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Determination of Energy Spectra By Using Proper Quantization  

Rule Of Woods-Saxon Potential 

Highlights 

 The PQR method is described and the related mechanism is presented in detail. 

 Then the energy spectrum is obtained for the WS potential. 

 The numerical calculations for four various light nuclei are presented 

 The E-V0-a diagrams are plotted to optimize and provide the appropriate coefficients 

Graphical Abstract 

In this study, the energy spectra of Schrodinger equation for non-zero l values considering Woods Saxon potential 

(WSP) is calculated using proper quantization rulFor the energy, potential, surface thickness for those nuclei (7Li, 
9Be ,11B and 15N)  shown in figure-1 .  

 

 

 

Figure . 7Li nuclei, BE as   function of V0 and a 

Aim 

This study of aim was to the energy spectra of Schrodinger equation for non-zero l values considering Woods-Saxon 

(WS) potential is calculated using Proper Quantization Rule (PQR).  

 

Design & Methodology 

The investigation was done numerically using Matlab simulation program and Pearson correlation coefficient has 

been shown to be related to various nuclear properties of the nuclei. 

 

Originality 

The most important feature and originality of our study was that until this time the studies required numerical and 

complex and high mathematics. 

 

Findings 

Results have shown thatthe initial state of 𝜑0(𝑥) achieved from the Riccati equation, we were able to achieve binding 

energy of the nucleus at the presence of  WS potential with the Schrodinger equation via PQR method. 

  

Conclusion 

In this study, the PQR method of the related mechanism is described and then the energy spectrum is obtained for the 

WS potential .the numerical calculations for four various light nuclei are presented and the results are compared with 

experimental values. correlation.  
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ABSTRACT 

In this study, the energy spectra of Schrodinger equation for non-zero l values considering Woods Saxon potential (WSP) is 

calculated using proper quantization rule, then the binding energies (BE) of random light nuclei is obtained and the optimized 

potential parameters such as potential depth (V0) and surface thickness (a) are found. In order to calculate the energy levels of the 

nuclei with WSP, the PQR method was used, which has not been considered before. In quantum mechanics, the exact solution of 

energy systems, momentum, and quantum states can be found using the proper quantization rule(PQR) method.Using the Matlab 

calculation program, we have achieved numerical values of the energy spectrum for random light nuclei and compared the result 

with the experimental Nuclear Data Center (NDC) values. In addition, we found potential depth and surface thickness for four light 

nuclei. Correlations between the light nuclei show the facts about the nuclear structure characteristics, origin, and energies of these 

nuclei. Pearson’s correlation coefficient is accepted as the most common correlation coefficient. According to the values of Pearson 

correlation coefficients, it is observed that there is a significant positive correlation between the nucleons examined. Finally, we 

plot the E-V0-a diagrams for those values to optimize and provide the appropriate coefficients. It is shown that there is a good 

agreement between the results of this work and experimental values.  

keywords: Schrodinger equation, woods saxon potential, proper quantization rule, binding energy. 

Woods-Saxon Potansiyeline Ait Uygun 

Kuantumlamış Çözüm Metodu İle Enerji 

Spektrumlarının Belirlenmesi 
ÖZ 

Bu çalışmada,  Woods -Saxon potansiyeli (WSP) göz önünde bulundurularak sıfır olmayan L değerleri için Schrodinger 

denkleminin enerji spektrumu uygun tam çözüm metodu kuralı kullanılarak hesaplanmıştır. Çalışmamızda,rastgele hafif nükleer 

çekirdeklerinin bağlanma enerjileri (BE),optimize edilmiş potansiyel derinlik (V0) ve yüzey kalınlıkları (a)  hesaplanmıştır. 

Çekirdeklerin WSP ile enerji seviyelerini hesaplamak için, daha önce dikkate alınmamış olan PQR yöntemi kullanılmıştır.Kuantum 

mekaniğinde, enerji sistemlerinin, momentumun ve kuantum durumlarının kesin çözümü, uygun kuantumlanmış çözüm (PQR) 

yöntemi kullanılarak bulunabilir. MatLab simülasyon programını kullanarak, bu hafif nükleer çekirdekleri için enerji spektrumunun 

sayısal değerlerini elde ederek, sonuçları, dört hafif nükleer çekirdeği için potansiyel derinlik ve yüzey kalınlığı deneysel verilerle 

nükleer veri merkezi (NDC) MeV karşılaştırılmıştır. Bu çekirdekler arasındaki korelasyon ilişkileri için istatistiksel analizler 

yapılarak,  çekirdeklerin nükleer yapı özellikleri ve enerjileri seviyeleri arasındaki ilikliler detaylandırılmıştır. Hafif nükleer 

