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Novel Results based on Generalisation of some Integral Inequalities for 
Trigonometrically-𝑷 Function  

 

Sercan TURHAN*1 

 

Abstract  

Trigonometric P-function is defined as a special case of h-convex function. In this article, we 
used a general lemma that gives trapezoidal, midpoint, Ostrowski, and Simpson type 
inequalities. With the help of this lemma, we have obtained many integral inequalities and 
generalisations for trigonometric P-function. We have shown that it goes down to the studies in 
special cases which are described in our study. Apart from that, we got new results for the 
trapezoidal, midpoint, Ostrowski, and Simpson type inequalities.  

Keywords: Hermite-Hadamard inequality, Simpson-type inequality, Ostrowski-type 
inequality, Trapezoid-type inequality, Midpoint-type inequality, Trigonometrically-𝑃 function. 
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1. INTRODUCTION 

In recent years, many studies on convex functions 
and integral inequalities have been done and 
investigated. Firstly, the definition of a convex 
function is as follows:  

Definition 1. A function ϒ: 𝐼 ⊂ ℝ → ℝ is said to 
be a convex in the classical sense if, for all 𝑐, 𝑑 ∈
𝐼 and 𝑡 ∈ [0,1], we have  

ϒ(𝑡𝑐 + (1 − 𝑡)𝑑) ≤ (1 − 𝑡)ϒ(𝑐) + 𝑡ϒ(𝑑). 

 In many research fields, the relationship between 
convexity and inequalities has always been a 
subject of research. The most important of these 
is Hermite Hadmard, Ostrowski and Simpson 
inequalities(see [1, 2, 4, 5, 6, 7, 12, 13, 16, 17, 18, 
19, 20, 21, 22]). These famous inequalities are 
respectively expressed as follows: 

ϒ: 𝐼 ⊂ ℝ → ℝ is the convex function known on 
the interval 𝐼 of ℝ and 𝑐, 𝑑 ∈ 𝐼 with 𝑐 < 𝑑 as 
follows: 

ϒ
𝑐 + 𝑑

2
≤

1

𝑐 − 𝑑
ϒ(𝑥)𝑑𝑥 ≤

ϒ(𝑐) + ϒ(𝑑)

2
 

holds. Both inequalities hold in the reversed 
direction if ϒ is concave. 

Let ϒ: 𝐼 ⊆ ℝ → ℝ be a mapping differentiable in 
𝐼∘, the interior of I, and let c, 𝑑 ∈ 𝐼∘ with 𝑐 < 𝑑. If 
|ϒ (𝑥)| ≤ 𝑀, 𝑥 ∈ [𝑐, 𝑑], then we the following 
inequality holds 

ϒ(𝑥) −
1

𝑐 − 𝑑
ϒ(𝑡)𝑑𝑡

≤
𝑀

𝑐 − 𝑑

(𝑥 − 𝑐) + (𝑑 − 𝑥)

2
 

for all 𝑥 ∈ [𝑐, 𝑑]. The best possible constant, in 
the sense that it cannot be replaced by a smaller 

one, is found   in [9]. 

Let ϒ: [𝑐, 𝑑] → ℝ be a four-times continuously 
differentiable mapping on (𝑐, 𝑑) and ϒ( ) =

sup
∈( , )

ϒ( )(𝑥) < ∞. Then the following 

inequality holds: 

1

3

ϒ(𝑐) + ϒ(𝑑)

2
+ 2ϒ

𝑐 + 𝑑

2

−
1

𝑑 − 𝑐
ϒ(𝑥)𝑑𝑥

≤
1

2880
ϒ( ) (𝑑 − 𝑐) . 

[14, 15] and therein.  

After convexity became so popular, the 
researchers worked on new classes of convexity. 
Thus, they applied known integral inequalities to 
new convexity classes. 

