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Abstract

Fibonacci numbers and their polynomials have been generalized mainly by two ways: by maintaining the
recurrence relation and varying the initial conditions, and by varying the recurrence relation and maintaining the
initial conditions. In this paper, we introduce and derive various properties of r-sum Fibonacci numbers. The
recurrence relation is maintained but initial conditions are varied. Among results obtained are Binet’s formula,
generating function, explicit sum formula, sum of first n terms, sum of first n terms with even indices, sum of
first n terms with odd indices, alternating sum of n terms of r—sum Fibonacci sequence, Honsberger’s identity,
determinant identities and a generalized identity from which Cassini’s identity, Catalan’s identity and d’Ocagne’s

identity follow immediately.
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1. Introduction

Fibonacci sequence is the most studied sequence in the history of mathematics. In [14], the said sequence is given by A000045.
The sequence is generated by a recursive formula f,, = f,,_| + f,—2, for n > 3 with f; =0 and f, = 1. The sequence has many

fn+1

interesting properties. For example, the ratio converges to the golden ratio as n tends to infinity.

Various generalizations of the aforementim;led sequence have been derived since it was first discovered by Fibonacci in
the 13™ century. Fibonacci sequence has been generalized mainly by two ways: by maintaining the recurrence relation and
varying the initial conditions [1, 3, 4, 5, 7, 9, 10], and by varying the recurrence relation and maintaining the initial conditions
[2,4,8,9, 11, 13, 12, 15]. Some of the properties that have been obtained by various researchers are not limited to finding a
closed form for the n term of the sequence, sum of the first n terms of the sequence, sum of the first n terms with odd (or even)
indices of the sequence, explicit sum formula, Catalan’s identity, Cassini’s identity, d’Ocagne’s identity, Honsberger’s identity,
determinant identities, and generating function among many others.

Let f, be the n'" term of Fibonacci sequence. Binet’s formula gives a closed formula for f, as

fnzﬁ(a"*‘—ﬁ”*‘), (L)

—Hﬁandﬁ: 1_\6.

Companion to Fibonacci numbers are Lucas numbers with the same recurrence relation as Fibonacci numbers except for

1
where a =



http://oeis.org/A000045
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initial conditions which are 2 and 1. Binet’s formula for Lucas numbers, /,, is given by

L =a" '+ Bt (1.2)

Here, 1, is the n'™ Lucas number.
Some properties of Fibonacci sequences explored in this paper include the sum of the first n terms of Fibonacci sequence,

ht+h+fh+ 0+ o= fu— 1, (1.3)

and the Honsberger’s identity
Jntm = fafm+ fos1fms1, (1.4)

foralln > 1andn > m.

Definition 1.1. The n'" term of r-sum Fibonacci sequence, hn.r is given by

hn.,r:fn +ff1+l+"'+fn+r71~ (1.5)

Using Definition 1.1, it follows that the first term
h17r:fl+f2+"'+fr:fr+271
and the second term

hh,=hL+f/++frr1=friz— 1

As with Fibonacci sequence, the r—sum Fibonacci sequence satisfies the recurrence relation

hn,r = hnfl,r + hn72,r; (1.6)

for n > 3, with initial conditions 4y , = fi4o —1and hy , = fri3 — 1.
Few entries of &, , are given in Table 1 below.

Table 1. »-Sum Fibonacci numbers

r|hiy | hoy | h3y | hay | hs, | hey | hor | hgy | hoyr | hioy | A1y
1 0 1 1 2 3 5 8 13 21 34 55
2 1 2 3 5 8 13 21 34 55 89 144
3 2 4 6 10 16 26 42 68 | 110 | 178 288
4 4 7 11 18 29 47 76 123 | 199 | 322 521
5 7 12 19 31 50 81 131 | 212 | 343 | 555 898
6| 12 20 32 52 84 136 | 220 | 356 | 576 | 932 1508
71 20 33 53 86 | 139 | 225 | 364 | 589 | 953 | 1542 | 2495

When r = 1,2, we get Fibonacci sequence with different initial conditions. For r > 3, we get Fibonacci-like numbers. We

also note that when r = 4, we obtain Lucas numbers.
This paper is organized as follows: Some basic properties of 4, , are given in Section 2. In Section 3, we obtain Binet’s

formula and generating function for these numbers. Further properties of these numbers are presented in Section 4. Moreover,
determinant identities are presented in Section 5. We conclude the paper in Section 6.

