1, and ϑ2 are defined as in Theorem 3.1. By Schur complement, we
know that Υk < 0 is equivalent to (16). Let λ = min{λmin(−Υk)}, then by the
generalized Ito’s formula [13], we have

EV (x(t), t)− EV (x(0), 0) = E
∫ t

0

LV (x(s), s)ds ≤ −λE
∫ t

0

‖x(s)‖2ds.

Moreover,

E
∫ t

0

‖x(s)‖2ds ≤ 1

λ
EV (x(0), 0), t ≥ 0.

which indicates that system (14) is globally asymptotically stable in the mean
square. This completes the proof.

In the following part, we extend the above result to uncertain fuzzy stochastic
Hopfield neural network (UFSHNN) (12) and obtain the stability criteria as the
following theorem by means of the feasibility of LMIs.

Theorem 3.2 For given scalars τ̄1, τ̄2, µ1, µ2, and 0 < α0 < 1 satisfying
α0µ1 < 1, the UFSHNN (12) is globally robustly asymptotically stable in the
mean square, if there exist symmetric positive definite matrices P > 0, Qi > 0
(i = 1, 2, 3, 4, 5, 6), R1 > 0, R2 > 0, Z1 > 0, and Z2 > 0, for any matrices X and
Y , positive diagonal matrices K1 > 0, K2 > 0, K3 > 0 and positive scalars εj > 0
(j = 1, ..., 7), such that the following LMIs[

X Y
Z1

]
≥ 0 and

[
X Y

Z2

]
≥ 0 (42)



Υk Γ1 τ̄1Γ2 τ̄1Γ3 τ̄2Γ4 τ̄2Γ5 Γ6 Γ7

−ε1I 0 0 0 0 0 0
∗ −τ̄1ε2 0 0 0 0 0
∗ ∗ −τ̄1ε3 0 0 0 0
∗ ∗ ∗ −τ̄2ε4 0 0 0
∗ ∗ ∗ ∗ −τ̄2ε5 0 0
∗ ∗ ∗ ∗ ∗ −ε6I 0
∗ ∗ ∗ ∗ ∗ ∗ −ε7I


< 0 (43)
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hold for k = 1, 2, ..., r, where Υk and σ are defined as in Theorem 3.1, with

Ωk1,1 = −PAk −AkP + α0τ̄1X + (1− α0)τ̄2X + 2Y +Q1 +Q2 +Q3 +Q4 +Q5 +Q6

+
(
ε1 + τ̄1ε2 + τ̄2ε4

)
(EAk )T (EAk ) + ε6(EH0

k )T (EH0

k ),Ωk1,2 = 0,

Ωk1,3 = −α0Y + α0ε6(EH0

k )T (EH1

k ), Ωk1,4 = 0,

Ωk1,5 = −(1− α0)Y + (1− α0)ε6(EH0

k )T (EH1

k ), Ωk1,6 = 0,

Ωk1,7 = 0, Ωk1,8 = PBk + LK1 −
(
ε1 + τ̄1ε2 + τ̄2ε4

)
(EAk )T (EBk ),

Ωk1,9 = α0PWk − α0

(
ε1 + τ̄1ε2 + τ̄2ε4

)
(EAk )T (EWk ),

Ωk1,10 = (1− α0)PWk − (1− α0)
(
ε1 + τ̄1ε2 + τ̄2ε4

)
(EAk )T (EWk ), Ωk1,11 = 0,

Ωk1,12 = 0, Ωk2,2 = −
(
1− α0µ1

)
Q1,

Ωk2,3 = Ωk2,4 = Ωk2,5 = Ωk2,6 = Ωk2,7 = Ωk2,8 = Ωk2,9 = Ωk2,10 = 0,

Ωk2,11 = Ωk2,12 = 0, Ωk3,3 = −(1− µ1)Q5 + α2
0ε6(EH1

k )T (EH1

k ) + σ2ε7(EH1

k )T (EH1

k ),

Ωk3,4 = 0, Ωk3,5 = σ2ε6(EH1

k )T (EH1

k ) + σ2ε7(EH1

k )T (EH1

k ),

Ωk3,6 = Ωk3,7 = Ωk3,8 = 0, Ωk3,9 = LK2, Ωk3,10 = 0, Ωk3,11 = Ωk3,12 = 0,

Ωk4,4 = −Q2, Ωk4,5 = Ωk4,6 = Ωk4,7 = Ωk4,8 = Ωk4,9 = Ωk4,10 = Ωk4,11 = Ωk4,12 = 0,