Definition 2. [8] A non-negative function ϒ: 𝐼 →
ℝ is said to be a 𝑃-function if the inequality  

ϒ(𝑡𝑢 + (1 − 𝑡)𝑣) ≤ ϒ(𝑢) + ϒ(𝑣) 

holds for all 𝑢, 𝑣 ∈ 𝐼 , and 𝑡 ∈ [0,1]. The set of 𝑃-
functions on the interval 𝐼 is denoted by 𝑃(𝐼).  

Definition 3. [23] Let ℎ: 𝐽 → ℝ be a non-negative 
function, ℎ ≠ 0. We say that ϒ: 𝐼 → ℝ is an ℎ-
convex function, or that ϒ belongs to the class 
𝑆𝑋(ℎ, 𝐼), if ϒ is non-negative and for all u, 𝑣 ∈
𝐼, 𝛼 ∈ (0,1) we have  

ϒ(𝛼𝑢 + (1 − 𝛼)𝑣) 

≤ ℎ(𝛼)ϒ(𝑢) + ℎ(1 − 𝛼)ϒ(𝑣). 

If this inequality is reversed, then ϒ is said to be 
ℎ-concave, i.e. ϒ ∈ 𝑆𝑉(ℎ, 𝐼).  

In [11], Kadakal gave a different kind of 
trigonometrically convex function from definition 
of ℎ-convex function. 

Definition 4. [11] A non-negative function ϒ: 𝐼 →
ℝ is called trigonometrically convex if for every 
𝑢, 𝑣 ∈ 𝐼 and 𝑡 ∈ [0,1],  

              ϒ(𝑡𝑢 + (1 − 𝑡)𝑣) ≤ 
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𝑠𝑖𝑛
𝜋𝑡

2
ϒ(𝑢) + 𝑐𝑜𝑠

𝜋𝑡

2
ϒ(𝑣). 

 The class of all trigonometrically convex 
functions is denoted by 𝑇𝐶(𝐼) on interval 𝐼. We 
note that every trigonometrically convex function 

is a ℎ-convex function for ℎ(𝑡) = 𝑠𝑖𝑛 . 

Moreover, if ϒ(𝑢) is a nonnegative function, then 
every trigonometric convex function is a 𝑃-
function.  

In [3], Bekar obtained the trigonometrically 𝑃-
function as follows: 

Definition 5. [3] A non-negative function ϒ: 𝐼 →
ℝ is called trigonometrically 𝑃-function if for 
every 𝑢, 𝑣 ∈ 𝐼 and 𝑡 ∈ [0,1], 

 ϒ(𝑡𝑢 + (1 − 𝑡)𝑣) 

≤ 𝑠𝑖𝑛
𝜋𝑡

2
+ 𝑐𝑜𝑠

𝜋𝑡

2
[ϒ(𝑢) + ϒ(𝑣)]. 

The classes of all trigonometrically 𝑃-functions 
are donated by 𝑇𝑃(𝐼) on interval 𝐼.  

Remark 1. [3] Clearly, if ϒ(𝑢) is a nonnegative 
function, then every 𝑃-function is a trigonometric 
𝑃-function. Indeed, for every u, 𝑣 ∈ 𝐼 and 𝑡 ∈
[0,1] we have  

ϒ(𝑡𝑢 + (1 − 𝑡)𝑣) ≤ ϒ(𝑢) + ϒ(𝑣) 

≤ 𝑠𝑖𝑛
𝜋𝑡

2
+ 𝑐𝑜𝑠

𝜋𝑡

2
[ϒ(u) + ϒ(𝑣)]. 

  

Example 1. [3] Non-negative constant functions 

are trigonometrically 𝑃-functions, since 𝑠𝑖𝑛 +

𝑐𝑜𝑠 ≥ 1 for all 𝑡 ∈ [0,1].  

Lemma 1.  Every non-negative trigonometrically 
convex function is trigonometrically 𝑃-function 
[3].  