2. Preliminary Results
We start off, with these important and interesting properties:

Lemma 2.1. Forn > 1, we have h,3 = 2h,, 5.
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Proof. From (1.5), we have

hn.,3 = fn +fn+l +fn+27

= fo+ for1 + fu + fut1,
= 2(fn +fn+1),
=2h,,.
O
Proposition 2.2. The n' term of r—sum Fibonacci number, hy, r, can be expressed as hy = fuiri1 — fut1, forallr > 1.
Proof. From recurrence relation (1.6) and equation (1.5), we have
hn.r = hn—l,r + hn—Z,ra
= (foct Hfut ot forr2) + (a2t fat 0+ fair-3),
=[(fi+fot -+ farr2a— (it ot + fa2)|[ i+ ot F frgrz) = (i ot 4 fuo3)]
By equation (1.3), we get
hn,r = [(fn+r - 1) - (fn - 1)} + [(fnJrrfl - 1) - (fnfl - 1)]
= fotr — ot Jutr—1— fa—1
= fotre1 = fat1-
O
Proposition 2.3.
r—2
hnr = fritfar2+ far1 Y fie
i=1
Proof. By Proposition 2.2, we have that
hn,r:fn+r+l 7fn+l- 2.1
Now, by Honsberger’s identity (1.4), we have
Jonvr1 = fretfor2 + frfurr
Substituting this sum in (2.1), we obtain
hn,r = fr+1fn+2 +frfn+1 _fn+1
= fefor2 + for1 (fr - 1)'
n r=2
Since Y fi = fup2 — 1, then hy = frot fus2 + fas1 Y fi- O
i=1 i=1

Theorem 2.4. The numbers, hy ,, can be expressed in terms of Fibonacci and Lucas numbers as:

m

Zln+4i71 if r=d4m,

ljll

Zln+4i71 + foram if r=4m-+1,
i=1

n
Z Inssic1 + fovamer i r=4m+2,
i—1

1

™=

byvaict +2fnvami2  if r=4m+3.

Il
—_
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Proof. If r = 4m, then

hn,r = fn +fn+1 + - '+fn+4m71
= fn+2 +fn+4+ "'+fn+4m
=l 3+l + -+ lpam—1.

If r=4m+1, then
Ry :fn +fn+1 +"'+fn+4m

- fn+2 +fn+4 +--- +fn+4m72 +fn+4m +fn+4m
=l t+lyr+ +liram1 + foram-

If r=4m+2, then
hn,r = fn +fn+1 +fn+2+ +fn+4m+l

= fur2+ fora+ -+ foramr2
=l 3+l + o F bram—1 + fatams2-

If r =4m+ 3, then
hn,r :fn +fn+1 + - '+fn+4m+2

= fur2 + forat o+ foram + foramea + fovami2
=3+l + o+ lram—1 + 2 furdam2-

Remark 2.5. We note that:

1. Forr=1,2, the r—sum Fibonacci numbers, hy ,, are themselves Fibonacci numbers.

2. We have h, 3 as a sum of Fibonacci numbers for alln > 1.

3. The numbers, hy 4, are Lucas numbers for all integers n > 1.

4. The numbers, hy 4y, are sums of Lucas numbers for all integers m > 1 andn > 1.

5. Forallm € N and n > 1, we have that hy ami1, hy 4m+2, and hy a3 are sums of Fibonacci and Lucas numbers.
Proposition 2.6. Let m > 1. Then the n'" term of 4m—sum Fibonacci sequence, Iy am, satisfies the equation

hnam = fom+1ln+2m+1-

Proof. By Binet’s formulas for Fibonacci numbers (1.1) and Lucas numbers (1.2) and by equation (2.1), we have

hpam = fn+4m+1 - fn+1

1 (an+4m _ ﬁn+4m) . 1

o a—p

Since a8 = —1 then, («f)?" =1, and

(a" = B").

—

hn,4m — (an+4m _ (aﬁ>2man _ ﬁn+4m + (aﬁ)ZmBn)

R

1

=

(an+4m _ ﬁZman+2m o l}ﬂ+4m + a2mﬁn+2m)

(04

-

(an+2m(a2m _ﬁ2m) +Bn+2m(a2m _ﬁZm))

:a—ﬁ
1
_ﬁ

= fomstlntoms1-

((sz _ ﬁZm)(an+2m +ﬁn+2m)
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Setting m = 1 in Proposition 2.6, we get:
Corollary 2.7. hy4 =1,.3, foralln>1.
Proposition 2.8.
i B p =y hnit r — i o
k=2
Proof. Since hy, r = hyy1,— hu—1, then,
oy = B bty =1
Now, we have
W3, = ha h3 = ha rha
13, = hs rhay —hohs

