
Sakarya University Journal of Science
ISSN 1301-4048 | e-ISSN 2147-835X | Period Bimonthly | Founded: 1997 | Publisher Sakarya University |

http://www.saujs.sakarya.edu.tr/en/

Title: Real Time Application for Automatic Object and 3D Position Detection and Sorting
with Robotic Manipulator

Authors: Tichaona Jonathan MAKOMO, Kenan ERİN, Barış BORU
Recieved: 2019-12-05 15:29:52

Accepted: 2020-05-24 22:29:03

Article Type: Research Article
Volume: 24
Issue: 4
Month: August
Year: 2020
Pages: 703-711

How to cite
Tichaona Jonathan MAKOMO, Kenan ERİN, Barış BORU; (2020), Real Time Application
for Automatic Object and 3D Position Detection and Sorting with Robotic
Manipulator. Sakarya University Journal of Science, 24(4), 703-711, DOI:
https://doi.org/10.16984/saufenbilder.655716
Access link
http://www.saujs.sakarya.edu.tr/en/pub/issue/55932/655716

New submission to SAUJS
http://dergipark.org.tr/en/journal/1115/submission/step/manuscript/new

Real Time Application for Automatic Object and 3D Position Detection and
Sorting with Robotic Manipulator

Tichaona Jonathan MAKOMO*1, Kenan ERİN2, Barış BORU3

Abstract

This work deals with the likelihood of merging a 3D sensor into a robotic manipulator, with an
objective to automatically detect, track and grasp an object, placing it in another location. To
enhance the flexibility and easy functionality of the robot, MATLAB, a versatile and powerful
programming language is used to control the robot. For this work, a common industrial task in
many factories of pick and place is implemented. A robotic system consisting of an ABB IRB120
robot equipped with a gripper and a 3D Kinect for Windows camera sensor is used. The three-
dimensional data acquisition, image processing and some different parameters of the camera are
investigated. The information in the image acquired from the camera is used to determine the
robot’s working space and to recognize workpieces. This information is then used to calculate the
position of the objects. Using this information, an automatic path to grasp an object was designed
and developed to compute the possible trajectory to an object in real time. To be able to detect the
workpieces, object recognition techniques are applied using available algorithms in MATLAB’s
Computer Vision Toolbox and Image Acquisition Toolbox. These give information about the
position of the object of interest and its orientation. The information is therefore sent to the robot
to create a path through a server-to-client connection over a computer network in real time.

Keywords: Kinect, object recognition, 3D vision system, MATLAB, RobotStudio

1 INTRODUCTION

This work demonstrates a simple and
common industrial task of manipulating

objects by implementing a pick and place
method using information from a vision
system that is integrated with a high precision
robotic manipulator. The main thrust of this

* Corresponding Author: tichaona.makomo@ogr.sakarya.edu.tr
1Sakarya University, Faculty of Technology, Department of Mechatronics, Sakarya, Turkey.
 ORCID: https://orcid.org/0000-0002-9860-6179
2Sakarya University of Applied Sciences, Faculty of Technology, Department of Mechatronics, Sakarya, Turkey.
ORCID: https://orcid.org/0000-0003-4714-1161. E-mail: kenanerin@sakarya.edu.tr
3Sakarya University of Applied Sciences, Faculty of Technology, Department of Mechatronics, Sakarya, Turkey.
ORCID: https://orcid.org/0000-0002-0993-3187. E-mail: barisb@sakarya.edu.tr

Sakarya University Journal of Science 24(4), 703-711, 2020

work is to create a successful high precision grasp
planning methodology using the image information
from one Kinect for Windows sensor. Due to the
increase in the advanced control applications,
powerful hardware platforms and enhanced sensing
capabilities, robotic systems have started to find
place into different functionalities like mapping,
exploration, entertainment industry, and wellbeing
of people among others. Not a long time ago,
robotic systems have been finding much use in
many processing and manufacturing industries.
They have been used semi-automatic, that is
working side by side with humans whereas in some
cases they are fully automatic, that is robots
working with each other to complete a task. The
objects being worked on would come with
invariable physical attributes like color, size and
shape. A real-time sensing system is therefore
needed to be able to facilitate real time information
about every object in the robot’s control system.
[1]. A number of technological advancements have
been made in the development of flexible
manufacturing systems (FMS). An FMS is
described as a system consisting of one or more
handling devices like robotic manipulators along
with the robot controllers and machine tools,
arranged so that it can handle different family of
parts for which it has been designed and developed.
[2]. With the lack of effective sensing abilities,
many manufacturing units and assembly points
cannot act intelligently in recognizing the
workpieces and seeing workspace. Many of these
systems have to work with predefined positions and
orientations that are sent to the robot for
manipulation. They however do not give room for
change in those positions and orientation with
which it becomes difficult for the robot to navigate
to the new position. To cater for this anomaly, the
robot system has to be equipped with an intelligent
and flexible vision system that is able to
communicate in real time with the robot to deal