Ωk5,5 = −(1− µ2)Q6 + (1− α0)2ε6(EH1

k )T (EH1

k ) + σ2ε7(EH1

k )T (EH1

k ),

Ωk5,6 = Ωk5,7 = Ωk5,8 = Ωk5,9 = 0,Ωk5,10 = LK3, Ωk5,11 = Ωk5,12 = 0,

Ωk6,6 = −Q3, Ωk6,7 = Ωk6,8 = Ωk6,9 = Ωk6,10 = Ωk6,11 = Ωk6,12 = 0,

Ωk7,7 = −
(
1− α0µ2

)
Q4, Ωk7,8 = Ωk7,9 = Ωk7,10 = Ωk7,11 = Ωk7,12 = 0,

Ωk8,8 = −2K1 +
(
ε1 + τ̄1ε2 + τ̄2ε4

)
(EBk )T (EBk ),

Ωk8,9 = α0

(
ε1 + τ̄1ε2 + τ̄2ε4

)
(EBk )T (EWk ),

Ωk8,10 = (1− α0)
(
ε1 + τ̄1ε2 + τ̄2ε4

)
(EBk )T (EWk ), Ωk8,11 = Ωk8,12 = 0,

Ωk9,9 = −2K2 + α2
0

(
ε1 + τ̄1ε2 + τ̄2ε4

)
(EWk )T (EWk ) + σ2

(
τ̄1ε3 + τ̄2ε5

)
(EWk )T (EWk ),

Ωk9,10 = σ2
(
ε1 + τ̄1ε2 + τ̄2ε4

)
(EWk )T (EWk )− σ2

(
τ̄1ε3 + τ̄2ε5

)
× (EWk )T (EWk ),

Ωk9,11 = Ωk9,12 = 0, Ωk10,10 = −2K3 + (1− α0)2
(
ε1 + τ̄1ε2 + τ̄2ε4

)
(EWk )T (EWk )

+σ2
(
τ̄1ε3 + τ̄2ε5

)
(EWk )T (EWk ), Ωk10,11 = Ωk10,12 = 0,
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Ωk11,11 = −
(1− α0

τ̄1

)
Z1, Ωk11,12 = 0, Ωk12,12 = −

(α0

τ̄2

)
Z2.

Proof Replace Ak, Bk, Wk, H0k and H1k in LMI (16) with Ak + GF (t)EAK ,
Bk+GF (t)EBK ,Wk+GF (t)EWK , H0k+GF (t)EH0

K andH1k+GF (t)EH1

K respectively,
we find that (16) for UFSHNN (12) is equivalent to the following condition

Υk + Γ1F (t)ΠT
1k + Π1kF

T (t)ΓT1 + τ̄1Γ2F (t)ΠT
1k + τ̄1Π1kF

T (t)ΓT2

+τ̄1Γ3F (t)ΠT
2k + τ̄1Π2kF

T (t)ΓT3 + τ̄2Γ4F (t)ΠT
1k

+τ̄2Π1kF
T (t)ΓT4 + τ̄2Γ5F (t)ΠT

2k + τ̄2Π2kF
T (t)ΓT5 +

Γ6F (t)ΠT
3k + Π3kF

T (t)ΓT6 + Γ7F (t)ΠT
4k + Π4kF

T (t)ΓT7 < 0, (44)

where,

Γ1 =
[
GTP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]T
,

Γ2 =
[
0 0 0 0 0 0 0 0 0 0 0 0 GTZ1 0 0 0 0 0 0 0

]T
,

Γ3 =
[
0 0 0 0 0 0 0 0 0 0 0 0 0 GTZ1 0 0 0 0 0 0

]T
,

Γ4 =
[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 GTZ2 0 0 0 0 0

]T
,

Γ5 =
[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GTZ2 0 0 0 0

]T
,

Γ6 =
[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GT P̄ 0 0 0

]T
,

Γ7 =
[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GT P̄ 0 0

]T
,

Π1k =
[
− EAk 0 0 0 0 0 0 EBk α0E

W
k (1− α0)EWk 0 0 0 0 0 0 0 0 0 0

]T
,

Π2k =
[
0 0 0 0 0 0 0 0 σEWk − σEWk 0 0 0 0 0 0 0 0 0 0

]T
,

Π3k =
[
− EH0

k 0 α0E
H1

k 0 (1− α0)EH1

k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]T
,

Π4k =
[
0 0 σEH1

k 0 σEH1

k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]T
.