Wi, = haths,—h3 tha,

h2 = hn—l,rhn,r - hn—Z,rhn—l,r

n—1,r
2
hn_’r = hn,rhn+l,r - hnfl,rhn,r

Adding up these equations, we get

h%,r +h%,r +h42¥,r +oe +h1%—1,r J'_hi,r = hnyrhn+1 - hl,th,r~‘

Proposition 2.9. For every positive integer n > 2,
hﬁ,r - hﬁ—l,r = hn+l,rhn72,r'
Proof. Since

h2 = hn—l,rhn,r - hn—l,rhn—Z,r

n—1,r
then,

hrzz.,r - hrzzfl,r = hrzl,r —hp 1y + B g2y
= hpyr(Pnyr —hn1p) + 12,
= hphy—2,+hp1,hp2,
=hy_2,(hnr+hp—1,)

= hn+1,rhn72,r~

3. Binet’s Formula and Generating Function
We start by getting a closed formula for #,, ;.
Theorem 3.1 (Binet’s Formula). The n'" term of r-sum Fibonacci sequence, hy,r, is given by

hmr - ﬁ [(hZ,r _ﬁ}ll,r)(xr171 - (hZ,r - ahl,r)ﬁnil] B

1-V5

5
dp =
an. ﬁ

3.DH
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Proof. Letn > 2, then r-sum Fibonacci numbers are defined by the recurrence relation
hn,r = hn—l,r + hn—2,r;

with initial conditions h , = f,42 — 1 and hy , = f,3 — 1, for all » > 0. The characteristic equation of the recurrence relation is
A% — A — 1 =0. We solve this equation to get its roots as

1+V5 1-v5
a=— and § = 7

These roots are real and distinct and thus the solution of the recurrence relation is of the form
hnr =Aa" +Bp", (3.2)

where A and B are constants.
Setting n =1 and n = 2 in (3.2), we obtain

Aa +Bﬁ = /’l17r
and
Ac? +BB*=hy,

respectively. Solving these equations simultaneously, we get

hy,— Bhy
A= Bhu,
a(o—p)
and
B— ahl,r_hZ,r'
Blo—p)
Thus the result follows. O

Corollary 3.2. The n'" term of the r—sum Fibonacci sequence satisfies the equation hy , = h ,f, + i rfu—1.

Proof. From Binet’s formula (3.1), we have

s = g (™ =) = (B (@2 = 2]
where @ = 1+2\6 and § = 1= \6 Since o = —1, then
hn,r _ alj [hz,r(anil _ﬁnfl) +h1’r(an72 _ﬁrﬁZ)]

= h2,rfn +h1,rfn71~

The following formula is rediscovered immediately upon setting » = 1 in (3.1).
Corollary 3.3 (Binet’s formula). The n'" Fibonacci number; f,, is given explicitly as
1

fo= gl =B

1-V5

5
dp =
an. ﬁ
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. . . . hnt -
Corollary 3.4. The sequence of ratio of successive r-sum Fibonacci numbers SARTS converges to the golden ratio, i.e.,
n,r
. hn+1,r 14 \6
lim —— = .
n—veo iy 2

Proof. From Binet’s formula (3.1), we have

1 n n
. hn+l,r . Ol—ﬁ [(hZAr _Bhlf)a - (h2,r_ ahlﬁr)ﬁ ]
lim W = lim 1 ,
n—o0 n—oo
r r [(h2,r - Bhl,r)an_1 - (h2,r - ahl,r)ﬁn_l]
1 5 1—+/5
where @ = i and f = 2\[.
Factorizing o1 we obtain
1 n—1 —(n—1) n:|
s G B |2 = Bh1 )t (o — thy )V B
fim = =l ,
n—=ee Mpr n—ree n—1[(h, . — Bh —(h . — ah —(n—1)Bn—1
(X—ﬁa [( 2,r ﬁ l,r) ( 2.r (04 l,r)a ﬁ ]

which simplifies to

n—1

. hp .
lim 7 — 1im

n—oeo 1, . n—oo B n—1
| (12, i)~ (a5

n—1
Since \g| < 1, we have lijn (g) =0 so that

fim Mty (e = Bhi)a ) 14VS
noe By onoe (o —Bhy) 2
O
We now obtain the generating function for r-sum Fibonacci sequence.
Theorem 3.5. Let H,(t) be the generating function for r—sum Fibonacci sequence, then
H (1) = hy gt +12(hoy — hy ) (3.3)

