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Abstract

In this study, we study an inverse source problem of the bi-parabolic equation. The problem is severely
non-well-posed in the sense of Hadamard, the problem is called well-posed if it satisfies three conditions,
such as the existence, the uniqueness, and the stability of the solution. If one of the these properties is
not satisfied, the problem is called is non well-posed (ill-posed). According to our research experience, the
stability properties of the sought solution are most often violated. Therefore, a regularization method is
required. Here, we apply a Modified Quasi Boundary Method to deal with the inverse source problem.
Base on this method, we give a regularized solution and we show that the regularized solution satisfies the
conditions of the well-posed problem in the sense of Hadarmad. In addition, we present the estimation
between the regularized solution and the sought solution by using a priori regularization parameter choice
rule.
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1. Introduction

Bi-parabolic equations are frequently used to demonstrate different evolutionary processes in natural
sciences, especially describe the unique highlights of the elements of deformed water-saturated porous envi-
ronments during their filtration fusion the load applied [1]-[3]. For physical motivation and other models,
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the interested reader is referred to [5]-[8, 24, 25] for more details. Let Ω be a bounded domain in R with the
sufficiently smooth boundary ∂Ω. We consider an unknown source issue of deciding the space-subordinate
source term f(x) for the accompanying bi-parabolic equation

utt(x, t) + 2∆ut(x, t) + ∆2u(x, t) = ϕ(t)f(x), (x, t) ∈ Ω× (0, T ),

ut(x, 0) = 0, (x) ∈ ∂Ω, t ∈ (0, T ],

u|∂Ω = ∆u|∂Ω = 0, x ∈ Ω,

u(x, 0) = 0, x ∈ Ω,

u(x, T ) = g(x), x ∈ Ω.

(1)

By the definition of Hadamard [4] about a problem is called well-posed if it satisfies: the existence, the
uniqueness, and the stability of the solution. This implies that if one of the three properties is not satisfied,
the problem is called is non well-posed. According to our research experience, the stability properties of the
sought solution are most often violated. Therefore, to overcome this difficulty, a regularization method is
required.

There are many methods to regularized the biparabolic problem. Until recently, to our best knowledge,
we have found some research results of the authors as follows: In [9], Tuan and his group consider an inverse
initial problem for a biparabolic equation. They apply a filter method for case linear nonhomogeneous
problem and Fourier truncation method for the nonlinear bi-parabolic problem. In [10], Tuan et. al surveyed
the problem (1) by the Tikhonov method and they show information about the convergent rate between the
sought solution and the regularized solution for both the a-priori and the a-posteriori parameter choice rules.
In [14], Tuan and his group provided an impressive result of the final value problem for a biparabolic problem
with statistical discrete data. In [16], by applying the iteration method, Abdelghani Lakhdari and Nadjib
Boussetila give some other convergent rates under a-priori bound assumptions on the sought solution.

Besides the method already mentioned above. The quasi-boundary value method is also a commonly
used method for examining the ill-posed problem. This method introduced and developed by Showalter, see
[11], [12]. It is additionally normally used to tackle some not well presented issues for other equations; for
more details, see [13], [18]. In this study, we propose a modified version of quasi-boundary value method
to solve the inverse source problem (1), the basic main idea is to use uεγ(ε)(x, T ) = gε(x) + γ(ε)(Bf εγ(ε))(x)

instead of u(x, T ) = g(x). It has been appeared for the modified quasi-boundary value method to manage the
unknown source issue (1) that the best convergence rate is O(ε

1
4 ) under an a-priori choice of the regularization

parameter, inwhich ε is the noise level.
The paper is organized as follows. In Section 2, we give some preliminaries. In Section 3, we show

information about the ill-posedness of problem (1). Next, we propose a regularized solution by the MQBV
method and investigate the error estimates are obtained under the a priori parameter choice rule. Finally,
we give in Section 4.

2. Preliminaries

Let K be a real Hilbert space, and let B : D (B) ⊂ K → K be a linear, positive-definite, self-adjoint
operator with compact inverse on K. B has an orthonormal basis of eigenvectors φk ⊂ K with real eigenvalues
ξk ∈ R.