From Lemma 2.10, (44) holds for all FT (t)F (t) ≤ I if and only if there exist scalars
εj > 0 (j = 1, 2, ..., 7), such that

Υk + ε−1
1 Γ1ΓT1 + ε1Π1kΠT

1k + τ̄1ε
−1
2 Γ2ΓT2 + τ̄1ε2Π1kΠT

1k + τ̄1ε
−1
1 Γ3ΓT3

+τ̄1ε3Π2kΠT
2k + τ̄2ε

−1
4 Γ4ΓT4 + τ̄2ε4Π1kΠT

1k + τ̄2ε
−1
5 Γ5ΓT5 + τ̄2ε5Π2kΠT

2k
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+ε−1
6 Γ6ΓT6 + ε6Π3kΠT

3k + ε−1
7 Γ7ΓT7 + ε7Π4kΠT

4k < 0. (45)

By Schur complement, the Eq. (45) is equivalent to the LMI (43). Then, by
Theorem 3.1, the system (12) is globally robustly asymptotically stable in the mean
square. This completes the proof.

Remark 3.3 In [22], the authors dealt with the problem of delay-dependent
robust stability for uncertain stochastic fuzzy Hopfield neural networks with time-
varying delays. However, the probability distribution delay was not taken into
account in this model. In our paper, we study delay-dependent robust stability
analysis for uncertain fuzzy stochastic Hopfield neural networks with random time-
varying delays. Thus, the results in this paper are lead to an improvement over the
existing ones [22].

Remark 3.4 In the case of k = 1, the system (12) is reduced to same as in [18]
and the stability criteria for the corresponding reduced system can be obtained by
using Theorem 3.1. Moreover, the traditional assumption such as boundedness,
monotonicity or differentiability on the neuron activation functions [22] have been
removed in this paper.

4. Numerical Examples

In this section, we will give two examples showing the effectiveness of established
theoretical results.
Example 1 Consider the SNNs (14) without uncertain parameters defined as

A1 =

 3 0
0 5

 , B1 =

[
0.6 −0.4
0.5 0.4

]
, W1 =

[
0.3 0.4
0.2 −0.5

]
,

H01 =

[
0.7 0.5
−0.8 0.5

]
, H11 =

[
0.1 0
0 0.3

]
, A2 =

[
4 0
0 6

]
,

B2 =

[
0.5 −0.6
0.6 0.5

]
, W2 =

[
0.4 0.3
0.2 −0.4

]
,

H02 =

[
0.5 −0.5
0.7 0.5

]
, H12 =

[
0.1 0
0 0.2

]
, L =

 1 0
0 1

 .
The activation function f(x(t)) = tanh(x(t)), the time-varying delays are chosen
as τ̄1 = 0.4 and τ̄2 = 1. The derivative of time-varying delays τ̇1(t) ≤ µ1 = 0.9,
τ̇2(t) ≤ µ2 = 0.9, α0 = 0.2, and using the Matlab LMI toolbox to solve the LMI in
Theorem 3.1, we obtained the following matrices

P =

[
327.4076 24.6582
24.6582 186.7410

]
, Q1 =

[
29.1065 2.8428
2.8428 78.8062

]
,
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Q2 =

[
28.3027 2.5709
2.5709 73.2516

]
, Q3 =

[
28.3027 2.5709
2.5709 73.2516

]
,

Q4 =

[
29.1065 2.8428
2.8428 78.8062

]
, Q5 =

[
124.1846 7.8651
7.8651 200.4389

]
,

Q6 =

[
361.9906 25.6513
25.6513 445.1012

]
, Z1 =

[
53.0635 4.5276
4.5276 19.6996

]
,

Z2 =

[
34.4196 3.2734
3.2734 10.2579

]
, R1 =

[
48.6955 15.8265
15.8265 45.5044

]
,

R2 =

[
27.2106 10.5027
10.5027 24.3706

]
, X = 105 ×

[
0.0003 2.3024
−2.3023 0.0007

]
,

Y =

[
9.9647 0.3887
6.4928 −2.2659

]
, K1 =

[
139.1778 0

0 139.1778

]
,

K2 =

[
13.2926 0

0 13.2926

]
, K3 =

[
33.5343 0

0 33.5343

]
.