1—t—12

Proof. Let H,(t) = Z hy 1" be the generating function for r—sum Fibonacci numbers, then from h,, , = hy—1 , +hy—2 , We
n=1
have

Z hn,rtn = Z hn—l,rtn + Z hn—Z,rtn~

n>3 n>3 n>3

This is the same as

Y " —hypt? — byt =1 Y byt 12 "

n>1 n>2 n>1

or

Y bt —hypt? —hypt =t (Z B pt" — hm) 12 Y "

n>1 n>1 n>1
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Substituting H,( Z hy 1" we get,

n=1

H,(t) —hy t* — hy ot = t(H,(t) — hy ;1) + 2 H, (1),

Thus,
hy ot +t*(hay —hy,)
H.(t) = — : :
O
4. Properties of r-Sum Fibonacci Numbers
In this section, we obtain further properties of r—sum Fibonacci numbers.
Proposition 4.1 (Sum of first n terms). The sum of first n terms of r-sum Fibonacci numbers is given by hy1 2, — hy ,.
Proof. By Binet’s formula (3.1), we have
Z hk r= ﬁ h2 r ﬁh]),«)(XO - (hZ.,r - ahl,r)ﬁo + <h2,r - ﬁhl,r)al - (hZ.r - ahl,i’)ﬁl +oet (hZ,r - ﬁhl.r)anil
—(ha — O‘hl,r)ﬁnil]
1 _ -
“ B (o, —Bhiy) (1 +a+-+a" ) = (o, —ahi,) (1+B+---+B" )]
1 o"—1 "—1
7[3 [(hZ r ﬁhl r) g} (hZ,r - ahl,r)ﬁﬂl] .
Since ¢ — 1 = —f and f — 1 = —, we have
§ b, = o [V B = ot~ )~ 5]
= a-B —ap
Since —af} =1, we get
Z ﬁ [(h2,r = Bhus) (0" — 0t) — (o — athy ) (B" — B)]
_ (h2,r - Bhl,r)an+l - (h2,r - ahl,r)ﬁn-H o (hZ,r - ﬁhl,r)a - (hZ,r - ahl,r)ﬁ
o—p o«—p
= hn+2.r - h2,r-
O

Proposition 4.2 (Sum of first n terms with odd indices). The sum of the first n terms with odd indices of r—sum Fibonacci
numbers is given by hy, , — hy  + hy .

Proof. By Binet’s formula (3.1), we have

n—1 1
Z hoks1,r =
=0 o —

+ h2.r - ﬁhl.r)azn_2 - (hz-" - ahlﬁ")ﬁzn_z]

[(hZ,r - ﬁhl.r)ao - (h2,r - ahl,r)ﬁo + (h2,r - ﬁhl,r)a2 - (h2,r - OChl,r)B2

- Otiﬁ [(hZ,r_ﬁhl,r)(] + 062—|— "'+O‘2n72) - (h2,r_ ahlw)(l +B2+"'+ﬁ2n72)]

_ 1 (ha, = Bhy) (0 = 1) (o — ohy ) (B> —1)
Ca-p a?—1 B2—1 '
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Since a> — 1 = a and B2 — 1 = B, we have

Z hojy1 = B [(hor = Bhy ) (0" =™ ") = (hyy — 0ty ) (B> = B71)]

_ (h2,r - ﬁhl,r)azn_l - (h2,r - ahl,r)ﬁzn_l _ (h2,r - ﬁhl,r)a_l - (h2,r - ahl,r)ﬁ_l
a—pB a—p

= h2n,r - hO,r
= h2n,r - h2,r + hl,r~

Proposition 4.3 (Sum of first n terms with even indices). The sum of the first n terms with even indices of r—sum Fibonacci
numbers is given by hyu i1, — hy .

Proof. By Binet’s formula (3.1), we have

n
1 _
Y o= ) [(h2,y = Bl o' = (ha,y — oty )B + (hay — Bl ) o = (hoy — @thy ) B + -+ (hoy — By ) o™
k=1
_(hZV ah r)an 1]

1[3 [(har = Bhip) (040 4+ @) = (hyy — ahy ) (B+ B+ 4 71)]

(=B ) X (1, — oy ) BB

_ﬁ 2_1 ﬁz_l

Since o> — 1 = a and B> —1 =3, we get

thkr = [3 [(h2r — Bl ) (@2 = 1) = (o, — ath ) (B — 1)]

_ (hZ,r - ﬁhl,r)azn - (hZAr - ahl,r)ﬁzn i (hZ,r - ﬁhl,r (h2 r ahl,r)
a—p a—pB

= h2n+l,r - hl7r-

Proposition 4.4. For every positive integer n,
1
hiy+har+hyp+-+h3po,= 3 (h3n,r —hoy+hi ).