with imprecisely positioned objects and handle
uncertainties and variations in the work
environment.

This work’s center of interest is to come up with a
real-time sensor-based control system to
applications where vital changes to varying objects
is a necessity. [1] and [3], say that visual data
received from the camera sensor is used for closed-
loop robot control, normally known as visual
servoing system. A review of the operation,
characteristics and difficulties of visual servoing
systems are found in [4] and [5]. In this work, object
information is extracted from the acquired frame in
a 2D format and then transformed to 3D pose with
position of the object and its orientation for control
of the robot. The control task is performed in 3D
cartesian space thus the model of the camera
required is that for mapping the data from 2D to 3D
space. For one to be able to set up a visual servoing
system, understanding of various aspects like robot
modelling (dynamics and kinematics), control
theory, computer vision functions including camera
calibration, image processing, sensor system
integration and so on is required. [6], [7], [8].

The other important capability of the vision
information is enhancing the robot’s ability to
continuously update its field of view. This
configuration is normally called eye-to-hand or
eye-in-hand configuration. The architecture of the
whole system is shown in figure 1 below:

MAKOMO et al.

Real Time Application for Automatic Object and 3D Position Detection and Sorting with Robotic Manipul...

Sakarya University Journal of Science 24(4), 703-711, 2020 704

Figure 1 System of Robotic vision-based control

The diagram can be explained as follows

Workspace: includes fixtures, workpieces and
tools.

Sensory system: is the vision or eyes of the robot to
allow it to perceive its environment and to
recognize the objects.

Control system: houses the system computer
software and robot controller to organize tasks and
the robot respectively.

Robot manipulator: does the action under the
control of the robot controller.

With the automotive industry being traditionally the
driving force and the largest consumer of automatic
robot manipulators, it can be projected that as the
robots are useful in the automotive industry, so
shall they be for businesses with lower production
capacity [9]. However, for these companies, it
would cost them a lot of money in trying to
automate their systems and having skilled labor for
programming. Increase in production patterns will
result in having cost of programming being higher
than that of investment [10].

The pick and place operation in this study
demonstrates how a robot is able to track, detect.
and grasp an object in its field of view. The task
here is to grasp a colored object placed on a table

and for the task to be completed, a vision system
detects the colored object by using color
segmentation algorithms in real time. The object is
then moved to a designated place by the robot
manipulator. All this is done using communication
protocols provided by TCP/IP. The image
processing algorithm, the coordinate
transformations, navigation algorithms and robot
arm control are discussed. The validation of the
system is discussed and results presented.

2. METHODOLOGY

2.1 Camera Calibration

The Kinect sensor used in this project was
calibrated to bring about accuracy and effectiveness
of it in the purpose for which it is being used. As is
clearly highlighted in the introduction, many
methods can be used to calculate the calibration
parameters of the Kinect. The manufacturer’s
distortion parameters are not accurate so the sensor
must be calibrated to correct that distortion. J.R
Terven’s method is used in this project to calibrate
the Kinect camera. Kinect camera has an RGB
camera and a depth camera which are both
simultaneously calibrated using Terven’s method.
Terven designed a toolbox for Kinect V2
calibration in MATLAB called Kin2 Toolbox for
MATLAB. The toolbox comprises of classes and
functions that embeds the Microsoft Kinect 2 SDK.
MATLAB is a high performance, versatile and
powerful programming language developed by
Mathworks which amalgamates computation and
visualization to solve problems in a mathematical
manner [11]. Largely based on C++ through
MATLAB executable files, the version used for this
project contains two classes and 30 functions put in
different features such as coordinate mapping,

MAKOMO et al.