Bφk(x) = ξkφk(x), k ∈ N,
〈
φk, φl

〉
=

{
1, if k = l,

0, if k 6= l.

and 0 < ξ1 ≤ ξ2 ≤ · · · ≤ ξk with ξk →∞ for k →∞, (2)

and the corresponding eigenelements φk which form an orthonormal basis in K.
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Definition 2.1. (see [20]) The Hilbert scale space H2ζ(Ω), (ζ > 0) defined by

H2ζ(Ω) :=
{
f ∈ L2(Ω) :

∞∑
k=1

(
1 + ξ2

k

)2ζ〈
f, φk

〉2

L2(Ω)
≤ ∞

}
, (3)

with the norm ∥∥f∥∥2

H2ζ(Ω)
=

∞∑
k=1

(
1 + ξ2

k

)2ζ∣∣〈f, φk〉L2(Ω)

∣∣2 ≤ ∞. (4)

Lemma 2.2. Let ϕ0, ϕ1 ≥ 0 satisfy ϕ0 ≤ |ϕ(t)| ≤ ϕ1, ∀t ∈ [0, T ], let choose ε ∈
(

0,
ϕ0

2

)
, by denoting

A(ϕ0, ϕ1) = ϕ1 +
ϕ0

2
, we get

ϕ0

2
≤
∣∣ϕε(t)∣∣ ≤ A(ϕ0, ϕ1). (5)

Proof. This proof can be found at [10].

Lemma 2.3. Let ξk > ξ1 > 0, ∀k ≥ 1 and r ∈ [0, T ],∀t ∈ [0, T ], we obtain

a)

T∫
0

e−ξk(T−r)(T − r)dr = ξ−2
k

(
1− (1 + Tξk)e

−ξkT
)
,

b)
1

1 + ξ2
k

≤ max

{
3

T 2
, 1

}(
1− (1 + Tξk)e

−ξkT
)

ξ2
k

,

c) 0 <

(
1− (1 + tξk)e

−ξkt
)

ξ2
k

< T 2. (6)

Proof. The proof was proved in [17].

3. Main Results

3.1. Uniqueness, ill-posedness and a conditional stability
for the unknown source (1)

Taking the inner product of both sides of (1) with φk(x), it gives
d2

dt2
〈
u(t), φk

〉
+ 2ξk

d

dt

〈
u(t), φk

〉
+ ξ2

k

〈
u(t), φk

〉
= ϕ(t)

〈
f(x), φk

〉
, t ∈ (0, T ),〈

u(0), φk
〉

= 0,
d

dt

〈
u(0), φk

〉
= 0,〈

u(T ), φk
〉

=
〈
g(x), φk

〉
.

(7)

Using the Lagrange constant variable method, with uk(t) =
〈
u(., t), φk

〉
, fk =

〈
f(x), φk(x)

〉
, uk(0) =〈

u(., 0), φk(x)
〉

= 0 and gk =
〈
g(x), φk(x)

〉
.

We obtain

uk(t) = t
( t∫

0

e−ξk(t−r)ϕ(r)dr
)〈
f(x), φk(x)

〉

−
( t∫

0

e−ξk(t−r)rϕ(r)dr
)〈
f(x), φk(x)

〉
. (8)
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From (8), by letting t = T which leads to

〈
g(x), φk(x)

〉
= T

( T∫
0

e−ξk(T−r)ϕ(r)dr
)〈
f(x), φk(x)

〉

−
( T∫

0

e−ξk(T−r)rϕ(r)dr
)〈
f(x), φk(x)

〉
. (9)

A simple transformation gives

〈
f(x), φk(x)

〉
=

〈
g(x), φk(x)

〉
T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr

, (10)

it is shown that

f(x) =
∞∑
k=1

〈
g(x), φk(x)

〉
φk(x)

T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr

· (11)

Defining a linear operator : K : L2(Ω)→ L2(Ω) as follows.