Proof. By Binet’s formula (3.1), we get

n
Z h3k72,r = [(hZ,r - ﬁhl,r)ao - (hZ,r - ah],r)ﬁo + (h2,r - ﬁhl.r)a3 - (hZ,r - ah],")ﬁ3
k=1
+- h2r Bhlr) 3n 3 (th_ahl,r)ﬁ3n73]
1 _
= ﬁ[(hzr B )1+ 0 407" ) = (hy, — oty ) (14 B 4 7))
1 a3n_ 3n_1
a—B (hz,rfﬁhl,r)ﬁ*(h27r*aho)ﬁ
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Since a® — 1 =2a and B3 — 1 = 23, the above equation simplifies to

i h3k72,r = ﬁ [(/’l27r —ﬁhl_’r)(oﬁ’l*l _ afl) _ (h2.r . O‘hl,r)([pnil _B—l)}
k=1

(hZ,r _ﬁhl,r)O‘3n_l - (hZ,r - ahl,r)ﬁ3n_l _ (hZ,r _ﬁhl,r)a_l - (hZ,r - ahl,r)B_l

2 a—p oa—f
1
= =(h n,r —h r
5 (B3nr = o)
1
= §(h3n,r - hZ,r + hl,r)-
O
Proposition 4.5. For every positive integer n,
1
hyy+hs,+hg, =4 +h3_1,= §(h3n+1,r —hi,).
Proof. By Binet’s formula (3.1), we have
n
Z h3k—17r = [(h2,r - ﬁhl,r)a - (hZ,r - ahl,r)ﬁ + (h2,r - ﬂhl,r)a4 - (hZ,r - ahl,r)ﬁ4
k=1
vt (hoy — Bhy ) a2 — (hyy — athy ) B2
1 e
il (o — Bl ) (@ + ot + -+ @ 72) = (hay — ahy ) (B + B+ + B2
1 a3n+] a ﬁ3n+l _ﬁ
= B |:(h2 r—Bh r)ifl — (2 — ahl’r)[ﬁ]}
Since o® — 1 =2a and 8% — 1 =2, then
n
Y sty = 5 (o — Bl (0 — 1) = (o, — by ) (B — 1)]
k=1 2(05 -B)
(th Bhl r) - (hZ,r*ahl,r)ﬁ:%n _ (h2r ﬁhl N (hZ,r*ahl,r)
2 a—pB -B
1
= E(hSnJrl,r - hl,r)-
O
Proposition 4.6. For every positive integer n,
1
h3,r + hﬁ,r + h9,r +- h3n,r = §(h3n+2,r - h2,r)~
Proof. By Binet’s formula (3.1), we obtain
- 1 2 2 5 5 3n—1
Z = a—p [(hin—Bhiy)a” — (hyr—athy ) B~ + (hoy — Bhy )00 — (hoy — athy ) B + -+ (hor — Bhy ) ot

- (h27r - ahlﬁr)ﬁ?mil]

:ﬁ[(/@zr Bhi) (0 + 0 4+ ") = (hyp — 0ty ) (B*+ B+ 4+ )
3n+2 _ 42 342 )
- ﬁ (hz’riﬁhl”)aasi_la*(hz,r—ahl,r)ﬁ ﬁ3_1ﬁ
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Since a® — 1 =2a and B3 — 1 =2, we get

ih”” - # (2= Bl ) (@ — &) = (o, — ) (B! — B)]
k=1 -B)
_ 1 (hy =)o — (hy,

- ahl,r)ﬁ:;rhq . (hZ,r - ﬁhl,r)a - (hZ,r - ahl,r)ﬁ
2 oa—p o—p
1
=—(h n+2,r — r).
5 B3ni2,r —hay)

Proposition 4.7 (Alternating sum formula). For every positive integer n

i(*l)k-‘rlhk —

b (71)n_1hn71,r +2hl,r - h2,r-
k=1

C k+1 1
Z(fl) * hkr:

[(hZ r Bhl,r) - (hZ.,r - ahhr) - ((hZ,r - ﬁhl.r)a

+o o ()" (e — Bl e
1

= (o~ ahi)B)
— (hyr— ahl,r)ﬁ”_l)]

o— B[(hzr B (1 — et (—1) 1)

= Ociﬁ |:(h2’r_Bhl,r)((:Tx)nl)

