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MACHINE LEARNING BASED PREDICTIVE MODEL FOR SURFACE ROUGHNESS IN 

CYLINDRICAL GRINDING OF AL BASED METAL MATRIX COMPOSITE 
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The Metal Matrix Composite (MMC) technology of today is a challenging 

topic with novel developments. MMC materials have a key role in space, 

automotive, naval, and aviation industries and supplies of the defense industry 

owing to their superior specifications. Hence, advancing the machining 

quality of these materials is an essential point. This work presents a machine 

learning based prediction model for the surface roughness of LM25/SiC/4p 

composite. The related dataset is linked to an MMC, which is machined with 

a cylindrical grinder, so the input parameters of the model are depth of cut, 

wheel velocity, feed, and velocity of the work piece. The proposed model is 

based on a state of the art machine-learning method called Gaussian Process 

Regression (GPR). Alongside its robust performance in the small datasets, 

GPR has the ability with its Bayesian approach basis in providing uncertainty 

evaluation on the predicted values. Parameter optimization is also applied to 

the proposed GPR model. For a better evaluation of the GPR, a support vector 

machine based prediction model is also tested. In addition to the data split test 

method, models are tested with a 5-fold cross-validation algorithm. The 

experimental results present that the proposed GPR model reaches an 

adequate accuracy in terms of R-square, root mean squared error, and mean 

absolute error criteria. 

Key words: metal matrix composite, machine learning, surface roughness, 

GPR prediction model. 

1. Introduction

Nowadays, the industrial fields are in a significant need for improved engineering materials, 

which expose high-quality specifications and efficient performance in highly critical applications. On 

the other hand, those advance materials should resist high temperatures, pressure, and stresses. Metal 

Matrix Composite (MMC) materials are the primary materials that can provide those features with their 

raised hardness, a low value of thermal expansion, great strength to weight ratio, durable wear resistance, 

and long fatigue life. For this reason, traditional materials in the fields of the automotive, aerospace, 

defense, and military are progressively being replaced by MMC materials [1, 2].  Amid all others, 

Aluminum (Al) based MMC materials, which are reinforced by silicon carbide particles (SiCp) have 

quickly become one of the most preferred MMC materials of recent date [3, 4]. In the machining process 

1
Department of Electrical and Electronics Engineering, University of Firat, Elazig, Turkey, (fucar@firat.edu.tr) 

https://orcid.org/0000-0001-9366-6124 
2
 Department of Metallurgy and Material Engineering, University of Firat, Elazig, Turkey, (nkati@firat.edu.tr) 

https://orcid.org/0000-0001-7953-1258 

Received: 24 July 2020; Accepted: 9 December 2020   Doi: https://doi.org/10.36222/ejt.773093 

415

http://dergipark.gov.tr/ejt


European Journal of Technique (EJT) Vol  10, Number 2, 2020 

Copyright © INESEG   ISSN 2536-5010 | e-ISSN 2536-5134  http://dergipark.gov.tr/ejt 

of such exclusive materials, it is deserved a more and more advance engineering point of view to reveal 

perfect items to the end-users. Figure 1 shows a general block scheme which summarizes the Aluminum 

MMC properties, application areas and reinforcement types [2, 5]. 

Figure 1. Aluminum MMC identification scheme. 

In the modern engineering atmosphere, it is obviously reached a point that all the players of the 

industry increasingly have been benefit from the rapid developments of today’s simulation and modeling 

environment. Hence, it is of great importance to use artificial intelligence capabilities in the processing 

of MMC materials because they have some disadvantages in processing costs and machinability [6]. 

While MMC materials have advanced mechanical and thermal properties, some drawbacks such as 

processing costs and poor machinability still stand as an obstacle in the way of broad usage of them [2]. 