çekirdekler için Pearson’un korelasyon katsayısı en yaygın korelasyon katsayısı olarak kabul edilerek, incelenen nükleonlar 

arasında anlamlı bir pozitif korelasyon olduğu gösterilmiştir. Son olarak, uygun katsayıları optimize etmek için bu çekirdeklere ait 

( E-V0-a) ilişkili olarak gerekli grafiksel diyagramlarını çizilmiştir. Çalışmanın sonuçları ile deneysel değerler arasında iyi bir uyum 

olduğu gösterilmiştir. 

Anahtar Kelimeler: Schrodinger denklemli,woods saxon potansiyeli, tam çözüm metodu, bağlanma enerjisi.

 
 

 

 1.INTRODUCTION 

Since the investigation of quantum systems is 

accompanied by computational challenges and some 

great complexities, physicists are usually trying to make 

calculations as simple as possible. Examining precisely 

solvable systems is very important in quantum 
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mechanics. The Schrodinger equation for all quantum 

numbers n andl can only be solved for a small number  

of potentials such as Hulthen, Harmonic Oscillator, and 

Hydrogen atom[1,2]. The WS potential is important in 

describing the interaction between a light nucleus and a 

heavy nucleus as a solvable potential. However, the 

Schrodinger equation with l ≠ 0 in the presence of WS 

potential does not have an analytical solution[3]. 

Recently, several methods have been presented for 

solving quantum systems. They are the supersymmetric 

quantum mechanics (SUSYQM) approach[4], the 

supersymmetric Wentzel–Kramer–Brillouin (SWKB) 

method[5], the Nikiforov–Uvarov (NU) method[6,7], 
the factorization formalism[8] and exact quantization 

rule method(EQR)[9– 11], the exact quantization rule 

with the generalization of the Bohr-Sommerfeld 

quantization rule[12] and the Wentzel–Kramer–

Brillouin(𝑊𝐾𝐵) 𝑚𝑒𝑡ℎ𝑜d. Apart from these approaches, 

the quasilinearization method (𝑄𝐿𝑀) is also applied to 

investigate random physical potentials[13-21]. The EQR 

method is an effective instrument for obtaining the 

eigenvalues of all solvable quantum potentials[22 − 27]. 
Since the complex integral calculations of quantum 

correction are considered a problem, The EQR method is 

developed to improve the quantum correction term. 

Furthermore, in quantum mechanics, the solution of 

energy systems and quantum states can be obtained using 

the proper quantization rule (PQR) method. This method 

has been developed by converting the exact quantization 

rule (EQR) into simpler basic integrals [1,2], especially 

for the calculation of complex energy spectra with 

nuclear potentials. As a matter of fact,  the PQR method 

is achieved with the aim of creating more symmetry 
[29 − 33]. The PQR method is applied for some exactly 

solvable quantum systems such as the finite square well, 

Morse, hyperbolic- Rosen–Morse, Poschl–Teller, 

Hulthen, harmonic oscillator, and the hydrogen atom, 

WSP with Pekeris approximation, WS potential, the 

Kratzer, modified harmonic oscillator, trigonometric 

Rosen–Morse potential and others [2].  

The aim of this study is to investigate the energy spectra 

of nuclei using the Schrodinger equation for the WS 

potential by the PQR method which has not been 

considered for nuclei before. The first benefit of PQR 

method over EQR method is that by finding the solution 

of the complex quantum correction term in EQR method, 

we must find the energy spectra and wave function of the 

initial state of the nucleus at the same time, but in order 

to find the energy spectra of a quantum system such as 

the nucleus via the PQR method, we only need to know 

the ground state energy. Another benefit of the PQR 

method is that finding the solution of one of two integrals 

is enough to examine the system. Thus, for quantum 

systems such as nuclei and exactly solvable potentials, 

the PQR method can be useful and simpler. So, In order 

to calculate the energy levels of the nuclei with WSP, the 

PQR method is utilized. Using the Matlab computational 

program, the numerical values of the binding energy for 

random light nuclei have been achieved, the potential 

depth and surface thickness for random light nuclei have 

been found and the results have been compared with 

experimental values. correlations between the light 

nuclei show the facts about the nuclear structure 

characteristics, origin, and energies of these nuclei. Since 

Pearson’s correlation coefficient is accepted as the most 

common correlation coefficient, it is shown that there is 

a good agreement between the results of this work and 

experimental values. 