In [10], İşcan pointed out the new generalised 
lemma which is giving many integral inequalities 
as follows: 

Lemma 2. [10] Let ϒ: 𝐼 ⊆ ℝ → ℝ be a 
differentiable mapping on 𝐼∘ such that ϒ ∈
𝐿[𝑐, 𝑑], where 𝑐, 𝑑 ∈ 𝐼 with 𝑐 < 𝑑 and 𝜃, 𝜆 ∈
[0,1]. Then the following equality holds:  

𝐼(𝑐, 𝑑; 𝜃, 𝜆) = 

(𝑑 − 𝑐) −𝜆 (𝑡 − 𝜃)ϒ (𝑡𝑐 + (1 − 𝑡)𝐴 )𝑑𝑡 

+(1 − 𝜆) (𝑡 − 𝜃)ϒ (𝑡𝑑 + (1 − 𝑡)𝐴 )𝑑𝑡  

where 𝐼(𝑐, 𝑑; 𝜃; 𝜆) = (1 − 𝜃)(𝜆ϒ(𝑐) + (1 −

𝜆)ϒ(𝑑)) + 𝜃ϒ((1 − 𝜆)𝑐 + 𝜆𝑑) − ∫ ϒ(𝑥)𝑑𝑥 

and 𝐴 = (1 − λ)𝑐 + λ𝑑.  

We built this study on Lemma 2, where we get 
different types of integral inequalities. Using this 
generalised Lemma 2, we have obtained the 
generalised midpoint, trapezoidal, Simpson and 
Ostrowski type inequalities for trigonometrically 
𝑃-function. 

2. MAIN RESULTS 

It will be referred to 𝐼(𝑐, 𝑑; 𝜃; 𝜆) = (1 −
𝜃)(𝜆ϒ(𝑐) + (1 − 𝜆)ϒ(𝑑)) + 𝜃ϒ(𝐴 ) −

∫ ϒ(𝑥)𝑑𝑥, and 𝐴 = (1 − λ)𝑐 + λ𝑑 where 

𝜃, 𝜆 ∈ [0,1], as in this section.  

Theorem 1. Let ϒ: 𝐼 → ℝ be a continuously 
differentiable function, let 𝑐 < 𝑑 in 𝐼, 𝜆, 𝜃 ∈ [0,1] 
and assume that ϒ ∈ 𝐿[𝑐, 𝑑]. If |ϒ | is a 
trigonometrically 𝑃-function on interval [𝑐, 𝑑], 
then the following inequality holds 

|𝐼(𝑐, 𝑑; 𝜃; 𝜆)|  (2.1) 

≤ (𝑑 − 𝑐)
8

𝜋
+

2

𝜋
−

8

𝜋
𝑠𝑖𝑛

𝜋𝜃

2
+ 𝑐𝑜𝑠

𝜋𝜃

2
 

 [𝜆 |ϒ (𝑐)| + (𝜆 + (1 −
𝜆) )|ϒ ((1 − 𝜆)𝑐 + 𝜆𝑑)| + (1 − 𝜆) |ϒ (𝑑)|]. 
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Proof. If we take the absolute value of both sides 
of Lemma 2 and then using |ϒ | is 
trigonometrically 𝑃-function, then we have  

|𝐼(𝑐, 𝑑; 𝜃; 𝜆)|  (2.2) 