On that account, the machinability research is an essential interest for scientists to be able to develop an 

intelligent production line in MMC materials. Artificial intelligence (AI) and particularly machine 

learning (ML) methods open the door to researchers on the way of advanced modeling of the MMC 

material machinability. In the last decade, there are several studies in the related literature that address 

AI usage in the metallurgical and materials engineering [2, 7–10]. Even in diamond machining process, 

ML methods stand out with their prediction abilities [11]. In [12], the authors propose an optimization 

model for the milling of aluminum hybrid MMC and the regression model helps to form the inputs of 

the MMC machinability. The authors of the study [13] propose a traditional artificial neural network 

(ANN) model to predict the performance parameters of an Al/SiCp MMC machining process and the 

prediction model exposes the efficient features of the process successfully. In [14], the authors present 

an ANN based prediction network to help the Al based MMC manufacturing process, analysis of the 

study cover the micro-hardness, tensile extension, yield strength, modulus, and tensile stress. In [15], 

the authors present an ANN model design to predict the hardness and electrical conductivity of Cu based 

MMC. The study [16] investigates the effect of the milling time and matrix size on an alloy fabrication,

the analysis interprets the results of a traditional ANN-based prediction model. The authors of the study 

[17] use multiple regression analysis for estimating the machining performances of Al-based MMC,

instead of using an ANN-based model and interpret the results using sophisticated mathematical models. 
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In [18], the authors conduct an experimental investigation on wear properties of Al/SiC MMC and build 

a traditional ANN-based prediction model, the prediction target is weight loss of the specimen and the 

model produces an adequate performance. The input parameters of the model are production 

temperature, applied load force, and sliding distance. 

Surface roughness is a crucial property for determining material quality. MMC with an adequate 

surface finish shows an improved tribological property and elegant attraction. Of course, producing the 

MMC with an extremely better surface finish comes with a higher cost. For that reason, scientists 

enounce many kinds of methods for prediction modeling and identifying the suitable parameters for 

surface roughness [19]. The obtained prediction models are very helpful in enhancing the surface quality 

in the grinding process of MMC materials because the experts in the field would assume the surface 

roughness without doing any real experiment and determine the input parameters according to the model 

results. In [20], the authors propose a prediction model (based on the traditional ANN) for surface 

roughness of some alloys in the end milling machine. The study [21] investigates some parameters on 

surface roughness in Al based MMC. To reach the results, a prediction model is designed with inputs of 

cutting speed, feed rate and application angle for the output as surface roughness. Another ANN based 

prediction model of surface roughness is proposed in [22], here the proposed model is supported with 

grey relational analysis to interpret the results. There are many kinds of researches, particularly based 

on ANN, have been conducted covering the prediction models for surface roughness analysis [23–25]. 

When the literature review given above is interpreted, it is seen that almost all prediction models 

for surface roughness estimation are based on traditional ANN structure. However, if up to date studies 

are examined, many applications can be found that traditional ANN structures stay behind the state of 

the art machine learning methods. Also, network architectures should be simple and easy to implement 

when dealing with real-world applications. In ANN structure, there are lots of parameters that should be 

optimized such as neuron numbers of hidden layers, activation function determining, and total layer 

numbers. ANN also has so many limitations in practice such as poor generalization performance, over-

fitting problem, and the possibility of local minima sticking. Thus, there is an obvious necessity to 

explore other artificial intelligence methods to overcome the weaknesses of the traditional ANN [26]. 

Meeting this requirement would provide robustness in surface roughness prediction results. Today, 

machine learning methods are successfully utilized for regression, classification, or clustering in 

materials sciences [27, 28]. Gaussian process regression (GPR) is one of the machine learning models 

based on the Bayesian approach and it generates a robust performance in the small datasets providing 

uncertainty evaluation on the predicted values [26]. With this motivation, the proposed study adopts the 

GPR method for modeling and prediction of surface roughness of Al-based MMC in cylindrical 

grinding. The dataset of the studies [3, 29] is preferred because of its clear experiment results. So, the 

benchmark study selected from the literature for the proposed prediction model is taken into account as 

the results of the study [3]. The workpiece is Al – SiCp MMC. The proposed GPR model also includes 

a hyperparameter optimization using the Bayesian approach. Although the GPR method is previously in 

use, the perfection of the GPR in the area of the surface roughness prediction researches has not been 

exposed. Besides, the GPR method has not been evaluated with the benchmark traditional ANN 

structures to deduce its reliability in surface roughness prediction. Consequently, taking cognizance of 

the previous theoretical conveniences provided by the GPR, the paper aims to contribute: 

1. Investigation the capability of the GPR model as a novel application for predicting surface 

roughness using Al-based MMC cylindrical grinding open-source dataset obtained from a 

previously designed experimental setup; 
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2. Shaping a comparative work between the proposed GPR structure and benchmark method of 

traditional ANN. 