 

2.PROPER QUANTIZATION RULE 

The Schrodinger equation is stated as 
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which is equal to the Riccati equation 
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where  φ(x) = Ψ(x)−1 dΨ(x) dx⁄  is the logarithmic 

derivative of wave function ψ(x). This exact quantization 

rule was displayed[5, 6] for the Schrodinger equation as 
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where k(x) = √2M[E − V(x)] ħ⁄  and xAand xBare two 

turning points determined by E = V (x). N = n + 1 is the 

number of nodes of φ(x) in the E ≥ V (x). The quantum 

correction term, which is the second integral of the 

equation (3), is derived from the ground state[1], 

     0 0 00

B

A

x

x

k x xQ Q dxx   
 

(4) 

The momentum k(x) in equation (3) is relevant to the 

energy spectrum. Finally, we can use this rule to achieve 

the energy spectrum of nuclei in presence of WSP:  
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The solution of two integrals of quantum correction in 

equation (3) and (4), for some physical potentials, may 

be difficult[9]. Hence, with the development of the 

method mentioned below, the PQR method is achieved. 

Finally, considering N = 1, i.e., n = 0 in equation (3) gives  
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Which we can get  
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After replacing equation (7) into equation (3), we achieve 
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likewise, equation (4) can also be written in the same 

form 
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Equations (8) and (9) are introduced as the PQR method.  

 

3.EIGENVALUES OF WOODS-SAXON POTENTIAL 

USING PQR METHOD 

The WS potential  in  N- dimensions is characterized by 
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where R0 = r0A1/3 is the nuclear radius with r0 = 1.25 fm, 

V0 is the potential depth and a ≈ 0.5−0.6 fm is the surface 

thickness. In addition,  1 r−2⁄ is the orbital coupling term. 
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The turning points zAand zBwill be determined  
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The momentum k(z) is given as 
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The Riccati equation (2) becomes 
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Based on the Sturm–Liouville theorem[33], after getting 

φ0(r) = c1z + c2(c1 > 0) and replacing φ0(r) into 

equation (15) the Energy equation of ground state can be 

achieved 
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After solving the first integral in equation (8), we have 
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substituting Enin equation (17) with E0 given in equation 

(16) and considering equation (8), we achieve the 

following result for the energy levels:  
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                                                                                  (18)                                                         

4. DISCUSSION AND RESULTS 

In this study, the binding energy for four random light 

nuclei including, 7Li,  9Be ,11B and 15N is obtained using 

the final energy Equation-18 and the results are compared 

with the experimental values. In addition, we found the 

optimized potential depth and thickness of the surface for  

these nuclei. The results are presented in Table- 1 of  

https://www-nds.iaea.org/ NDC and PQR. Thus, it seems 

that the method can obtain the Binding Energy (BE) of 

light nuclei in a good agreement with the experimental 

values. An increase in the number of neutrons in the 

nuclei leads to the instability of the nuclei and their 

activity. Therefore, the shell model for heavy nuclei is 

not well justified. For each of the nuclei, at the 

approximate eligible potential depth and surface 

thickness listed in Table- 1, the expected approximate 

amount of energy is obtained. It can be found that as the 

surface thickness of these nuclei increases, their energy 

gradually decreases. Besides, the energy gradually 

increases with the increment of the potential 

depth.Moreover, as the nuclear radii of the nuclei 

increase, the potential depth and binding energies of the 

nuclei increase. In this study, the Pearson’s correlation 

https://www-nds.iaea.org/
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method was used  that analyzes the relationship between 

variables.  

The direction of the relationship and correlation 

coefficient indicates its degree. The degree of this 

relationship can be determined by the correlation of  

significant correlation at p  0.01 .The correlation 

analysis degree determines the r coefficient. This value is 

between (-1 and +1). If it is close to r = -1, there will be 

an inverse negative relationship[34-36]. It shows a 

positive relationship if r = +1 and if r = 0 there will be no 

correlation connection between two variables. Table 2 

shows the Pearson’s correlation matrix between the 

analyzed nuclei 7Li,  9Be,11B, and 15N. In Table-2, 

Pearson’s correlation coefficient has been shown in 

relation to various nuclear properties of the nuclei. Table 

2 shows that the relation between 15N and 7Li (0,98) is 

stronger in terms of correlation than15N and 11B (0,80). In 

addition,
7Li  is significantly correlated with 9Be (0,99). 