≤ (𝑑 − 𝑐) 𝜆 |𝑡 − 𝜃||ϒ (𝑡𝑐 + (1 − 𝑡)𝐴 )|𝑑𝑡 

+(1 − 𝜆) |𝜃 − 𝑡||ϒ (𝑡𝑑 + (1 − 𝑡)𝐴 )|𝑑𝑡  

≤ (𝑑 − 𝑐) 𝜆 |𝑡 − 𝜃| 𝑠𝑖𝑛
𝜋𝑡

2

+ 𝑐𝑜𝑠
𝜋𝑡

2
[|ϒ (𝑎)| + |ϒ (𝐴 )|]𝑑𝑡 

+(1 − 𝜆) |𝜃 − 𝑡| 𝑠𝑖𝑛
𝜋𝑡

2
+ 𝑐𝑜𝑠

𝜋𝑡

2
[|ϒ (𝑑)|

+ |ϒ (𝐴 )|]𝑑𝑡  

= (𝑑 − 𝑐) 𝜆 [|ϒ (𝑐)| + |ϒ (𝐴 )|] |𝑡

− 𝜃| 𝑠𝑖𝑛
𝜋𝑡

2
+ 𝑐𝑜𝑠

𝜋𝑡

2
𝑑𝑡 

+(1 − 𝜆) [|ϒ (𝑑)| + |ϒ (𝐴 )|] |𝜃

− 𝑡| 𝑠𝑖𝑛
𝜋𝑡

2
+ 𝑐𝑜𝑠

𝜋𝑡

2
𝑑𝑡 . 

We calculate the integrals as follows:  

|𝑡 − 𝜃| 𝑠𝑖𝑛
𝜋𝑡

2
+ 𝑐𝑜𝑠

𝜋𝑡

2
𝑑𝑡 

= + − 𝑠𝑖𝑛 + 𝑐𝑜𝑠  . (2.3) 

 

When the equation (2.3) is written in the 
inequality, the proof is completed.  

Remark 2.  If it is taken 𝑠𝑖𝑛 + 𝑐𝑜𝑠 ≥ 1, 𝜃 ∈

[0,1], we get  

|𝐼(𝑐, 𝑑; 𝜃; 𝜆)| ≤
2(𝑑 − 𝑐)

𝜋
                                (2.4) 

[𝜆 |ϒ (𝑐)| + (𝜆 + (1 − 𝜆) )|ϒ (𝐴 )| + (1
− 𝜆) |ϒ (𝑑)|]. 

Corollary 1. When 𝜃 is taken as 1 in Theorem 1, 
then we get generalised midpoint-type inequality 
as follows: 

𝑓((1 − 𝜆)𝑐 + 𝜆𝑑) −
1

𝑑 − 𝑐
𝑓(𝑥)𝑑𝑥  

≤
2(𝑑 − 𝑐)

𝜋
[𝜆 |𝑓 (𝑐)|

+ (𝜆 + (1 − 𝜆) )|𝑓 (𝐴 )| + (1
− 𝜆) |𝑓 (𝑑)|]. 

Corollary 2. If 𝜃 is taken as 1 and |ϒ (𝑢)| ≤ 𝑀, 
𝑢 ∈ [𝑐, 𝑑] in Theorem 1, then we get the following 
Ostrowski-type inequality 

ϒ(𝑢) −
1

𝑑 − 𝑐
ϒ(𝑣)𝑑𝑣                               (2.5) 

  

≤
4𝑀

𝜋

(𝑢 − 𝑐) + (𝑑 − 𝑢)

𝑑 − 𝑐
 

for each 𝑢 ∈ [𝑐, 𝑑].  

Proof. For each 𝑢 ∈ [𝑐, 𝑑], there exist 𝜆 ∈ [0,1] 
such that 𝑢 = (1 − 𝜆 )𝑐 + 𝜆 𝑑. Hence we have 

𝜆 =  and 1 − 𝜆 = . Therefore for each 

𝑢 ∈ [𝑐, 𝑑], from the inequality (2.1) we obtain the 
inequality (2.5).  

Corollary 3. When 𝜃 is taken as 0 in Theorem 1, 
then we get generalised trapezoid type inequality 
as follows: 
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𝜆ϒ(𝑐) + (1 − 𝜆)ϒ(d) −
1

𝑑 − 𝑐
ϒ(𝑥)𝑑𝑥  

≤
2(𝑑 − 𝑐)

𝜋
 

[𝜆 |ϒ (𝑐)| + (𝜆 + (1 − 𝜆) )|ϒ (A )| + (1 −
𝜆) |ϒ (𝑑)|]. 