((h2y = othy ) (1= B4+ (1)1 B )]

1 - (hZ,r - ah],r)((_ﬁﬁ)n_ll):| .
Since —¢ — 1 = —a? and —f8 — 1 = — 3%, we have
L 1 —1)on—1 —1)1n—1
L0 = g [(hz,, ) TS, am,»()_gz}

= (-1 )ni] %ﬁ [(hz’r — ﬁhl,,)oc" 2_ (h27r — ah”ﬁ)ﬁan]

+ —ﬁ [(ho.r = Bhiy) o = (hoy — othy 1) B2

_ n— 1 (hZ,r*ﬁhl,r) (hZ,r* ahl,r)

— ) et { ) ]

This gives,

™=

(=1 ey = (-

k=1

. 1
1) 1hn—l,r + W [(hz,r - ﬁhl,r).B2 - (h2,r

— athy )0
(1) {hl,r (aéf) —hy, (O‘;_gz)]
= (=1)" 1+ [hl (23 é”) ~har (aozc:gzﬂ'

Since @ — B = /5 and o> — B = /5, then

(ngE

(=1, = (=1

k=1

)nilhnfl,r + 2hl,r - h2,r

Proposition 4.8. For every positive integer n

0
t /n
h2n7r = Z (k) hk,r-
k=0



Proof. By Binet’s formula (3.1), we get

Iy
=
5

()]

han,r = a i ﬁ [(h2,r - ﬁhl.r)azn_l - (hZ.r — (Xhl_’r)ﬁzn_l]
2n n
= aiﬁ [(hz,r—ﬁhl,r)% —(hyr— ahl,r)ﬁﬁ].
Since (X2:1+(xandﬁ2:]+ﬁ then
han,r = o — ! B |:(h2r B r)(l—:xa)" —(hg,,—ahlﬁr)(lzﬁ)n} .
Since (14x)" = y x*, we have
+ ,?~0< )
(Y [ Bl — (i, — a5
—,;o(k)[ - |

I
~
iNaeh
Y
Fanl

Proposition 4.9 (Explicit sum formula). For every positive integer n

—k—1 "53]
hn,r:hl,r Z <n k ) h2r hlr Z (n
k=0

k7
where |n| is the greatest integer less than or equal to

Proof. By generating function (3.3), we have

hy gt +12(hoy —hy )
Zh"’t o 1—t—12

=t +t(hay —h1 )] (1 —t —13)7"
= t[hy,+1(hay — by )][1— (1 +23)] !

= (b1, +1(hor — 1) i i k'(n_il)'

Replacing n by n+k+ 1, we get

Z hn,rtn = [hl,r +t(h2,r - hl r)}
n=1

On Generalized Fibonacci Numbers — 197/202
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Equating the coefficients of #"*, we obtain
o ") k—2
hn.,r:er Z ( k > +(h2,r_h1,r) Z ( k )
k=0
Hence the proof follows. O

Proposition 4.10. For every positive integer n,

hony = (=1)"(harfui2 =1 rfor3)-
Proof. By Binet’s formula (3.1), we have
1

hop,= P [(hZ,r — ﬁh17r)a*”*l _ (hZ,r _ ahl,r)ﬁinil]
1 1 1
— Py (hor— ﬁhu)W —(hy,— ah”)W )
. 1 1
Since o —pB and B = —a, we have
1
hfnvr = m [(hZ,r - Bhl,r)(_l)n+lﬁn+l - (h2,r - Olhl"r)(—l)”_‘—la"""l]
G . .
- o—j [(hz-f - ﬁhl-,r)ﬁ - (h2,r - (Xhl,r)(x ]
(71)n+1
= [hZ,an+1 *hl,rﬁnﬂ 7h2’ran+1 Jrhl,r(xnﬂ}
(_1)n+2
= T_[} [h27r(an+l _ ﬁn+1) _hl,r(an+2 _ ﬁn+2)]
_ (_1),,+2 hz,,((xnﬂ — B - hl,r(anﬂ —/3"+2)

a—p o—p
= (_ 1 )n+2(h2,rfn+2 - h17rfn+3>
(_l)n(h2,rfn+2 - hl,rfn+3)~

O
Proposition 4.11 (Honsberger’s identity). If n > m then
hatmr = P fin + Py 1 finr 1,
forallm >0 andn > 0.
Proof. Since by Corollary 3.2, we have
hnmr = My frvm + P r fatm—1,
then by Honsberger’s identity of Fibonacci numbers (1.4), we get
My = o (fufm + foct fmst) F 0 (faot o+ fufme1)
= fm(hopfu+ 1 rfo1) + fnr1 (o fo1 + R fo)-
Applying Corollary 3.2 again we have, Ay m r = by fin + Bnt r fins1 - O