The layout of the article is composed as follows: Section 2 presents a concise outline of the 

theoretical background of the proposed GPR procedure. Section 3 defines a brief explanation of the 

dataset used in the prediction model. In Section 4, the experimental findings are presented alongside the 

GPR model experiment setup. Section 5 finalizes the article with conclusions. 

 

2. Gaussian Process Regression based Machine Learning Model 

Machine learning (ML) models focus on optimizing the performance of a specific task by using 

similar behaving instances or historical data. In general words, ML algorithms can be thought in three 

main topics, namely, supervised, unsupervised, and reinforcement learning structures. Since, supervised 

learning structure is by far the most predominant form of ML in materials science [27], we provide a 

brief identification about supervised learning in the following discussion before presenting the proposed 

machine learning algorithm. 

Among ML algorithms, supervised learning is following the essentials of a similar procedure with 

the common fitting principle. The main aim is to find the black box (unknown) function that tries to map 

the known input parameters to unknown output parameters. The expected result for unknown output 

spaces is predicted using the extrapolation of patterns obtained in the labeled training data. Figure 2 

illustrates the general workflow practice in supervised learning [27]. 

 

 

Figure 2. General workflow of the supervised learning structure. 

The dataset is the backbone and the core of the learning process because the model tries to 

completely learn the hidden footprints of the patterns in the data distribution. When this is the case, the 
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dataset collection or producing it from scratch has a key role in the whole workflow. This process is 

followed by the step of specifying the proper machine learning algorithm to fit the expected targets. 

Beyond this, dataset preparation and setup is another step in the progress. Generally, the three-part (train-

test-validaiton) data split method is used for the learning process but k -fold crossvalidation is also used 

for the experiments. The data split or simple hold out method performs the model once but k-fold cross-

validation works with k equally sized dataset. The ML model is trained with ( 1)k   subsets and the 

remaining subset is separated for testing. The procedure repeats for every single subset, iteratively [27, 

30]. 

The other important chapter of the progress which could include normalization, feature extraction, 

selection, or reduction approaches is data preprocessing. Here, the data distribution would be mapped 

and some algorithms may translate the raw data into different feature domains to obtain the information. 

Now, this data could be used as the input of the algorithm. After all those processes, the ML model is 

ready for the training process which may also include optimization of the model parameters. No matter 

what, the model should not face the training data instances in the testing period. The validation set may 

be used in the model parameter optimization to check the cost function conditions. In the training 

process, ML algorithms may suffer from overfitting and underfitting. The main reason for the 

underfitting is generally tied to the model design lacking the capability of processing the complex data 

distribution or it may depend on the lack of feature presentation. In this case, the ML model produces a 

high training error. Conversely, a model with overfitting may perform well in the training but it fails to 

predict new (never seen) data, reliably. One of the ways to avoid overfitting is to track the validation 

error during the training instead of tracking only the training error. If the validation error stocks in a 

band-width value and no more decreases, we can say the ML model may face the overfitting. Before the 

end game which is the prediction of the outputs, the model is evaluated with the previously unseen 

dataset with evaluation methods aforementioned such as simple hold out or cross-validation [27]. 

The methodology of this paper consists of the optimized Gaussian process regression (GPR), here 

we present its concise picture of it. The methodological details of the well-known benchmark theories 

such as ANN and support vector machine (SVM) models will not be considered here. Please see the 

studies [2, 28] for a detailed information on those methods as well as [31, 32]. For the details of the 

Bayesian-based hyperparameter optimization, please see the studies [31, 32]. 