Corollary 4. When 𝜃, 𝜆 are taken as , , 

respectively in Theorem 1, then we get Simson-
type inequality as follows: 

1

6
ϒ(𝑐) + 4ϒ

𝑐 + 𝑑

2
+ ϒ(𝑑)

−
1

𝑑 − 𝑐
ϒ(𝑥)𝑑𝑥  

  

≤
(𝑑 − 𝑐)

2

4 1 − √3

𝜋
+

2

𝜋
 

|ϒ (𝑐)| + |ϒ (𝑑)|

2
+ ϒ

𝑐 + 𝑑

2
. 

Corollary 5. When 𝜃, 𝜆 are taken as 1, , 

respectively in Theorem 1, then we get midpoint-
type inequality as follows: 

 

ϒ
𝑐 + 𝑑

2
−

1

𝑑 − 𝑐
ϒ(𝑥)𝑑𝑥  

≤
𝑑 − 𝑐

𝜋

|ϒ (𝑐)| + |ϒ (𝑑)|

2
+ ϒ

𝑐 + 𝑑

2
. 

 Corollary 6. When 𝜃, 𝜆 are taken as 0, , 

respectively in Theorem 1, then we get 
Trapezoidal-type inequality as follows: 

  

ϒ(𝑐) + ϒ(𝑑)

2
−

1

𝑑 − 𝑐
ϒ(𝑥)𝑑𝑥  

≤
𝑑 − 𝑐

𝜋

|ϒ (𝑐)| + |ϒ (𝑑)|

2
+ ϒ

𝑐 + 𝑑

2
. 

Theorem 2.  Let ϒ: 𝐼 → ℝ be a continuously 
differentiable function, let 𝑐 < 𝑑, c, 𝑑 ∈ 𝐼 and 
𝜆, 𝜃 ∈ [0,1] assume that 𝑞 > 1. If |ϒ |  is a 
trigonometrically P-function on the interval 
[𝑐, 𝑑], then the following inequality holds 

|𝐼(𝑐, 𝑑; 𝜃; 𝜆)| ≤                                                  (2.6) 

(𝑑 − 𝑐)
𝜃 + (1 − 𝜃)

𝑝 + 1

4

𝜋

/

 

   
𝜆 (|ϒ (𝑐)| + |ϒ (𝐴 )| ) /  

+(1 − 𝜆) (|ϒ (𝑑)| + |ϒ (𝐴 )| ) / . 

Proof. From Lemma 2 and by Hölder’s integral 
inequality, we have 

|𝐼(𝑐, 𝑑; 𝜃; 𝜆)| ≤ (𝑑 − 𝑐)     (2.7) 

𝜆 ∫ |𝑡 − 𝜃|
/

∫ |ϒ (𝑡𝑐 + (1 −

𝑡)𝐴 )| 𝑑𝑡
/

   

+(1 − 𝜆) ∫ |𝑡 − 𝜃|
/

∫ |ϒ (𝑡𝑑 + (1 −

𝑡)𝐴 )| 𝑑𝑡
/

 . 

 Since |ϒ |  is trigonometrically 𝑃-function on 
[𝑐, d], and by simple computation, we get  

∫ |ϒ (𝑡𝑐 + (1 − 𝑡)[(1 − 𝜆)𝑐 + 𝜆𝑑])| 𝑑𝑡 (2.8) 

≤ 𝑠𝑖𝑛
𝜋𝑡

2
+ 𝑐𝑜𝑠

𝜋𝑡

2
[|ϒ (𝑐)|

+ |ϒ (𝐴 )| ]𝑑𝑡 

=
4

𝜋
[|ϒ (𝑐)| + |ϒ (𝐴 )| ] 
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|ϒ (𝑡𝑑 + (1

− 𝑡)𝐴 )| 𝑑𝑡                            (2.9)  

≤ 𝑠𝑖𝑛
𝜋𝑡

2
+ 𝑐𝑜𝑠

𝜋𝑡

2
[|ϒ (𝑑)|

+ |ϒ (𝐴 )| ]𝑑𝑡 

=
4

𝜋
[|ϒ (𝑑)| + |ϒ (𝐴 )| ] 

and 

|𝑡 − 𝜃| 𝑑𝑡 =
𝜃 + (1 − 𝜃)

𝑝 + 1
.      (2.10) 

  

Thus, substitute (2.8)-(2.10) in (2.7), we obtain 
the inequality (2.6). This completes the proof.  

