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Abstract: The Fibonacci number sequence and related calculations come up in scientific facts in many events that we encounter
in daily life. This special number sequence is processed in the occurrence of many events such as calculating the diameter of
the equatorial circumference of the Earth, flowers, growth and structures of leaves, trees, reproduction of bees, sunflower and
so on [6]. However, in recent years, the relation between the Fibonacci and Lucas Number sequences with continued fractions
and matrices has intensively been studied. Many identities have been found by some 2× 2 types of special matrices with the nth

power that have been associated with the Fibonacci and Lucas numbers. The aim of this study is to examine matrix
(

1 1
−1 0

)
under the Lorentzian matrix product with the nth power, quadratic equations and characteristic roots unlike the classical matrix

product. In addition, we want to acquire some identities with the help of matrix
(

1 1
−1 0

)
under the Lorentzian matrix product

with the nth power in relation to the Fibonacci and Lucas numbers.
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1 Introduction

1.1 Fibonacci and Lucas Number Sequences

Fibonacci number sequence is known as 0, 1, 1, 2, 3, 5, 8, · · · We show with Fn = Fn−1 + Fn−2 the nth term of sequence. Lucas number
sequence is known as 1, 3, 4, 7, 11, 18, · · · . We show with Ln = Ln−1 + Ln−2 the nth term of sequence. Lucas number sequence can be
obtained from Fibonacci number sequence. There are many identities associated with the Fibonacci and Lucas number sequences.For details,
see [1]-[4] and [6]. The k -Fibonacci sequence {Fk,n}n∈N is defined recurrently by Fk,n+1 = kFk,n + Fk,n−1 for n ≥ 1 and any positive
real number k with initial conditionsFk,0 = 0, Fk,1 = 1 [5]. Fibonacci sequence for k = 1 and Pell sequence for k = 2 are obtained. In [2],
generated matrices for Fibonacci and Pell sequences. Using the relationship between Fibonacci and Lucas number sequences, the numerical
values of the terms of these sequences and matrix relations of continued fractions has expanded today’s working area of Fibonacci and Lucas
number sequences. In this study, we aim to examine the nth power under the Lorentzian matrix product that unlike the classical matrix product

of
(

1 1
−1 0

)
, quadratic equations and characteristic roots. However, some relations related with Fibonacci and Lucas numbers are obtained

with the help of the nth power under the Lorentzian matrix product of
(

1 1
−1 0

)
. Some of these identities obtained from the matrices whose

the nth power were taken by the classical product method in the previously studies, where these identities were obtained by Lorentzian product.

1.2 Finding the nth Power of A Matrix with Help of Classical Matrix Product

Consider the matrix Q =

(
1 1
1 0

)
. It was studied in 1960 by Charles H. King. It should be noted that |Q| = −1. In addition, under the

classical matrix product,

Q2 =

(
1 1
1 0

)2

=

(
1 1
1 0

)(
1 1
1 0

)
=

(
2 1
1 1

)
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Q3 =

(
1 1
1 0

)3

=

(
1 1
1 0

)(
2 1
1 0

)
=

(
3 2
2 1

)
Q4 =

(
1 1
1 0

)4

=

(
1 1
1 0

)(
3 2
2 1

)
=

(
5 3
3 2

)

are available.

If we continue in a similar way, we reach Qn =

(
Fn+1 Fn
Fn Fn−1

)
matrix [6].

Theorem 1.2.1 [6] Let n ≥ 1. Then Qn =

(
Fn+1 Fn
Fn Fn−1

)
.

Proposition 1.2.2 [6] Let n ≥ 1. Then Fn+1Fn−1 − F 2
n = (−1)n.

Examples 1.2.3 Some examples are given in this section.

1. Fm+n+1 = Fm+1Fn+1 + FmFn [6]
2. Lm+n+1 = Fm+1Ln+1 + FmLn [7]
3. FnLn+k − Fn+kLn = 2(−1)n+1Fk [7]
4. Ln−1Ln+1 + Fn−1Fn+1 = 6F 2

n [7]
5. LnFm−n + FnLm−n = 2Fm [7]
6. F 2

2m = 5F 4
m + 4(−1)mF 2

m [7]

1.3 Lorentzian Matrix Product

Let A = [aij ] ∈ Rmn and B = [bjk] ∈ Rnp , where Rmn is a matrix of type m× n, Rnp is a matrix of type n× p.
A.LB = [−ai1b1k +

∑n
j=2 aijbjk] matrix product is defined with ".L". This product is named with Lorentzian matrix product.