Real Time Application for Automatic Object and 3D Position Detection and Sorting with Robotic Manipul...

Sakarya University Journal of Science 24(4), 703-711, 2020 705

skeleton tracking, 3D reconstruction and face
gestures recognition. [11].

2.2 Experimental setup

Figure 2 below shows the experimental setup that
was used in the project.

Figure 2 Schematic arrangement of work cell

The above figure is hereby explained. The Kinect
camera sensor is placed above the workspace of the
robot or the work cell. From there it is able to take
images of objects which are placed on the work
table or a conveyer. After an image is taken, object
detection algorithm starts by taking a snapshot and
analyzing it using MATLAB’s toolboxes for
computer vision and image processing. For every
frame, color segmentation and region properties
techniques are employed. This results in giving the
coordinates of the centroid of the detected object (x,
y). However, Z axis is considered to be known
from the camera frame since the camera is fixed on
one place vertically. That distance is measured and
remains the same throughout the course of the
experiment.

It should be known that in this project, the
transformation matrix was not used to transform
camera frame coordinates to robot frame
coordinates. However, in light of this, the
coordinates that we find from the camera frame are
referenced to work object that is created in the robot
workspace. Work object reference point is therefore
used to map the found coordinates so that it makes
the robot’s base settle on the work object reference
point. The coordinates detected in the workspace of
the robot will not be referenced from the base of the
robot but from the work object reference coordinate
system that has been created.

The coordinates of the colored object detected are
then sent to the real robot from MATLAB via
TCP/IP communication. Once the robot receives
the coordinates in its sockets, the robot moves to the
detected object, pick it up and place it to another
place in real time. A while loop was created both in
the rapid program of the robot so that the robot
continually listens if there is any input in its sockets.
The socket continually listens and at the same time
coordinates are being sent from MATLAB. The
cycle continues like that as the camera keeps on
taking images of the workspace and processing
them to get coordinates, sends them to the robot via
TCP/IP in real time and the robot continually keeps
looking to receive coordinates of where it must go.

2.3 Object Detection

After the Kinect camera is calibrated and distortion
corrected, it means that the camera can now acquire
accurate images which can properly be processed in
MATLAB without distortion. Object detection
follows calibration of the camera sensor. MATLAB
has toolboxes that are used in computer vision.
Most popular toolboxes used in this work are Image
processing toolbox and Image acquisition toolbox.

MAKOMO et al.

Real Time Application for Automatic Object and 3D Position Detection and Sorting with Robotic Manipul...

Sakarya University Journal of Science 24(4), 703-711, 2020 706

Object detection starts with image acquisition and
processing before we can conclude about position
and orientation of the object. Image acquisition
toolbox has functions that allow cameras of
different types and properties to be used in
MATLAB for acquiring images. Kinect that is used
in this work is compatible to be used in MATLAB
using ‘videoinput’ function. After an image is taken
and a snapshot is taken then image processing
starts.

2.4 Image Processing

Image processing toolbox brings in quite a number
of algorithms which can be used to find properties
of the detected object. When a snapshot of the
object is taken, that image undergoes a series of
algorithms as shown in Figure 3, to process it so
that we can get what we want. Properties like area,
centroid, minor axis, major axis, bounding box and
so forth can be determined using ‘regionprops’
property in MATLAB. In this study, however, color
segmentation was used to detect objects.

Figure 3 Flow chart involved in feature extraction

2.4.1 RegionProps and Centroid of the Object

Regionprops is a function that is very useful in
image processing. It gives quite a number of
properties depending on what you want to achieve.
It is able to calculate 22 different properties but for
this project it only focuses on three, including
centroid. Centroid (x, y) is horizontal coordinate of
the center of mass of the object and is represented
by x-coordinate. The vertical component of the
center of mass is the y-coordinate [12]. For this
study, the centroid is a very important property
since it is key in determining the exact location of
the object. The centroid is calculated by the
following equation;

�̅� = ∑ 𝑥 , 𝑦 = ∑ 𝑦 (1)

MAKOMO et al.

Real Time Application for Automatic Object and 3D Position Detection and Sorting with Robotic Manipul...

Sakarya University Journal of Science 24(4), 703-711, 2020 707

where �̅�, 𝑦 denote location of the centroid of the
target. (xi, yi), i= (1,2…n) denote boundary points
of the object in the x and y directions.