Gaussian process as general term consists of random variables which every single collections of 

those finite random variables are in the frame of a joint Gaussian distribution [26, 33]. The parameters 

set of a Gaussian process ( )pg t consists of a mean function ( )M t , and a kernel or covariance function

( , ')c t t  assigned to points t and 't . We can express those functions in (1) and (2) as: 

( ) ( ( ))pM t E g t  (1) 

Cov( ( ), ( ')) ( , '; ) (( ( ) ( ))( ( ') ( ')))p p p pg t g t c t t E g t M t g t M t     (2) 

where  stands for the hyperparameters set. In a brief form, a Gaussian process ( )pg t  can be 

stated as in (3): 

( ) ( ( ), ( , ')p Pg t G M t c t t  (3) 
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where  
PG denotes the Gaussian process. The brief presentation shows that the ( )pg t function has 

a distribution forms the Gaussian process with kernel (covariance) function ( , ')c t t  and mean ( )M t [26, 

33].  

The aim of a regression problem is to form the dependence of a target d on predictor variables 

it . Each target variable d  could be connected to a fundemantal arbitrary regression function ( )pg t  with 

an additive Gaussian noise ( ) which is identically distributed and states the noise value from the data 

distribution. The mathmematical operation can be expressed as: 

( )pd g t    (4) 

here,  the noise has zero mean value and its variance is 
2

n . So we can rewrite the noise as 
2(0, ).nN   Then, the Gaussian process shown in the (3) expands as in (5) [26]: 

2( ) ( ( ), ( , ') )p P ng t G M t c t t I  (5) 

where, I is for the identification matrix. The additive behave of the noise  and the 

marginalization feature of the 
PG forms a joint distribution belongs to output of training process d  and 

with locations of T and outputs of test process 
*f  with test points of 

*T , the mathematical form of this 

joint distribution can be given as in (6) [26]: 

 

2

*

* * * * *

( ) ( , ) ( , )
,

( ) ( , ) ( , )

n
d M T c T T I c T T

N
f M T c T T c T T

     
      

        

(6) 

 

On the conditions of Gaussian prior distribution with ,T ,d and 
*T , the prediction distribution 

can be given as in (7): 

* * * *( | , , ) ( ,var( ))p d T d T N d d  (7) 

where, *d  (8) is the prediction mean and 
*var( )d (9) is the predicton variance [26]: 

1
2

* * *( ) ( , ) ( , ) ( ( ))nd M T c T T c T T I d M T


       (8) 

1
2

* * * *var( ) ( , ) ( , ) ( , )nd c T T c T T I c T T


     (9) 

In the GPR model covariance (kernel) function has a key role [26, 33]. Hence, on the way of the 

determination of the layout function, the selection of a proper covariance function is a crucial task. As 

a brief explanation, covariance function computes a similarity measure i.e., the inputs which are closely 

related to each other have similar targets; in parallel, test inputs neighboring a training input should be 

addressed to a corresponding target value neighboring the training input. In this manner, a test input 

could be predicted. There are many kinds of the covariance functions proposed in the literature. Some 

of those can be listed: Matern class, Gaussian noise, Ornstein – Uhlenbeck, Gama exponential, squared 

exponential, periodic, rational quadratic and so on [26, 33]. 
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3. Data Description

In the proposed study, a GPR based ML model is designed for prediction of the surface roughness 

of the Al-SiCp (LM25/SiC/4p) MMC with the cylindrical grinding experimental data. The cylindirical 

grinding workbench uses an aluminum oxide grinding wheel which is vitrified-bonded. The grinding 

wheel is capable of different speed levels because a variable speed drive is used with the wheel motor. 

Variable speed drive controls the frequency of the electrical supply of the wheel motor to obtain different 

speed levels of the grinding process. The real-world experimental dataset is collected from studies [3, 

29] where the dataset information and details are shared publicly.