Naturally, A.LB is a matrix of type m× p. Lmp represents Lorentzian matrices’s sets of type m× p.
If we let ith row of A with Ai and jth column of B with Bj , < Ai, B

j >L inner product (i, j) of A.LB.
If we take x = (x1, x2, · · · , xn) as the first row of A matrix, y = (y1, y2, · · · , yn) as the first column of B, (1, 1) element of A.LB matrix
< A1, B

1 >L= −x1y1 +
∑n
i=2 xiyi.

Each element of A.LB ∈ Lmp is an inner product [3].

Theorem 1.3.1 [3] The following equations are provided.
i. For ∀A ∈ Lmn , B ∈ Lnp , C ∈ Lpr , A.L(B.LC) = (A.LB).LC
ii. For ∀A ∈ Lmn , B,C ∈ Lnp , A.L(B + C) = A.LB +A.LC
iii. For ∀A,B ∈ Lmn , C ∈ Lnp , (A+B).LC = A.LC +B.LC
iv. For ∀k ∈ R, ∀A ∈ Lmn , B ∈ Lnp , k(A.LB) = (kA).LB = A.L(kB)

Theorem 1.3.2 [3] According to the L -product, the L -unit matrix of type n× n is denoted by In.

For A ∈ Lmn , Im.LA = A.LIn = A
For example for n = 2 ;

Let I =

(
1 0
0 1

)
.

I.LI =

(
1 0
0 1

)
.L

(
1 0
0 1

)
=

(
< I1, I

1 > < I1, I
2 >

< I2, I
1 > < I2, I

2 >

)
=

(
< (1, 0), (1, 0) > < (1, 0), (0, 1) >
< (0, 1), (1, 0) > < (0, 1), (0, 1) >

)
=

(
−1.1 + 0.0 −1.0 + 0.1
−0.1 + 1.0 −0.0 + 1.1

)
=

(
−1 0
0 1

)
.

Proposition 1.3.3 [3] Lnn with L− multiplied is a unit algebra.

Definition 1.3.4 [3] A is a matrix of type n× n, if there is a B matrix of type n× n such that A.LB = B.LA = In, is called reversible and
denoted by A−1.

Definition 1.3.5 [3] Transpose of A = [aij ] ∈ Lmn demonstrations with AT and define with AT = [aji] ∈ Lnm.

Definition 1.3.6 [3] If A−1 = AT for A ∈ Lnn matrix, A is called L− orthogonal.
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Definition 1.3.7 [3] Determinant of A = [aij ] ∈ Lnn matrix demontrations with detA and define with detA =
∑
σ∈Sn

aσ11aσ22 · · · aσnn.
In here, Sn is all permutations’s set of {1, 2, · · · , n} and s(σ) is sign of σ permutations.

Theorem 1.3.8 [3] For A,B ∈ Lnn, det(A.LB) = −(detA)(detB).

Example 1.3.9 Let find the matrix obtained by multiplying M =

(
1 1
1 2

)
and Q =

(
1 1
1 0

)
under Lorentzian matrix product.

M.LQ =

(
1 1
1 2

)(
1 1
1 0

)
=

(
< M1, Q

1 > < M1, Q
2 >

< M2, Q
1 > < M2, Q

2 >

)
< M1, Q

1 >= −11 + 1.1. = 0
< M1, Q

2 >= −1.1.+ 1.0 = −1
< M2, Q

1 >= −1.1.+ 2.1 = 1
< M2, Q

2 >= −1.1.+ 2.0 = −1
M.LQ =

(
0 −1
1 −1

)
∈ L2

2.

2 Material and Method

2.1 Finding the nth Power of a Matrix Under the Lorentzian Matrix Product and Related Identities

Let us find the nth power of
(

1 1
−1 0

)
matrix under Lorentzian matrix product.