Kf(x) =
∞∑
k=1

〈
f(x), φk(x)

〉 T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr φk(x) =

∫
Ω

q(x, ζ)f(ζ)dζ, (12)

whereby q(x, ζ) =
∑∞

k=1

T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr φk(x)φn(ζ). Due to, which leads to q(x, ζ) = q(ζ, x) and

K is self-adjoint. Next, we go to prove the compactness of the operator. we define Kj

Kjf(x) =

j∑
k=1

〈
f(x), φk(x)

〉 T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr φk(x). (13)

From (12), (13) and using the Lemma 2.3 Part a), we know that

∥∥Kjf −Kf∥∥2

L2(Ω)
≤ ϕ2

1

∞∑
k=j+1

1

ξ2
k

∣∣〈f, φk〉∣∣2 ≤ ϕ2
1

ξ2
j

∥∥f∥∥2

L2(Ω)
. (14)

Therefore, ‖Kj −K‖L2(Ω) 7−→ 0 when j →∞. K is also a compact operator. The SVsD for the self-adjoint
are

ωk =

T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr, (15)

and corresponding eigenvectors are φk. From (12), the problem of finding the source function can be rewritten
as an operator equation

(Kf)(x) = g(x). (16)
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3.2. The non well-posed problem (1)
Problem (1) is well known to be severely ill-posed. For making the purpose of the ill-posedness of problem

(1), illustrative example will be used. By choosing ĝk be as follows g̃k := ξ
−1/2
k φk. If we choose g = 0 then

from (11), we will have f = 0. In here, we have

‖g̃k − g‖L2(Ω) = ‖ξ−1/2
k φk(·)‖L2(Ω) = ξ

−1/2
k . (17)

From (17), we get

lim
k→+∞

‖g̃k − g‖L2(Ω) = lim
k→+∞

ξ
−1/2
k = 0. (18)

With the final condition g̃k, then we get

f̃k(x) =

∞∑
k=1

〈
g̃k(x), φk(x)

〉
φk(x)

T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr

=

∞∑
k=1

〈
ξ
−1/2
k φk(x), φk(x)

〉
φk(x)

T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr

=
ξ
−1/2
k φk(x)

T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr

· (19)

We get ‖f̃k(·)− f(·)‖L2(Ω) as follows

∥∥f̃k(·)− f(·)
∥∥
L2(Ω)

=

∥∥∥∥∥ ξ
−1/2
k φk(·)

T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr

∥∥∥∥∥
L2(Ω)

=
ξ
−1/2
k

T∫
0

e−ξk(T−τ)(T − τ)ϕ(τ)dτ

· (20)

From (20), we have to estimate

T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr ≤ ϕ1

T∫
0

e−ξk(T−r)(T − r)dr ≤ ϕ1T

ξk

(
e−ξkT + 1

)
. (21)

Combining (20) and (21), we know that

∥∥f̃k(·)− f(·)
∥∥
L2(Ω)

≥
ξ

1/2
k

ϕ1T
(
e−ξkT + 1

) · (22)

From (22) leads to

lim
k→+∞

∥∥f̃k(·)− f(·)
∥∥
L2(Ω)

> lim
k→+∞

ξ
1/2
k

ϕ1T
(
e−ξkT + 1

) = +∞. (23)

Combining (18) and (23), we can conclude that problem (1) is ill-posed in the Hadamard sense in L2(Ω)-norm.
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3.3. Conditional stability of source term f

In this section, we present restrictive steadiness by the accompanying hypothesis.

Theorem 3.1. Since ‖f‖H2m(Ω) ≤ E for E > 0 then the norm of
∥∥f∥∥L2(Ω)

is well defined

‖f‖L2(Ω) ≤ C(m,E)‖g‖
m
m+1

L2(Ω)
,

whereby

C(m,E) =
E

1
m+1

|ϕ0|
m
m+1

∣∣1− (1 + Tξ1)e−ξ1T
∣∣ m
m+1

· (24)

Proof. From (11) and Hölder inequality, we know that:∥∥f∥∥2

L2(Ω)
=
∞∑
k=1

∣∣∣∣
〈
g, φk

〉
T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr

∣∣∣∣2

=
∞∑
k=1

∣∣〈g, φk〉∣∣ 2
m+1

∣∣〈g, φk〉∣∣ 2m
m+1∣∣∣ T∫

0

e−ξk(T−r)(T − r)ϕ(r)dr
∣∣∣2

≤
( ∞∑
k=1

∣∣〈g, φk〉∣∣2∣∣ T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr
∣∣2m+2

) 1
m+1( ∞∑

k=1

∣∣〈g, φk〉∣∣2) m
m+1

≤
( ∞∑
k=1

∣∣∣〈f, φk〉∣∣∣2∣∣ T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr
∣∣2m
) 1
m+1

‖g‖
2m
m+1

L2(Ω)
. (25)