According to the statistical analysis of the nuclei in Table 

-1, The average of nuclear radii 0.56 fm corresponds to 

the radius of 
11B  nucleus in the median.Furthermore, the 

average binding energy of the nuclei calculated with the 

help of the experiment and Theory is compatible. 

 

The experimental average binding energy of the cores is 

95.13 MeV and the calculated value is  95.21 MeV. In 

terms of energy, the standard deviation is 0.06, which is 

95.13 ± 0.06 and 95.21 ± 0.06. According to the 

calculated PQR method, as shown in Table-1,  7Li,  9Be, 

11B and 15N  nuclei have values of the standard 

deviation than the experimental binding energies as 39.24 

±0; 58.16 ±0.01; 76.19 ±0,27; 115.49 ± 0.12; 186.56 

±0.11, respectively.  

According to the values obtained through the Matlab 

computational program, diagrams of the energy, 

potential, surface thickness for selective nuclei (7Li, 9Be 

,11B and 15N) are plotted as shown in Figures 1(a,b,c), 

2(a,b,c), 3(a,b,c) and 4(a,b,c) and the optimized values 

are found by using these diagrams. 

Table .1 BE of   7Li,  9Be ,11B and 15N nuclei  

           

 

 

 

 

 

Table.2 Pearson’s correlation matrix between the analyzed nuclei 

Nuclei 7Li  
9Be  

11B  
15N  

7Li 1    

9Be 
0,9932

98 
1   

11B 
0,9958

18* 

0,978

59 
1  

15N 
0,9887

66 

0,913

015 

0,809

514 
1 

*Bold value indicates significant correlation at p  0.01 

 

( a)For 7Li nuclei, BE as   function of V0 and a 

 

(b ) For 7Li nuclei, BE as   function a 

Nucl

ei 

a 

(fm) 

V0 

(Mev) 

BE(Exper.) 

(NDC) MeV 

BE(Calcul.) 

(PQR) MeV 

Li7 0.5 69.00 39.24 39.24 

Be9 0.50 89.30 58.16 58.18 

B11 0.55 152.00 76.19 76.57 

N15 0.59 114.00 115.49 115.66 

Min 0.50 69.00 39.24 39.24 
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             ( c)  For 7Li nuclei, BE as  function V0 

 

Figure1. BE as a  function of V0 and a, BE as a  function of a, BE as 

a function of V0  for
7Li  

. 

 

    (a  )For 9Be nuclei, BE as   function of V0 and a 

 

(b ) For 9Be nuclei, BE as   function a 

 

(c ) For 7Li nuclei, BE as   function V0 

 

 

Figure 2. BE as a function of V0 and a, BE as a  function of 

 a, BE as a  function of V0  for 
9Be  

 

 

 (a)  For 11B nuclei, BE as  function of V0 and a 

 

(b)  For 11B nuclei, BE as  function V0 
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Figure 3.  BE as a  function of V0 and a, BE as a  function of a, BE as 
a  function of V0  for11B. 

 

(a)  For 15N nuclei, BE as  function of V0 and a 

 

(b)  For 15N nuclei, BE as  function V0 

 

(c)  For 15Nnuclei, BE as  function a 

 

Figure 4. BE as a  function of V0 and a, BE as a function of a, BE as a  

function of V0 for . 

 

5. CONCLUSIONS 

In this study, the PQR method of the related mechanism 

is described and then the energy spectrum is obtained for 

the WS potential .the numerical calculations for four 

various light nuclei are presented and the results are 

compared with experimental values. The most important 

feature and originality of our study were that until this 

time the studies required numerical and complex and 

high mathematics. But, PQR method developed by 

converting the exact quantization rule (EQR) into simpler 

basic integrations, especially for the calculation of 

complex energy spectra with nuclear potential. According to 

the initial state of φ0(x) achieved from the Riccati 

equation, we were able to calculate the binding energy of 

the nucleus at the presence of  WS potential with the 

Schrodinger equation via PQR method. This is 

considered as an important feature that the symmetry of 

the PQR method is greater than that of the EQR method. 

In fact, the momentum integral ∫ k(x)
xB

xA
dx increases by 

one when the number of the nodes of the wave function 

φ(x) increases by one. The Pearson correlation 

coefficient matrix between the various nuclear structures 

between samples within the WS potential frame is given 

in Table-2. The relationship between binding energy, 

nucleon radius, and nuclear potential is multiple 

correlations and gives information about the Pearson 

correlation.  
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