Let
(

1 1
−1 0

)1.L

=

(
1 1
−1 0

)
⇒det

(
1 1
−1 0

)
= 1(

1 1
−1 0

)2.L

=

(
1 1
−1 0

)
.L

(
1 1
−1 0

)
=

(
−2 −1
1 1

)
=

(
−F3 −F2
F2 F1

)
⇒det

(
−2 −1
1 1

)
= −1(

1 1
−1 0

)3.L

=

(
−2 −1
1 1

)
.L

(
1 1
−1 0

)
=

(
3 2
−2 −1

)
=

(
F4 F3
−F3 −F2

)
⇒det

(
3 2
−2 −1

)
= 1(

1 1
−1 0

)4.L

=

(
3 2
−2 −1

)
.L

(
1 1
−1 0

)
=

(
−5 −3
3 2

)
=

(
−F5 −F4
F4 F3

)
⇒det

(
−5 −3
3 2

)
= −1(

1 1
−1 0

)5.L

=

(
−5 −3
3 2

)
.L

(
1 1
−1 0

)
=

(
8 5
−5 −3

)
=

(
F6 F5
−F5 −F4

)
⇒det

(
8 5
−5 −3

)
= 1(

1 1
−1 0

)6.L

=

(
8 5
−5 −3

)
.L

(
1 1
−1 0

)
=

(
−13 −8
8 5

)
=

(
−F7 −F6
F6 F5

)
⇒det

(
−13 −8
8 5

)
= −1

...(
1 1
−1 0

)n.L
=

(
(−1)n+1Fn+1 (−1)n+1Fn

(−1)nFn (−1)nFn−1

)
⇒det

(
(−1)n+1Fn+1 (−1)n+1Fn

(−1)nFn (−1)nFn−1

)
= (−1)n+1

(−1)n+1Fn+1(−1)nFn−1 − (−1)n+1Fn(−1)nFn = (−1)n+1

(−1)2n+1Fn+1Fn−1 − (−1)2n+1F 2
n = (−1)n+1

−Fn+1Fn−1 + F 2
n = (−1)n+1

F 2
n − Fn+1Fn−1 = (−1)n+1.

If we examine to be true F 2
n − Fn+1Fn−1 = (−1)n+1 identity with the inductive method

It is true for n = 1

F 2
n − Fn+1Fn−1 = (−1)n+1,

F 2
1 − F2F0 = (−1)2.

Let we assume that for n = k(
1 1
−1 0

)k.L
=

(
(−1)k+1Fk+1 (−1)k+1Fk

(−1)kFk (−1)kFk−1

)
Let us show that true for n = k + 1(

1 1
−1 0

)k+1.L

=

(
1 1
−1 0

)k.L
.L

(
1 1
−1 0

)
=

(
(−1)k+1Fk+1 (−1)k+1Fk

(−1)kFk (−1)kFk−1

)
.L

(
1 1
−1 0

)
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=

(
(−1)k+2Fk+1 − (−1)k+1Fk (−1)k+2Fk+1

(−1)k+1Fk − (−1)kFk−1 (−1)k+1Fk

)

(−1)k+2Fk+1 − (−1)k+1Fk = (−1)k+1[−Fk+1 − Fk] = (−1)k+2[Fk+1 + Fk] = (−1)k+2Fk+2

(−1)k+1Fk − (−1)kFk−1 = (−1)k[−Fk − Fk−1] = (−1)k+1[Fk + Fk−1] = (−1)k+1Fk+1(
1 1
−1 0