2.5 Getting Depth from Centroid

The Kinect toolbox of J. R. Terven was used for
calibration of the Kinect camera. External and
internal calibration parameters for depth and color
camera were found. Compared to the
manufacturers' calibration parameters, this method
yielded almost the same results as the
manufacturers. Calibration parameters play a major
role in determining the conversion to practical
distance. After capturing the depth, the object must
have a distance in millimeters from the sensor. This
distance is found in the OpenNI, depth (Xd, Yd)
function format. In the Kin2 toolbox for Kinect, JR
Terven contains this OpenNI function, which
contains the depth coordinates corresponding to the
centroid of the object in the RGB frame. The
coordinates used at the depth of function depth (Xd,
Yd) to find the depth or distance of this object in the
sensor in millimeters. This is the Z coordinate from
the camera.

2.6 TCP/IP Communication

Connection is established between a computer and
robot. The robot is controlled by a programming
language called RAPID in a graphical user interface
called RobotStudio for ABB robots. The
connection is between a computer in which
MATLAB is running and the robot controller which
drives the robot as shown in Figure 4 below.
TCP/IP is the best choice used for this project
because the robotic program RAPID used for ABB
robots facilitates better support for socket
communication than for any other communication
protocol. The other advantage that it brings is that
the controller of the ABB robot has an option for
Local Area Network (LAN).

Figure 4 Relationship between client and server [13]

3. RESULTS

3.1 Experimental Setup

As shown in Figure 5 below, a cylindrical object of
diameter 50mm and height of 45mm was used. It
was placed on a plane surface perpendicular to the
camera with zero elevation. Depth readings were
taken at different distances from the camera. Depth
measurement is the main parameter that we need to
make sure that the robot moves to the correct height
of a detected object. The actual distances were
measured using a measuring tape.

The Kinect depth distance measured in this project
was compared against the manufacturer’s
Microsoft Kinect for Windows SDK which is
believed to give accurate measurements of depth
and every other parameter. The SDK measurement
was compared with two other measurements, the
actual distance and the MATLAB program
designed for the project, which in this case shall be
called Kinect (project).

MAKOMO et al.

Real Time Application for Automatic Object and 3D Position Detection and Sorting with Robotic Manipul...

Sakarya University Journal of Science 24(4), 703-711, 2020 708

Figure 5 Experimental setup

3.2 Results analysis

Measurements were made with the Kinect sensor
and compared with the SDK which is known to give
accurate measurements. Of all the measurements
taken, measurements from the Kinect were close to
the measurement of the SDK. The graph of the
recorded measurement was compared in Figure 6
below:

600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

1600

1800

S
D

K
 (

m
m

)

Distance (mm)

 Ref(SDK)
 Kinect

Figure 6 SDK and Kinect (Project) depth
measurements

There was an average of 1.3mm of all the 16
measurements between the Kinect and the SDK.
Figure 7 below shows the average differences
between the Kinect (Project) and SDK.

500 1000 1500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
iff

er
en

ce
 (

m
m

)

Kinect (mm)

 Difference

Figure 7 Average difference between Kinect and SDK

Absolute mean percentage error (AMPE), was
calculated using the following formula;

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑚𝑚) = −

 (2)

𝐴𝑀𝑃𝐸(%) =
| |

x100% (3)

The graph of the distance measured by Kinect
against AMPE is shown in Figure 8 below:

MAKOMO et al.

Real Time Application for Automatic Object and 3D Position Detection and Sorting with Robotic Manipul...

Sakarya University Journal of Science 24(4), 703-711, 2020 709

500 1000 1500
0.0

0.2

0.4

A
M

P
E

 (
%

)

Mine (mm)

 AMPE(%)

Figure 8 Distance measured by Kinect Vs AMPE

The absolute mean percentage error of the
measurements between the SDK and the Kinect
measured depth in our project was 0.15%. This is
almost a very insignificant error signifying that the
code developed for this project was very accurate to
SDK standard.

The difference between the SDK, Kinect (Project)
and the actual distance was also analyzed. The
graph in Figure 9 shows the measurement taken
between the three. It can be seen from the graph that
the measurement of these three gives almost the
same measurement. We can therefore conclude that
the actual measurement can also be used as equal to
depth measurement because they are almost the
same.