Using the inequality
∣∣∣ T∫

0

e−ξk(T−r)(T −r)ϕ(r)dr
∣∣∣m ≥ |ϕ0|2m

(∣∣1− (1 + Tξk)e
−ξkT

∣∣
ξ2
k

)2m

and using the Lemma

2.3 Part b), it gives
∞∑
k=1

∣∣〈f, φk〉∣∣2∣∣ T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr
∣∣2m ≤

((
max

{
3
T 2 , 1

})
ϕ0

)2m∥∥f∥∥2

H2m(Ω)
· (26)

Combining (25) and (26), we get

‖f‖2L2(Ω) ≤
((

max
{

3
T 2 , 1

})
ϕ0

) 2m
m+1

‖f‖
2

m+1

H2m(Ω)
‖g‖

2m
m+1

L2(Ω)
. (27)

3.4. Modified Quasi Boundary Value regularization method and convergence rates
Let

{
uεγ(ε)(x, t), f

ε
γ(ε)(x)

}
be the solution of the following regularized problem as follows:

uεtt,γ(ε)(x, t) + 2∆uεt,γ(ε)(x, t) + ∆2uεγ(ε)(x, t) = ϕε(t)f εγ(ε)(x), (x, t) ∈ Ω× (0, T ),

uεt,γ(ε)(x, 0) = 0, (x) ∈ ∂Ω, t ∈ (0, T ],

uεγ(ε)|∂Ω = ∆uεγ(ε)|∂Ω = 0, x ∈ Ω,

uεγ(ε)(x, 0) = 0, x ∈ Ω,

uεγ(ε)(x, T ) = gε(x) + γ(ε)(Bf εγ(ε))(x), x ∈ Ω

(28)
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If the observed data (ϕε(t), gε(x)) of (ϕ(t), g(x)) with a noise level of ε and satisfied∥∥g(·)− gε(·)
∥∥
L2(Ω)

≤ ε, ‖ϕε − ϕ‖L∞(0,T ) ≤ ε, (29)

then we can present a regularized solution as follows

f εγ(ε)(x) =

∞∑
k=1

〈
gε(x), φk(x)

〉
φk(x)

γ(ε)ξk +
T∫
0

e−ξk(T−r)(T − r)ϕε(r)dr
· (30)

and

fγ(ε)(x) =
∞∑
k=1

〈
g(x), φk(x)

〉
φk(x)

γ(ε)ξk +
T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr

· (31)

Theorem 3.2. Suppose that ‖gε(·) − g(·)‖L2(Ω) ≤ ε and ‖ϕ(·) − ϕε(·)‖L∞(0,T ) ≤ ε, and assume that
‖f‖H2m(Ω) ≤ E for m > 0, then we have the following estimate

i) If 0 < m ≤ 3

4
, and choosing γ(ε) =

( ε
E

) 3
3+4m , then the following estimate

∥∥f(·)− f εγ(ε)(·)
∥∥
L2(Ω)

is of order ε
2m

3+4m . (32)

ii) If m >
3

4
, by choosing γ(ε) =

( ε
E

) 1
2 , then the following estimate

∥∥f(·)− f εγ(ε)(·)
∥∥
L2(Ω)

is of order ε
1
4 . (33)

Proof. The proof of based on the concept of triangle inequality, we get

‖f(·)− f εγ(ε)(·)‖L2(Ω) ≤ ‖f(·)− fγ(ε)(·)‖L2(Ω) + ‖fγ(ε)(·)− f εγ(ε)(·)‖L2(Ω)· (34)

First of all, we notice that

fγ(ε)(x)− f εγ(ε)(x)

=

∞∑
k=1

〈
g(x), φk(x)

〉
φk(x)

γ(ε)ξk +
T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr

−
〈
g(x), φk(x)

〉
φk(x)

γ(ε)ξk +
T∫
0

e−ξk(T−r)(T − r)ϕε(r)dr︸ ︷︷ ︸
:=P1

+

∞∑
k=1

〈
g(x), φk(x)

〉
φk(x)

γ(ε)ξk +
T∫
0

e−ξk(T−r)(T − r)ϕε(r)dr
−

〈
gε(x), φk(x)

〉
φk(x)

γ(ε)ξk +
T∫
0

e−ξk(T−r)(T − r)ϕε(r)dr︸ ︷︷ ︸
:=P2

(35)

We need estimate
∥∥fγ(ε)(·)− f εγ(ε)(·)

∥∥
L2(Ω)

only consider two steps:
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Step 1: Let us evaluate ‖P1‖2L2(Ω).