)k+1.L

=

(
(−1)k+2Fk+2 (−1)k+2Fk+1

(−1)k+1Fk+1 (−1)k+1Fk

)
On the other hand(

1 1
−1 0

)2.L

.L

(
1 1
−1 0

)3.L

=

(
−2 −1
1 1

)
.L

(
3 2
−2 −1

)
=

(
8 5
−5 −3

)
=

(
1 1
−1 0

)5.L

(
1 1
−1 0

)1.L

.L

(
1 1
−1 0

)5.L

=

(
1 1
−1 0

)
.L

(
8 5
−5 −3

)
=

(
−13 −8
8 5

)
=

(
1 1
−1 0

)6.L

(
1 1
−1 0

)2.L

.L

(
1 1
−1 0

)4.L

=

(
−2 −1
1 1

)
.L

(
−5 −3
3 2

)
=

(
−13 −8
8 5

)
=

(
1 1
−1 0

)6.L

For diffrent m and n numbers,(
1 1
−1 0

)m.L
=

(
(−1)m+1Fm+1 (−1)m+1Fm

(−1)mFm (−1)mFm−1

)
(

1 1
−1 0

)n.L
=

(
(−1)n+1Fn+1 (−1)n+1Fn

(−1)nFn (−1)nFn−1

)
Then(

1 1
−1 0

)m.L
.L

(
1 1
−1 0

)n.L
=

(
(−1)m+1Fm+1 (−1)m+1Fm

(−1)mFm (−1)mFm−1

)
.L

(
(−1)n+1Fn+1 (−1)n+1Fn

(−1)nFn (−1)nFn−1

)
=

(
(−1)m+n+1Fm+n+1 (−1)m+n+1Fm+n

(−1)m+nFm+n (−1)m+nFm+n−1

)
=

(
1 1
−1 0

)m+n.L

3 Results

The following equations can be given from the equality of the two matrices.

Proposition 3.1
1. Fm+n+1 = Fm+1Fn+1 + FmFn
2. Fm+n = Fm+1Fn + FmFn−1
3. Fm+n = FmFn+1 + Fm−1Fn
4. Fm+n−1 = FmFn + Fm−1Fn−1
5. Fm

Fn
=

Fm−1−Fm+1

Fn−1−Fn+1

6.Fm+n+1 + Fm−1Fn−1 = Fm+n−1 + Fm+1Fn+1
7. Fm+n + Fm+n−1 = Fm+2Fn + Fm+1Fn−1
8. 2Fm+n = LmFn + LnFm
9. F2n+1 = F 2

n+1 + F 2
n

10. F2n = FnLn
11. F2n−1 = F 2

n + F 2
n−1

12. F2n = F 2
n+1 − F 2

n−1
13. F2n+1 = Fn+2Fn + Fn+1Fn−1
14. F2n+1 = FnLn + F 2

n + F 2
n−1

15. 2F2n = FnLn + F 2
n+1 − F 2

n−1
16. F2n+1 + F2n−1 = F 2

n+1 + 2F 2
n + F 2

n−1
17. 2F2n+1 = F 2

n+1 + 2F 2
n + F 2

n−1 + FnLn
18. 2F2n+1 = Ln+2Fn + LnFn−1
Proof:
The Lorentzian matrix product of(

1 1
−1 0

)m.L
.L

(
1 1
−1 0

)n.L
=

(
(−1)m+1Fm+1 (−1)m+1Fm

(−1)mFm (−1)mFm−1

)
.L

(
(−1)n+1Fn+1 (−1)n+1Fn

(−1)nFn (−1)nFn−1

)

=

(
−(−1)m+1Fm+1(−1)n+1Fn+1 + (−1)m+1Fm(−1)nFn −(−1)m+1Fm+1(−1)n+1Fn + (−1)m+1Fm(−1)nFn−1
−(−1)mFm(−1)n+1Fn+1 + (−1)mFm−1(−1)nFn −(−1)mFm(−1)n+1Fn + (−1)mFm−1(−1)nFn−1

)

=

(
(−1)m+n+3Fm+1Fn+1 + (−1)m+n+1FmFn (−1)m+n+3Fm+1Fn + (−1)m+n+1FmFn−1
(−1)m+n+2FmFn+1 + (−1)m+nFm−1Fn (−1)m+n+2FmFn + (−1)m+nFm−1Fn−1

)
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=

(
(−1)m+n+1Fm+n+1 (−1)m+n+1Fm+n

(−1)m+nFm+n (−1)m+nFm+n−1

)
Then;