Corollary 4.12. We have:

1. h2n7r = hn,rfn + hn+1,rfn+la
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2. hon—1y = huypfuot +hosr fo,
3. how2y=hurfo2+hay1fat,
4. hon—ky = huyfo—i+hntr+ fa—ig1-
Proof. The results follow from Proposition 4.11 upon settingm =n,m=n—1,m =n—2, and m = n — k in that order. =~ [
Proposition 4.13. For every n > 2, we have
N N e

Proof. We induct on n. For base case, n = 2:
The left hand side gives

h2.rh3,r + h3,rh4,r = h3,r(h2,r + h4,r)
while the right hand side gives
Wy =15, = (hay— o) (ha +hoy) = hap(har +ho).

Since the left hand side equals to the right hand side, the base case holds.
For the induction step, we will assume the formula holds true for n and prove that it holds true for n+ 1.
Since by inductive hypothesis

hZ.,rhS,r + h3,rh4,r +- h2n71,rh2n,r = h%n,r - h%,ra

then
ho o3+ h3 pha o+ hop—t1 phonr + hophong1 r + hongt phongo r = h%n_, - h%,, + honrhons 1 r 4+ honst phong

= h%n_,, + honrhons1,r— h%’, + hopi1 rhonso,r
= hon(hany + hons1 ) + honst phonso,r — h3,
= honrhansa,r + honit fhonsar — 3,
= hani2,r(hony + hons1 ) — 3,
= Mo, =15

By the principle of mathematical induction, the result follows. O

Lemma 4.14. The n'" Fibonacci number; f,, is given by

o h2,rhn,r - hl,rhn+1,r
fn= 2 :
2 hihs,

Proof. We have, by Binet’s formula (3.1), that

(ha, = Bhy o ! n (ahl,r_hZ,r)ﬁn]:| o r[(hz,r—ﬁhl,r)a" n (ah, —hz,r)ﬁn}

h2,rhn,r - hl,rhn+1,r = h2,r |:

oa—B oa—p a— a—p
= ha, {hz(a;_gl) +h1(°‘;_g2)} —hi, [hz,( ’ - g”> Y hy, (a”*; - g"‘)]
= an;_gnl 13, —hi,] + holcr_hzﬁr (a2 — B2 — " + B"]
= an;:gnl (W, —hi,—hi o).
Now,
fo QTP by By

(X—B B h%r*hl,rhlr



On Generalized Fibonacci Numbers — 200/202

Theorem 4.15 (Generalized identity). Let hy, , be the n'" term of r—sum Fibonacci sequence then

(71)m—k—1

2 1 7 [(hZ,rhk-H,r —h ,rhk+2,r) (h2,rhn—m+k+1,r —h ,rhn—rn+k+2,r)] s 4.2)
hy = hirhs,r

hm,rhn,r - hn1—k,rhn+k,r =

where n > mand k > 1.
Proof. By Binet’s formula (3.1), we have
hn,r :Aanfl +Bﬁn71

hy,— Bhy, h,—ha, 1 5 1—-+5
where A = 2 B 1’,B:a1’ 2’,05: +\[andﬁ: Z\f'

oa—f a—p 2

Now,

hm,rhn,r 7hm—k¢rhn+k,r _ (A(Xm_l +Bﬁm_1) (A(Xn_l +Bﬁn_1) o (A(Xm_k_l +Bﬁm_k_1> (Aan+k—1 +Bﬁn+k_1>

an(at e[

ak Bk
=AB(-1)* (a" _ ﬁk) O ) (ﬁn—m+k -~ an—m+k>
_ _AB(_l)mfkfl (ak _ Bk) (anferk _ ﬁnfmjtk).

B, i,

Since —AB= /"""
(@—p)

, then

hz,r - h17rh37r m—k— n—m n—m
e

(1, — b ghs) (1) [aa" - gk (a*1m+ak_gnm+k)] :

hm,rhn,r - hn1—k,rhn+k,r =

By Lemma 4.14, we have

ok —B*  hy ki — i,

fen =g B M, —hi,
and

Jn-mtkt1 = ot - g — ho rhn—mikt 1, —hl.rhn—m+k+2,r.

a-p h3 , —hi sh3

So

Mol — ik i = (— 1)mik71 (h27rhk+17r — M 7’hk+27f)2(hZ,rhn—m+k+1,r - hl,rhn—m+k+2)

hy = hy 3,

Hence the proof follows. -

Corollary 4.16 (Catalan’s identity). If we take m = n in the generalized identity (4.2), we obtain

(_ 1)n—k—1

2
SASEEVARR N A ,
h%r_hl,rhfi,r[ 2rhiirr — hrhigoy]

2
hn,r - hn—k,rhn+k,r =

foralln>k>1.