The inputs of the dataset is considered as 1) Velocity of the grinding wheel, 

sV (m/min), 2) Velocity of the work piece, wV (m/min), 3) Feed, f (m/min), and 4) Depth of cut, d

(µm). The output (target) parameter of the model is surface roughness, aR (µm). Measurement of the 

surface roughness is performed by the help of various methods, among them, the center line average 

(CLA) method is mostly preferred in the surface roughness measurement. CLA calculates the average 

deviation for the measurement from the nominal surface. Its mathematical expression is given in (10): 

0

1
( )

L

aR Y x
L

  dx (10) 

where, aR states the arithmetic average deviation away from the mean line, L is for the length of

sampling, and Y stands for the roughness profile ordinate. In the preferred dataset, the measurement of 

the surface roughness is performed with the CLA method [3]. By using the aforementioned dataset, our 

model opens the possibility to improve the machining process by surface roughness prediction. Table 1 

lists the dataset properties with their feature names, definitions, symbols, and units. 

Table 1. Dataset brief. 

Feature Definition Symbol and Unit 

Input-1 Velocity of the grinding wheel sV (m/min) 

Input-2 Velocity of the work piece wV (m/min) 

Input-3 Feed f (m/min) 

Input-4 Depth of cut d (µm)

Output Surface roughness aR (µm)

In order to perform a detailed visual experience about the preferred dataset, Figure 3 illustrates 

the dataset distribution. Here, all the input parameters can be seen with its distribution levels 

corresponding to output values. Every input parameter with each sample is demonstrated. As it is seen 

in Figure 3, all input parameters have three-level distribution. Figure 3 also draws the big picture of the 

preferred dataset by containing every sample with their output (target) values which is absolutely the 

surface roughness.  

The details of the dataset can be found in the study [3], and the other details of real-world grinding 

experimental workbench can be reached with the study [29].  
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Figure 3. Dataset distribution. 

4. Setup and Experimental Findings

In this section, we declare the experimental design of the proposed ML system for surface 

roughness prediction. Also, the evaluation metrics are presented. Lastly, this section contains the 

experimental findings of the proposed system. The effect of the proposed system on its prediction rates 

and other evaluation metrics are discussed. The experiments of the artificial intelligent based prediction 

system with its development codes are designed in MATLAB environment set on a workstation with 

Intel Xeon E5 dual-processor of 2.1 GHz, Quadro M4000 8GB of GPU memory, and 32 GB of RAM 

memory. 

4.1. Setup 

The details of the experiments are presented in this subsection. To obtain a thorough analysis, we 

evaluate the proposed model in challenging conditions. After the data preprocessing (normalization of 

the input parameters), the proposed GPR model (including hyperparameter optimization) is evaluated 

with two methods as data splitting (80% train set -20% test set), and 5-fold cross-validation.  In the 

dataset normalization (just for input parameters not the targets), we process the data matrix by mapping 

its row minimum and maximum values to the interval of [-1,1] with the help of “mapminmax” function. 

Figure 4. Experiment design of the proposed machine learning model. 
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Figure 4 illustrates the block diagram of the experiment scenario of the proposed machine 

learning-based prediction model of GPR. In data splitting experiments, the best tuned prediction model 

is achieved in the training process with optimization. The optimization process tracks the validation 

error using the test set. After determining the best model, it is tested by the separate test set. 

Table 2. Optimized hyperparameters of the GPR model. 

Hyperparameter Optimization interval 
Specified Values of the Models 

Data Splitting 5-fold

Basis Function Constant, zero, linear Zero Constant 

Kernel 
Exp, Matern 5/2, Matern 3/2, 

Isotropic, Rational quadratic 

Matern 3/2 Matern 5/2 

Kernel Scale (0.00240, 2,4007) 0.0064 0.7175 

Sigma (0.0001, 1.9909) 0.0164 0.4022 

Standardize True, false True False 

In Table 2, the hyperparameter details in the practice of the machine learning-based GPR model 

are listed. Here, we can see the optimization interval and specified values according to the experiment 

type. The basic hyperparameters as the kernel function type, kernel scale, basis function, sigma value, 

and the option of standardizing are included in the Bayesian optimization approach. In addition to the 

normalization, the standardizing process may improve performance in some situations. The optimization 

process tracks the validation error for 30 iterations. 