1. (−1)m+n+1Fm+n+1 = (−1)m+n+3Fm+1Fn+1 + (−1)m+n+1FmFn

If both sides of equality are simplified with (−1)m+n+1

Fm+n+1 = (−1)2Fm+1Fn+1 + FmFn

Fm+n+1 = Fm+1Fn+1 + FmFn

2.(−1)m+n+1Fm+n = (−1)m+n+3Fm+1Fn + (−1)m+n+1FmFn−1

If both sides of equality are simplified with (−1)m+n+1

Fm+n = (−1)2Fm+1Fn + FmFn−1

Fm+n = Fm+1Fn + FmFn−1

3. (−1)m+nFm+n = (−1)m+n+2FmFn+1 + (−1)m+nFm−1Fn

If both sides of equality are simplified with (−1)m+n

Fm+n = (−1)2FmFn+1 + Fm−1Fn

Fm+n = FmFn+1 + Fm−1Fn

4. (−1)m+nFm+n−1 = (−1)m+n+2FmFn + (−1)m+nFm−1Fn−1

If both sides of equality are simplified with (−1)m+n

Fm+n−1 = (−1)2FmFn + Fm−1Fn−1

Fm+n−1 = FmFn + Fm−1Fn−1

5. From (2) and (3);

Fm+n = Fm+1Fn + FmFn−1

Fm+n = FmFn+1 + Fm−1Fn

Fm+1Fn + FmFn−1 = FmFn+1 + Fm−1Fn

FmFn−1 − FmFn+1 = Fm−1Fn − Fm+1Fn

Fm(Fn−1 − Fn+1) = Fn(Fm−1 − Fm+1)

Fm
Fn

=
Fm−1−Fm+1

Fn−1−Fn+1

6. From (1) and (4);

Fm+n+1 = Fm+1Fn+1 + FmFn

FmFn = Fm+n+1 − Fm+1Fn+1

Fm+n−1 = FmFn + Fm−1Fn−1

FmFn = Fm+n−1 − Fm−1Fn−1

Fm+n+1 − Fm+1Fn+1 = Fm+n−1 − Fm−1Fn−1

Fm+n+1 + Fm−1Fn−1 = Fm+n−1 + Fm+1Fn+1
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7. From (2) and (4);

Fm+n = Fm+1Fn + FmFn−1

Fm+n−1 = FmFn + Fm−1Fn−1

Fm+n + Fm+n−1 = Fm+1Fn + FmFn−1 + FmFn + Fm−1Fn−1

= (Fm+1 + Fm)Fn + (Fm + Fm−1)Fn−1

= Fm+2Fn + Fm+1Fn−1

8. From (2) and (3);

Fm+n = Fm+1Fn + FmFn−1

Fm+n = FmFn+1 + Fm−1Fn

2Fm+n = Fm+1Fn + FmFn−1 + FmFn+1 + Fm−1Fn

= (Fm+1 + Fm−1)Fn + (Fn+1 + Fn−1)Fm

= LmFn + LnFm

2Fm+n = LmFn + LnFm

9. If m = n is taken in (1) identity

Fm+n+1 = Fm+1Fn+1 + FmFn

F2n+1 = Fn+1Fn+1 + FnFn = F 2
n+1 + F 2

n

F2n+1 = F 2
n+1 + F 2

n

10. If m = n is taken in (2) identity

Fm+n = Fm+1Fn + FmFn−1

F2n = Fn+1Fn + FnFn−1

= Fn(Fn+1 + Fn−1)

= FnLn

F2n = FnLn

11. If m = n is taken in (4)

Fm+n−1 = FmFn + Fm−1Fn−1

F2n−1 = FnFn + Fn−1Fn−1 = F 2
n + F 2

n−1

F2n−1 = F 2
n + F 2

n−1

12. If m = n is taken in (6) identity

Fm+n+1 + Fm−1Fn−1 = Fm+n−1 + Fm+1Fn+1

Fn+n+1 + Fn−1Fn−1 = Fn+n−1 + Fn+1Fn+1

F2n+1 + F 2
n−1 = F2n−1 + F 2

n+1

F 2
n+1 − F 2

n−1 = F2n+1 − F2n−1 = F2n
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13. If m = n is taken in (7) identity