Corollary 7. When 𝜃 is taken as 1 in Theorem 2, 
then we get generalised midpoint-type inequality 
as follows: 

ϒ((1 − 𝜆)𝑐 + 𝜆𝑑) −
1

𝑑 − 𝑐
ϒ(𝑥)𝑑𝑥  

≤ (𝑏 − 𝑎)
1

𝑝 + 1

4

𝜋

/

 

  
𝜆 (|ϒ (𝑎)| + |ϒ (𝐴 )| ) /  

  
+(1 − 𝜆) (|ϒ (𝑏)| + |ϒ (𝐴 )| ) / . 

Corollary 8. When 𝜃 is taken as 0 in Theorem 2, 
then we get generalised trapezoidal-type 
inequality as follows: 

𝜆ϒ(𝑎) + (1 − 𝜆)ϒ(𝑏) −
1

𝑏 − 𝑎
ϒ(𝑥)𝑑𝑥  

≤ (𝑏 − 𝑎)
1

𝑝 + 1

4

𝜋

/

 

  
𝜆 (|ϒ (𝑎)| + |ϒ (𝐴 )| ) /  

  
+(1 − 𝜆) (|ϒ (𝑏)| + |ϒ (𝐴 )| ) / . 

Corollary 9. If 𝜃 is taken as 1 and |ϒ (𝑥)| ≤ 𝑀, 
𝑥 ∈ [𝑎, 𝑏] in Theorem 2, then we get the following 
Ostrowski-type inequality 

ϒ(𝑥) −
1

𝑏 − 𝑎
ϒ(𝑢)𝑑𝑢                        (2.11)

≤
𝑀

(𝑝 + 1)

8

𝜋

/ (𝑥 − 𝑎) + (𝑏 − 𝑥)

𝑏 − 𝑎
 

 

for each 𝑥 ∈ [𝑎, 𝑏].  

Proof. For each 𝑥 ∈ [𝑎, 𝑏], there exist 𝜆 ∈ [0,1] 
such that 𝑥 = (1 − 𝜆 )𝑎 + 𝜆 𝑏. Hence we have 

𝜆 =  and 1 − 𝜆 = . Therefore for each 

𝑥 ∈ [𝑎, 𝑏], from the inequality (2.6) we obtain the 
inequality (2.11).  

Corollary 10. When 𝜃, 𝜆 are taken as , , 

respectively in Theorem 2, then we get Simson-
type inequality as follows: 

 

1

6
ϒ(𝑎) + 4ϒ

𝑎 + 𝑏

2
+ ϒ(𝑏)

−
1

𝑏 − 𝑎
ϒ(𝑥)𝑑𝑥  

  

≤
𝑏 − 𝑎

4

2 + 1

3 (𝑝 + 1)

/
4

𝜋

/
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|ϒ (𝑎)| + ϒ
𝑎 + 𝑏

2

+ |ϒ (𝑏)| + ϒ
𝑎 + 𝑏

2
. 

 Corollary 11. When 𝜃, 𝜆 are taken as 1, , 

respectively in Theorem 2, then we get midpoint-
type inequality as follows: 

ϒ
𝑎 + 𝑏

2
−

1

𝑏 − 𝑎
ϒ(𝑥)𝑑𝑥

≤
𝑏 − 𝑎

4

1

𝑝 + 1

4

𝜋
 

|ϒ (𝑎)| + ϒ
𝑎 + 𝑏

2

+ |ϒ (𝑏)| + ϒ
𝑎 + 𝑏

2
. 