Figure 5. Prediction vs Actual plot and Response plot of the GPR model. 

Figure 5 shows the optimization minimum objective tracing graphics of both two experiment 

scenarios as data splitting and 5-fold cross-validation. As we can see in both scenario’s validation error 

tracing, the 5-fold cross-validation experiment provides a robust operation in optimization. In Figure 5, 

alongside the specified values, the best point hyperparameters and minimum error hyperparameters 

locations are also presented.  
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To achieve an efficient evaluation of the performance values of the proposed machine learning 

based GPR model for surface roughness prediction, we prefer four well-known statistical criteria 

namely: mean absolute error (MAE), root mean square error (RMSE), mean square error (MSE), 

coefficient of determination (R-squared). The mathematical expressions of the evaluation criteria is 

given in (11)-(14): 

2

1

ˆ( )

MSE=

N

i i

i

Y Y

N



 (11) 

2

1

ˆ( )

RMSE= MSE

N

i i

i

Y Y

N






 (12) 

1

ˆ

MAE

N

i i

i

Y Y

N








(13) 

2

1

2

1

ˆ( )

R-squared 1

( )

N

i i

i

N

i i

i

Y Y

Y Y







 






(14) 

where, iY is the actual values of the test dataset, ˆ
iY is the predicted output values of the GPR

model, N is the total number of observations, and iY is the mean value of the actual test values. 

4.2. Experimental Findings 

In this subsection, we present the obtained results of the proposed GPR model with related 

graphical presentations and tables. For an efficient evaluation, quadratic and Gaussian SVM model 

results are also achieved for data splitting and 5-fold experiments. Table 3 shows the GPR model 

prediction results for both two experiment scenarios with prediction speed (observation per second) and 

trainin time (second). 

Table 3. GPR prediction results. 

Criterion 
Performance 

Data Splitting 5-fold

RMSE 0.0454 0.0525 

R-squared 0.98 0.93 

MSE 0.0021 0.0027 

MAE 0.0387 0.0397 

Prediction speed ~2100 obs/sec ~4000 obs/sec 

Training time 49.775 sec 49.266 sec 

424

http://dergipark.gov.tr/ejt


European Journal of Technique (EJT) Vol  10, Number 2, 2020 

Copyright © INESEG   ISSN 2536-5010 | e-ISSN 2536-5134  http://dergipark.gov.tr/ejt 

In Table 3, we can see the detailed performance metrics of data splitting and 5-fold cross-

validation experimental results. In terms of RMSE evaluation, both models produce close values with 

each other as 0.0454 and 0.0525, for data splitting and 5-fold scenarios. RMSE value of 5-fold 

experiments stays behind the data splitting because it is the challenging experiment for the model. But 

the robustness of the 5-fold experiments is proven with the MSE and MAE values even if its R-squared 

value is left behind of the data splitting. If it is analyzed the prediction speed and training time, both 

model provides an efficient computational cost. The prediction speed of the 5-fold scenario is faster 

because it operates smaller data packages according to the data splitting method. The training times are 

given for 30 iterations of the optimization process, so we can assume that a one-time run of both models 

takes approximately 1.5 seconds for prediction. 

To provide a visual experience of the model predictions, we present a collection of graphical 

representations of the experimental findings of the proposed prediction model. Figure 6 illustrates the 

plot of predicted vs actuals of the predicted values. Both experiment scenario performs well that 

predictions are close to the perfect prediction line. In Figure 7, we can see a detailed presentation of the 

predicted and actual values as a response plot. Here, we can see the prediction errors, clearly. 

Figure 6. Prediction vs Actual plots of the GPR models for two experiment scenarios. 

Figure 7. Response plots of the GPR models for two experiment scenarios. 
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Figure 8. Residuals of the errors in the GPR models for two experiment scenarios. 

In Figure 8, residuals of the errors in the GPR models are presented for two experiment scenarios. 