Fm+n + Fm+n−1 = Fm+2Fn + Fm+1Fn−1

F2n + F2n−1 = Fn+2Fn + Fn+1Fn−1

F2n+1 = Fn+2Fn + Fn+1Fn−1

14. From (10) and (11);

F2n−1 = F 2
n + F 2

n−1

F2n = FnLn

F2n + F2n−1 = FnLn + F 2
n + F 2

n−1

F2n+1 = FnLn + F 2
n + F 2

n−1

15. From (10) and (12);

F2n = FnLn

F2n = F 2
n+1 − F 2

n−1

F2n + F2n = FnLn + F 2
n+1 − F 2

n−1

2F2n = FnLn + F 2
n+1 − F 2

n−1

16. From (9) and (11);

F2n+1 = F 2
n+1 + F 2

n

F2n−1 = F 2
n + F 2

n−1

F2n+1 + F2n−1 = F 2
n+1 + F 2

n + F 2
n + F 2

n−1

L2n = F 2
n+1 + 2F 2

n + F 2
n−1

17. From (10) and (16);

F2n = FnLn

F2n+1 + F2n−1 = F 2
n+1 + 2F 2

n + F 2
n−1

F2n+1 + F2n + F2n−1 =

= F 2
n+1 + 2F 2

n + F 2
n−1 + FnLn

2F2n+1 = F 2
n+1 + 2F 2

n + F 2
n−1 + FnLn

18. From (13) and (14);

F2n+1 = Fn+2Fn + Fn+1Fn−1

F2n+1 = FnLn + F 2
n + F 2

n−1

2F2n+1 = Fn+2Fn + Fn+1Fn−1 + FnLn + F 2
n + F 2

n−1

= (Fn+2 + Fn)Fn + (Fn+1 + Fn−1)Fn−1 + FnLn

= Ln+1Fn + LnFn−1 + FnLn

= (Ln+1 + Ln)Fn + LnFn−1

= Ln+2Fn + LnFn−1

2F2n+1 = Ln+2Fn + LnFn−1
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Let us examine the quadratic equation of the matrix and its characteristic roots. Let A and I are matrices of type n× n. The quadratic
equation of A is |A− xI| = 0. Roots of equation are charecteristic roots of A. If we examine the quadratic equation and characteristic roots

of the nth power of the
(

1 1
−1 0

)
matrix under the Lorentzian product, then∣∣∣∣( 1 1

−1 0

)n.L
− xI

∣∣∣∣=∣∣∣∣( (−1)n+1Fn+1 (−1)n+1Fn
(−1)nFn (−1)nFn−1

)
− x

(
1 0
0 1

)∣∣∣∣
=

∣∣∣∣( (−1)n+1Fn+1 (−1)n+1Fn
(−1)nFn (−1)nFn−1

)
−
(
x 0
0 x

)∣∣∣∣
=

∣∣∣∣( (−1)n+1Fn+1 − x (−1)n+1Fn
(−1)nFn (−1)nFn−1 − x

)∣∣∣∣
If we take the determinant∣∣∣∣( 1 1
−1 0

)n.L
− xI

∣∣∣∣ =
= ((−1)n+1Fn+1 − x)((−1)nFn−1 − x)− (−1)n+1Fn(−1)nFn

= (−1)n+1Fn+1(−1)nFn−1 − x((−1)n+1Fn+1 + (−1)nFn−1) + x2 − (−1)n+1Fn(−1)nFn

= (−1)2n+1Fn+1Fn−1 − x((−1)nFn−1 − (−1)nFn+1) + x2 − (−1)2n+1F 2
n

= −Fn+1Fn−1 − x((−1)nFn−1 − (−1)nFn+1) + x2 + F 2
n

= −Fn+1Fn−1 + F 2
n − x((−1)nFn−1 − (−1)nFn+1) + x2

= (−1)n+1 − (−1)nx(Fn−1 − Fn+1) + x2

= (−1)n+1 + (−1)nx(Fn+1 − Fn−1) + x2

= (−1)n+1 + x(−1)nFn + x2

= x2 + x(−1)nFn + (−1)n+1

So, we can reach the characteristic roots using the quadratic equation as

x =
−(−1)nFn∓

√
F 2

n−4(−1)n+1

2

x =
−(−1)nFn∓

√
F 2

n+4(−1)n
2

x1 =
−(−1)nFn+

√
F 2

n+4(−1)n
2 and x2 =

−(−1)nFn−
√
F 2

n+4(−1)n
2 .

In this study, we examine unlike the classical matrix product, the nth power of the matrix
(

1 1
−1 0

)
was found using the Lorentzian

matrix product. Quadratic equation F 2
n − Fn+1Fn−1 = (−1)n+1 is found with the nth power of a matrix

(
1 1
−1 0

)
.

Let m and n are positive integers,

(
1 1
−1 0

)m.L
.L

(
1 1
−1 0

)n.L
=

(
1 1
−1 0

)m+n.L

equation is obtained under Lorentzian product and identities related to Fibonacci and Lucas numbers are obtained from the equations of two
matrices. Some of these identities obtained with the help of the nth powers of the matrices in the aforementioned studies. As a result, by the
nth power of a special matrix under Lorentzian product were achieved identities that accuracy previously known and different identities.
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