 Corollary 12. When 𝜃, 𝜆 are taken as 0, , 

respectively in Theorem 2, then we trapezoid-type 
inequality as follows: 

ϒ(𝑎) + ϒ(𝑏)

2
−

1

𝑏 − 𝑎
ϒ(𝑥)𝑑𝑥  

≤
𝑏 − 𝑎

4

1

𝑝 + 1
|ϒ (𝑎)| + ϒ

𝑎 + 𝑏

2
 

+ |ϒ (𝑏)| + ϒ
𝑎 + 𝑏

2
. 

 
Theorem 3. Let ϒ: 𝐼 ⊆ ℝ → ℝ be a continuously 
differentiable function, ϒ ∈ 𝐿[𝑎, 𝑏], where 𝑎, 𝑏 ∈
𝐼∘ with 𝑎 < 𝑏 and 𝜃, 𝜆 ∈ [0,1]. If |ϒ |  is 
trigonometrically 𝑃-function on [𝑎, 𝑏], 𝑞 > 1, 
then the following inequality holds 

|𝐼(𝑎, 𝑏; 𝜃; 𝜆)|                                              (2.12) 

≤ (𝑏 − 𝑎) 𝜃 − 𝜃 +
1

2

8

𝜋
+

2

𝜋

−
8

𝜋
𝑠𝑖𝑛

𝜋𝜃

2
+ 𝑐𝑜𝑠

𝜋𝜃

2

/

 

  
𝜆 [|ϒ (𝑎)| + |ϒ (𝐴 )| ] /  

  
+(1 − 𝜆) [|ϒ (𝑏)| + |ϒ (𝐴 )| ] / . 

 Proof. We proceed similarly as in the proof 
Theorem 2. Since |ϒ |  is trigonometrically 
𝑃 −function on [𝑎, 𝑏] and using the power mean 
inequality, we get  

|𝐼(𝑎, 𝑏; 𝜃; 𝜆)| ≤ (𝑏 − 𝑎) (2.13) 

  

⎣
⎢
⎢
⎢
⎡

𝜆 |𝑡 − 𝜃|𝑑𝑡 |𝑡 − 𝜃|

|ϒ (𝑡𝑎 + (1 − 𝑡)[(1 − 𝜆)𝑎 + 𝜆𝑏])| 𝑑𝑡) /

 

  

(1 − 𝜆) |𝑡 − 𝜃|𝑑𝑡 |𝑡 − 𝜃|

|ϒ (𝑡𝑏 + (1 − 𝑡)[(1 − 𝜆)𝑎 + 𝜆𝑏])| 𝑑𝑡) / ⎦
⎥
⎥
⎥
⎤

 

  

≤ (𝑏 − 𝑎) 𝜃 − 𝜃 +
1

2

8

𝜋
+

2

𝜋

−
8

𝜋
𝑠𝑖𝑛

𝜋𝜃

2
+ 𝑐𝑜𝑠

𝜋𝜃

2

/

 

𝜆 [|ϒ (𝑎)| + |ϒ (𝐴 )| ] /  

(1 − 𝜆) [|ϒ (𝑏)| + |ϒ (𝐴 )| ] / . 

 This completes the proof.  

Remark 3. If it is taken 𝑠𝑖𝑛 + 𝑐𝑜𝑠 ≥ 1, 𝜃 ∈

[0,1] in the inequality (2.12) , we get  
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|𝐼(𝑎, 𝑏; 𝜃; 𝜆)|                                                (2.14) 

≤ (𝑏 − 𝑎) 𝜃 − 𝜃 +
1

2

2

𝜋

/

 

   
𝜆 [|ϒ (𝑎)| + |ϒ (𝐴 )| ] /  

  
+(1 − 𝜆) [|ϒ (𝑏)| + |ϒ (𝐴 )| ] / . 

 Corollary 13. When 𝜃 is taken as 0 in Theorem 
3, then we get generalised trapezoidal-type 
inequality as follows: 
  

𝜆ϒ(𝑎) + (1 − 𝜆)ϒ(𝑏) −
1

𝑏 − 𝑎
ϒ(𝑥)𝑑𝑥  

≤
𝑏 − 𝑎

2

4

𝜋
𝜆 [|ϒ (𝑎)| + |ϒ (𝐴 )| ] /  

 
+(1 − 𝜆) [|ϒ (𝑏)| + |ϒ ((𝐴 )| ] / . 