‖P1‖2L2(Ω)

≤
∞∑
k=1

( T∫
0

e−ξk(T−r)(T − r)(ϕ(r)− ϕε(r))dr
〈
g, φk

〉
φk

[
γ(ε)ξk +

T∫
0

e−ξk(T−r)(T − r)ϕε(r)dr
]
×
[
γ(ε)ξk +

T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr
]
)2

≤
∞∑
k=1

(‖ϕ− ϕε‖L∞(0,T )

T∫
0

e−ξk(T−r)(T − r)dr

γ(ε)ξk

)2
∣∣∣∣∣

〈
g, φk

〉
φk(·)

T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr

∣∣∣∣∣
2

(36)

Using the Lemma 2.3 Part a) and Part c), we can know that

‖P1‖2L2(Ω)

≤
( ε

γ(ε)

)2
∞∑
k=1

(
1− (1 + Tξk)e

−ξkT
)2

ξ6
k

∣∣∣∣∣
〈
g, φk

〉
φk

T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr

∣∣∣∣∣
2

≤
( ε

γ(ε)

)2
T 4

∞∑
k=1

1

ξ2+4m
k

(
1 + ξ2

k

)2m∣∣〈f, φk〉∣∣2
≤
( ε

γ(ε)

)2
T 4‖f‖2H2m(Ω)

∞∑
k=1

1

ξ2+4m
k

· (37)

Step 2: Estimate for ‖P2‖2L2(Ω).

‖P2‖L2(Ω) ≤
∞∑
k=1

( ∣∣〈g − gε, φk〉∣∣2
γ(ε)ξk +

T∫
0

e−ξk(T−r)(T − r)ϕε(r)dr

)2

≤
( ε

γ(ε)

)2
∞∑
k=1

1

ξ2
k

· (38)

If ξk ≥ C̃k
2
d for k ∈ N, where C̃ do not depend of k, see [19]. For 0 < d < 4 and denoting M̃2 := 1

C̃2

∞∑
k=1

1

k
4
d

.

Next, if d > 0 and m > 1
2

(
d
4 − 1

)
, then by letting M̃1 = 1

C̃2+4m

∞∑
k=1

1

k
4+8m
d

. Therefore, form (37) and (38), it

gives

‖P1‖L2(Ω) ≤
( ε

γ(ε)

)
T 2E

√
M̃1, and ‖P2‖L2(Ω) ≤

( ε

γ(ε)

)√
M̃2· (39)

Combining (35), (39) and (38), we obtain

∥∥fγ(ε)(·)− f εγ(ε)(·)
∥∥
L2(Ω)

≤
( ε

γ(ε)

)(
T 2E

√
M̃1 +

√
M̃2

)
. (40)
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The proof is completed by showing that (11), we notice that

‖f(·)− fγ(ε)(·)‖2L2(Ω)

≤
∞∑
k=1

(∣∣∣ T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr
∣∣∣−1
−
∣∣∣γ(ε)ξk +

T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr
∣∣∣−1
)2

×
∣∣〈g, φk〉|2
≤
∞∑
k=1

[γ(ε)ξk]
2(

γ(ε)ξk +
T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr

)2

∣∣〈g, φk〉∣∣2∣∣ T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr
∣∣2

≤
∞∑
k=1

γ(ε)ξk
(
1 + ξ2

k

)−2m

4
T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr

‖f‖2H2m(Ω) ≤
∞∑
k=1

∣∣E(ξk)
∣∣2‖f‖2H2m(Ω)· (41)

From (41), we continue to estimate E(ξk). Denoting Q̃(ξ1, T, ϕ0) = (4ϕ0

∣∣1− (1 + Tξk)e
−ξkT

∣∣)−1, we obtain

∣∣E(ξk)
∣∣2 ≤ γ(ε)ξk(1 + ξ2

k)−2m

4
T∫
0

e−ξk(T−r)(T − r)ϕ(r)dr

≤
γ(ε)ξ3−4m

k

4ϕ0

∣∣1− (1 + Tξk)e−ξkT
∣∣

≤
γ(ε)ξ3−4m

k

4ϕ0

∣∣1− (1 + Tξ1)e−ξ1T
∣∣ ≤ γ(ε)ξ3−4m

k Q̃(ξ1, T, ϕ0)· (42)