Corollary 4.17 (Cassini’s identity). If m = n and k = 1 in the generalized identity (4.2), then
hy = hn 1 chir e = (=1)"72(hy, — 1 ha ),

foralln>1.

Corollary 4.18 (d’Ocagne’s identity). If n =m, m =n+ 1 and k = 1 in the generalized identity (4.2), then
ity =l = (= 1" o 1 = g,

where m >n > 0.
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5. Determinant Identities

Determinants play a significant role in various areas in mathematics. For instance, they are quite useful in analysis and solution
of systems of linear equations. T. Koshy [6] devoted two chapters of his book to the use of matrices and determinants in
Fibonacci numbers. In this section, we obtain further properties of r—sum Fibonacci numbers involving determinants.

Proposition 5.1. For every positive integer n,

hn+l,r hn+27r hn+3,r
h”+4=r hn+57r hn+6,r =0.
hn+7,r hn+8,r hn+9,r

Proof. Applying column reduction C; —+ C; + C; to the matrix, i.e., replace the entries of column 1 with the sum of the
entries of columns 1 and 2, we get that two columns are identical and hence the determinant of the matrix is zero. O

Proposition 5.2. For every positive integer n,
hn,r + hn+l,r hn+1.r + hn+2,r hn+2,r + hn,r
hn+2,r hn,r thrl,r =0.
1 1 1

Proof. Applying R| — R + R», we get that the determinant of the matrix is

2hn+2,r 2hn+2,r 2hn+2,r 1 1 1
hn+2,r hn,r hn+17r = 2hn+2,r hn+2,r hn,r hn+1,r .
1 1 1 1 1 1
Since two rows are identical, the determinant is zero. O

Proposition 5.3. Let n be a positive integer, then

hmr fn 1
hn+l,r fn+l
hn+2,r fn+2 1

—

= fnhn+1,r - fn+1hn,r'

Proof. Applying Ri — Ry —R; and R, — R3 — Ry, we get that

hn,r fn 1 thrl,r*hn,r fn+17ﬁ1 0

hn+1,r fn+1 1| = hn,r fn 0].
hoyor  furz 1 hnyo,r Jnr2 1
The result is thus immediate. O

Proposition 5.4. For every positive integer n,

Ry L 1
hn+1,r ln+1 1| = lnhn+1,r - ln+1hn,r~
hn+2,r ln+2 1
Proof. The proof follows as in the proof of Proposition 5.3. O

Proposition 5.5. For every positive integer n,

1+ hn,r hn+1,r e I’ln+p,r
oy I+ hn+1,r e hn+p,r
. . . = 1+hn,r+hn+1,r+"'+hn+p,r-
hn,r hn+1,r t 1+ hn+p,r

Proof. The proof follows by induction on n and making use of column reductions. O
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Proposition 5.6. Let n be a positive integer, then

Proof. We have

hmr hn+17r hn+2,r 3
hn+2,r hn,r hn+1.r = 2(hnr + h;31+1,r)'
thrl,r hn+2,r hn,r

hn,r h11+ L,r hn+2,r ) 5 )
hn+2,r hn,r hn+l,r = hn.r(hn,r - hn+1,rhn+2,r) + hn-ﬁ-l,r(hn.t,_lyr - hn,rhn+27r) + hn+2,r(hn+2’r - hn,rhn+l,r)
hn+1,r hn+2,r hor

)

= h?z.,r + hfhtl,r + hr3l+2,r - 3hn,rhn+1.rhn+2,r-

Substituting A2 , = h, , + h,11,- and expanding, we obtain the desired result. O

6. Conclusion

In this paper, we have derived Binet’s formula (3.1) and generating function (3.3) for the r—sum Fibonacci sequence. Further,
we have obtained explicit sum formula, sum of first n terms, sum of first n terms with even indices, sum of first n terms with odd
indices, alternating sum of n terms of r—sum Fibonacci sequence, Honsberger’s identity, determinant identities and generalized
identity (4.2) from which Cassini’s identity, Catalan’s identity and d’Ocagne’s identity are simple cases.
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