Here, we can see the distances of the errors to the zero line. Figure 8 clearly shows the error rate of the 

each instance of the test dataset. 

Table 4. GPR model prediction results comparison with SVM models 

Criterion 

Proposed Optimized GPR Model Optimized SVM Models 

Data Splitting 5-fold
Data Splitting 

(quadratic) 

5-fold

(Gaussian) 

RMSE 0.0454 0.0525 0.0795 0.0553 

R-squared 0.98 0.93 0.81 0.92 

MSE 0.0021 0.0027 0.0063 0.0031 

MAE 0.0387 0.0397 0.0575 0.0455 

Prediction speed ~2100 obs/sec ~4000 obs/sec ~2900 obs/sec ~1900 obs/sec 

Training time 49.775 sec 49.266 sec 73.453 sec 85.053 sec 

In Table 4, we provide a complete comparison between the proposed optimized GPR model and 

optimized SVM models. It can be interpreted from Table 4 that the SVM models stay behind the 

proposed GPR model in all experiment scenarios. The highest performance of SVM models is achieved 

in the scenario of 5-fold experiment with an RMSE value of 0.553 but considering the other performance 

metrics, proposed GPR model outperforms the SVM which is one of the well-known benchmark method 

in machine learning. 

Although there would be no fair comparison due to the structural dynamics of the ANN method 

and its many adjustable parameters, we provide a comparison table including the results of the study 

[3]. Table 5 presents a comparison between the proposed machine learning based GPR prediction model 

and traditional ANN model of study [3]. As mentioned above, the study [3] uses the same dataset with 

the proposed study. But, the authors organize a three-part dataset as 20 samples for training, 5 samples 

for testing, and 10 samples for validation, although there is no optimization process. The authors of the 

study [3] do not provide the same performance metrics, so we transform their validation results table to 

RMSE and MSE form and build the Table 5. As it is seen in Table 5, the proposed GPR model catches 
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the traditional ANN with close RMSE and MSE values. Also, the proposed GPR model includes few 

parameters according to the ANN method with lots of dynamic parameters. The proposed surface 

roughness prediction model is computationally efficient with its machine learning basis comparing to 

traditional ANN. 

Table 5. GPR prediction results: Comparsion with ANN 

Models 
Performance 

RMSE MSE 

Proposed GPR Model 0.0454 0.0021 

ANN Model [3] 0.0301 0.0010 

5. Conclusion

In this article, a novel approach for the prediction of the surface roughness of the Al-based MMC 

in cylindrical grinding has been successfully applied. An optimized GPR model is designed with two 

different experimental scenarios using a real-life dataset. For this prediction modeling, the experimental 

dataset is achieved from the studies [3, 29]. The workpiece velocity, the wheel velocity, depth of cut, 

and feed are considered as input parameters of the model while the surface roughness as the output of 

the model. The performance metrics of the proposed machine learning-based GPR model are thought to 

be acceptable. The proposed machine learning-based GPR model with its easy to implement structure 

and prediction ability is a promising method to improve the machining quality of the Al MMC materials 

in analyzing the surface roughness. The proposed model predicts the surface roughness successfully 

with 0.98 RMSE value in challenging experiments. Considering the two different scenarios applied, the 

5-fold cross-validation experiment scenario turns out to be more robust. Although the R-squared value 

of this scenario stays behind the data splitting, MAE and RMSE values prove the impact of the proposed 

model on surface roughness prediction. In the proposed GPR model, the hyperparameter optimization 

is also applied using the essentials of the Bayesian approach. Thus, the most important parameters of 

the GPR method such as kernel function type and sigma value are designed in the optimized model. 

Based on obtained results, it is concluded that the prediction model in this study could be to help the 

related experts to provide low-cost experiments. In addition, the proposed GPR model could be 

effectively utilized for the prediction modeling of different machining processes of various material 

components after re-training it with the related dataset. For the further studies, different optimization 

algorithms with metaheuristic methods could be explored to improve the prediction ability of the GPR 

model. 
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