Corollary 14. When 𝜃 is taken as 1 in Theorem 3, 
then we get generalised midpoint-type inequality 
as follows: 

ϒ((1 − 𝜆)𝑎 + 𝜆𝑏) −
1

𝑏 − 𝑎
ϒ(𝑥)𝑑𝑥  

≤
𝑏 − 𝑎

2

4

𝜋
𝜆 [|ϒ (𝑎)| + |ϒ (𝐴 )| ] /  

+(1 − 𝜆) [|ϒ (𝑏)| + |ϒ (𝐴 )| ] / . 

 Corollary 15. If 𝜃 is taken as 1 and |ϒ (𝑥)| ≤ 𝑀, 
𝑥 ∈ [𝑎, 𝑏] in Theorem 3, then we get the following 
Ostrowski-type inequality 

  

ϒ(𝑥) −
1

𝑏 − 𝑎
ϒ(𝑢)𝑑𝑢  

≤
𝑀

2

8

𝜋

(𝑥 − 𝑎) + (𝑏 − 𝑥)

𝑏 − 𝑎
.              (2.15) 

 

Proof. For each 𝑥 ∈ [𝑎, 𝑏], there exist 𝜆 ∈ [0,1] 
such that 𝑥 = (1 − 𝜆 )𝑎 + 𝜆 𝑏. Hence we have 

𝜆 =  and 1 − 𝜆 = . Therefore for each 

𝑥 ∈ [𝑎, 𝑏], from the inequality (2.12) we obtain 
the inequality (2.15).  

Corollary 16. When 𝜃, 𝜆 are taken as 0, , 

respectively in Theorem 3, then we trapezoid-type 
inequality as follows: 
  

ϒ(𝑎) + ϒ(𝑏)

2
−

1

𝑏 − 𝑎
ϒ(𝑥)𝑑𝑥  

  

≤
𝑏 − 𝑎

8

4

𝜋
|ϒ (𝑎)| + ϒ

𝑎 + 𝑏

2

/

 

  

+ |ϒ (𝑏)| + ϒ
𝑎 + 𝑏

2

/

. 

 Corollary 17. When 𝜃, 𝜆 are taken as 1, , 

respectively in Theorem 3, then we get midpoint-
type inequality as follows: 

ϒ
𝑎 + 𝑏

2
−

1

𝑏 − 𝑎
ϒ(𝑥)𝑑𝑥 ≤

𝑏 − 𝑎

8

4

𝜋
 

|ϒ (𝑎)| + ϒ
𝑎 + 𝑏

2

+ |ϒ (𝑏)| + ϒ
𝑎 + 𝑏

2
. 

Corollary 18. When 𝜃, 𝜆 are taken as , , 

respectively in Theorem 3, then we get Simson-
type inequality as follows: 
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1

6
ϒ(𝑎) + 4ϒ

𝑎 + 𝑏

2
+ ϒ(𝑏)

−
1

𝑏 − 𝑎
ϒ(𝑥)𝑑𝑥  

  

≤
𝑏 − 𝑎

4

5

18

4(1 − √3)

𝜋
+

2

𝜋
 

|ϒ (𝑎)| + ϒ
𝑎 + 𝑏

2
 

 

+ |ϒ (𝑏)| + ϒ
𝑎 + 𝑏

2
. 

 

3. CONCLUSION 

In this study, we applied the trapezoidal, 
midpoint, Ostrowski, and Simpson type 
inequalities for Trigonometrically 𝑃-function by 
using a general lemma given by İ. İşcan [10]. As 
a result, we obtain integral inequalities of type 
trapezoidal, midpoint, Ostrowski and Simpson for 
Trigonometrically P-function. Our results can be 
applied to different types of convexity. 
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