It can happened that

Case 1: m >
3

4
, it is easy to see that ξ3−4m

k ≤ ξ3−4m
1 and combining this with (41), we deduce that

∥∥f(·)− fγ(ε)(·)
∥∥
L2(Ω)

≤ [γ(ε)]
1
2 ξ

3
2
−2m

1 E
[
Q̃(ξ1, T, ϕ0

] 1
2 . (43)

Case 2: 0 < m ≤ 3

4
, with m ∈

(
0,

3

4

)
. We rewrite N by N =W1 ∪W2

whereby

W1 =
{
k ∈ N, ξ3−4m

k ≤ [γ(ε)]−`
}
,W2 =

{
k ∈ N, ξ3−4m

k > [γ(ε)]−`
}
. (44)

Hence, from (41) and the condition ‖f‖H2m(Ω) ≤ E, we can find that

∥∥f(·)− fγ(ε)(·)
∥∥2

L2(Ω)
= sup

k∈W1

γ(ε)ξ3−4m
k Q̃(ξ1, T, ϕ0)E2 +

W2∑
k=1

ξ−4m
k E2

≤ Q̃(ξ1, T, ϕ0)E2[γ(ε)]1−` + sup
k∈W2

ξ−4m
k E2

≤ Q̃(ξ1, T, ϕ0)E2[γ(ε)]1−` + [γ(ε)]
4m`

3−4mE2. (45)

We choice ` = 1− 4m

3
, it gives∥∥f(·)− fγ(ε)(·)

∥∥2

L2(Ω)
≤ Q̃(ξ1, T, ϕ0)E2[γ(ε)]

4m
3 + [γ(ε)]

4m
3 E2. (46)

Using the inequality (a2 + b2) ≤
√
a+ b,∀a, b ≥ 0, one has∥∥f(·)− fγ(ε)(·)

∥∥
L2(Ω)

≤
[
γ(ε)

] 2m
3

([
Q̃(ξ1, T, ϕ0)

] 1
2E + E

)
· (47)
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a) If 0 < m ≤ 3

4
, combining (34), (40) and (46), we conclude that

‖f(·)− f εγ(ε)(·)‖L2(Ω) ≤
ε

γ(ε)

(
T 2E

√
M̃1 +

√
M̃2

)
+ [γ(ε)]

2m
3

([
Q̃(ξ1, T, ϕ0)

] 1
2E + E

)
· (48)

b) If m >
3

4
, combining (34), (40) and (43), we conclude that

‖f(·)− f εγ(ε)(·)‖L2(Ω) ≤
ε

γ(ε)

(
T 2E

√
M̃1 +

√
M̃2

)
+ [γ(ε)]

1
2 ξ

3
2
−2m

1 E
[
Q̃(ξ1, T, ϕ0

] 1
2 . (49)

Therefore, we conclude that

a) If 0 < m ≤ 3

4
, by choosing γ(ε) =

( ε
E

) 3
3+4m , then we get

‖f(·)− f εγ(ε)(·)‖L2(Ω) ≤ ε
4m

3+4mE
3

3+4m

(
T 2E

√
M̃1 +

√
M̃2

)
+ ε

2m
3+4mE

2m
3+4m

([
Q̃(ξ1, T, ϕ0)

] 1
2E + E

)
. (50)

b) If m >
3

4
, by choosing γ(ε) =

( ε
E

) 1
2 , then we get

‖f(·)− f εγ(ε)(·)‖L2(Ω) ≤ ε
1
2E

1
2

(
T 2E

√
M̃1 +

√
M̃2

)
+ ε

1
4E

1
4

([
Q̃(ξ1, T, ϕ0)

] 1
2E + E

)
. (51)

This completes the proof of Theorem 3.2.

4. Conclusion

In this study, we investigate an reconstruct source function f(x) for a bi-parabolic equation. The con-
ditional stability is given in Theorem 3.1. We used a MQBV method for obtaining a regularized solution.
Based on an a priori assumption for (11), the error estimate is obtained under an a priori regularization
parameter choice rule. The authors is greatly indebted to professor Nguyen Huy Tuan for suggesting the
problem and for many stimulating conversations.
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