Therefore, it follows from Theorem 3.1, that the SNNs without uncertain parame-
ters (14) is globally asymptotically stable in the mean square. The response of the
state dynamics for the SNNs without uncertain parameters (14) which converges
to zero asymptotically in the mean square are shown in Figures 1 and 2.
Example 2 Consider the SNNs (12) with uncertain parameters defined as

A1 =

[
3 0
0 4

]
, B1 =

[
0.5 −0.7
0.3 0.6

]
, W1 =

[
0.4 0.3
0.4 −0.5

]
,

H01 =

[
0.5 0.7
0.7 0.6

]
, H11 =

[
0.2 0
0 0.1

]
, A2 =

[
3 0
0 5

]
,

B2 =

[
−0.4 −0.6
0.6 0.4

]
, W2 =

[
0.2 0.3
0.2 −0.4

]
, H02 =

[
0.7 0.5
0.6 0.5

]
,

H12 =

[
0.2 0
0 0.1

]
, L =

[
1 0
0 1

]
, G =

[
0.2 0
0 0.3

]
,

EA1 = EA2 = EB1 = EB2 = EW1 = EW2 = EH0
1 = EH0

2 = EH1
1 = EH1

2 = 0.2I.

The activation function f(x(t)) = tanh(x(t)), the time-varying delays are chosen
as τ̄1 = 0.2, τ̄2 = 1.2, The derivative of time-varying delays τ̇1(t) ≤ µ1 = 0.8,
τ̇2(t) ≤ µ2 = 0.8, α0 = 0.1 and using the Matlab LMI toolbox to solve the LMI in
Theorem 3.2, we obtained the following matrices

P =

[
518.3570 41.1464
41.1464 291.9800

]
, Q1 =

[
19.7588 −25.7369
−25.7369 50.5741

]
,
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Q2 =

[
19.4515 −25.2105
−25.2105 49.6365

]
, Q3 =

[
19.4515 −25.2105
−25.2105 49.6365

]
,

Q4 =

[
13.4952 −17.7217
−17.7217 34.7562

]
, Q5 =

[
124.1216 −9.4733
−9.4733 95.1319

]
,

Q6 =

[
970.4180 52.1610
52.1610 539.2814

]
, Z1 =

[
58.4896 −27.6329
−27.6329 38.2542

]
,

Z2 =

[
21.3870 −12.1165
−12.1165 12.1744

]
, R1 =

[
70.7114 −67.4364
−67.4364 83.8331

]
,

R2 =

[
34.0450 −34.7188
−34.7188 40.1826

]
, X =

[
19.1175 −23.9969
−23.9969 47.1209

]
,

Y =

[
6.2330 −2.7589
−2.7589 3.6739

]
, K1 =

[
345.0867 0

0 345.0867

]
,

K2 =

[
13.8953 0

0 13.8953

]
, K3 =

[
111.8889 0

0 111.8889

]
,

ε1 = 248.1167, ε2 = 167.8423, ε3 = 492.0111, ε4 = 34.7926,

ε5 = 150.2244, ε6 = 279.6797, ε7 = 97.3928.

Therefore, it follows from Theorem 3.2, that the UFSHNN (12) is globally robustly
asymptotically stable in the mean square. The response of the state dynamics for
the UFSHNN (12) which converges to zero asymptotically in the mean square are
shown in Figures 3 and 4.

5. Conclusion

The delay-dependent robust stability analysis for fuzzy stochastic Hopfield neural
networks with random time-varying delays has been investigated. By using the
combination of Lyapunov stability theory and stochastic analysis approach, some
delay-dependent criteria have been derived to guarantee that the global robust
asymptotic stability of the system in the mean square. This criteria can be checked
easily by the LMI control toolbox in Matlab. Finally, numerical examples have
been provided to illustrate the advantages and usefulness of the proposed results.
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