The average difference between the SDK and the
actual measurement is just 2.8 mm. This turns the
AMPE for the actual measurement with SDK to be
0.3%.

600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

1600

1800

S
D

K
 (

m
m

)
Distance (mm)

 Ref(SDK)
 Kinect
 Act. Dist

Figure 9 Comparison between SDK, Kinect and actual
measured distance

3.3 Conclusion

The algorithm for finding 3D object position
according to color segmentation in real time was
developed. The main focus was on how to find the
depth of an object from the Kinect sensor. The
height of the object was found by subtracting the
distance from the depth of the plane where the
objects were located to the sensor. This height was
given to the robot and the robot was successfully
moved to the location of the object, picked up and
then placed in a specified location in real time. The
average time taken to detect, select, and place an
object was 8 seconds. Kinect was able to correctly
distinguish color, and the robot could accurately
navigate to the detected object. The algorithm
developed was successful.

MAKOMO et al.

Real Time Application for Automatic Object and 3D Position Detection and Sorting with Robotic Manipul...

Sakarya University Journal of Science 24(4), 703-711, 2020 710

Research and Publication Ethics

This paper has been prepared within the scope of
international research and publication ethics.

Ethics Committee Approval

This paper does not require any ethics committee
permission or special permission.

Conflict of Interests

The authors declared no conflict of interest.

Author Contributions

Conception:TJM-BB, Design:TJM-KE,
Supervision:BB-KE-TJM, Materials:BB, Data
Collection and/or Processing:TJM, Analysis and/or
Interpretation:TJM, Literature Review:TJM,
Writer:TJM, Critical Review:BB-KE-TJM

REFERENCES

[1] J. Hill and W. Park, "Real time control of a
robot with a mobile camera," 9th
International Symposium on Industrial
Robots, pp. 233–246, 1979.

[2] K. Rezaie, S. Nazari Shirkouhi, and S.M.
Alem, "Evaluating and selecting flexible
manufacturing systems by integrating data
envelopment analysis and analytical
hierarchy process model," Asia International
Conference on Modelling and Simulation, pp.
460–464, 2009.

[3] K. Hashimoto, "Visual Serving: Real Time
Control of Robot Manipulators Based on
Visual Sensory Feedback," 1993.

[4] Hutchinson, F. and Chaumette, S., "Visual
servo control basic approaches," Robotics &
Automation Magazine, IEEE, vol. 13, pp. 82-
90, 2006.

[5] F. C. S. Hutchinson, "Visual servo control. ii.
advanced approaches [tutorial]," Robotics &
Automation Magazine, IEEE, vol. 14, pp.
109–118, 2007.

[6] D. Kragic, and H. I. Christensen, "Survey on
visual servoing for manipulation,"
Computational Vision and Active Perception
Laboratory Fiskartorpsv, vol. 15, 2002.

[7] H. Wu, W. Tizzano, T. Andersen, N.
Andersen, and O. Ravn, "Hand-Eye
Calibration and Inverse Kinematics of Robot
Arm using Neural Network," Springer, pp.
581–591, 2013.

[8] H. Wu, L. Lu, C.-C. Chen, S. Hirche, and K.
Khnlenz, "Cloud-based networked visual
servo control," I E E E Transactions on
Industrial Electronics, vol. 60, no 2, pp. 554 –
566,, 2013.

[9] Meyer, R. D. and Schraft, C., "The need for
an intuitive teaching method for small and
medium enterprises," ISR Robotik, Germany,
2012.

[10] B. Akan, "Human Robot Interaction
Solutions for Intuitive Industrial Robot
Programming," Västerås: Mälardalen
University, 2012.

[11] Juan R. Terven and Diana M. Cordova, Kin2
User Guide, 2016.

[12] MathWorks, "Image Processig Toolbox
User’s Guide," 2014.

[13] N. B. Fernández, "“Generación de
trayectorias y evitación de obstáculos para el
robot IRB120 en entorno Matlab”,"
UNIVERSIDAD DE ALCALÁ, pp. 47, 2015.

MAKOMO et al.

Real Time Application for Automatic Object and 3D Position Detection and Sorting with Robotic Manipul...

Sakarya University Journal of Science 24(4), 703-711, 2020 711

