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Abstract: The Fibonacci number sequence and related calculations come up in scientific facts in many events that we encounter
in daily life. This special number sequence is processed in the occurrence of many events such as calculating the diameter of
the equatorial circumference of the Earth, flowers, growth and structures of leaves, trees, reproduction of bees, sunflower and
so on [6]. However, in recent years, the relation between the Fibonacci and Lucas Number sequences with continued fractions
and matrices has intensively been studied. Many identities have been found by some 2 x 2 types of special matrices with the n'"

power that have been associated with the Fibonacci and Lucas numbers. The aim of this study is to examine matrix _11 é )

th power, quadratic equations and characteristic roots unlike the classical matrix

under the Lorentzian matrix product with the n

product. In addition, we want to acquire some identities with the help of matrix ( 10

L ) under the Lorentzian matrix product

with the n*" power in relation to the Fibonacci and Lucas numbers.
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1 Introduction
1.1 Fibonacci and Lucas Number Sequences

Fibonacci number sequence is known as 0,1,1,2,3,5,8,--- We show with F;, = F,,_1 + F,,_2 the ' term of sequence. Lucas number
sequence is known as 1,3,4,7,11,18,---. We show with L, = L,,_1 + L,,_2 the n term of sequence. Lucas number sequence can be
obtained from Fibonacci number sequence. There are many identities associated with the Fibonacci and Lucas number sequences.For details,
see [1]-[4] and [6]. The k -Fibonacci sequence {F}; y, }nen is defined recurrently by Fy, 41 = kF}) , + Fj p—1 for n > 1 and any positive
real number k& with initial conditionsF}, o = 0, F, 1 = 1 [5]. Fibonacci sequence for k = 1 and Pell sequence for k = 2 are obtained. In [2],
generated matrices for Fibonacci and Pell sequences. Using the relationship between Fibonacci and Lucas number sequences, the numerical
values of the terms of these sequences and matrix relations of continued fractions has expanded today’s working area of Fibonacci and Lucas
number sequences. In this study, we aim to examine the nth power under the Lorentzian matrix product that unlike the classical matrix product

1 1 . . . . S . .
of ( 10 ) , quadratic equations and characteristic roots. However, some relations related with Fibonacci and Lucas numbers are obtained
. . . 1 1 Sy . .
with the help of the nth power under the Lorentzian matrix product of ( 1 0 ) . Some of these identities obtained from the matrices whose

the nt" power were taken by the classical product method in the previously studies, where these identities were obtained by Lorentzian product.

1.2 Finding the n*® Power of A Matrix with Help of Classical Matrix Product

Consider the matrix @ = i (1) ) It was studied in 1960 by Charles H. King. It should be noted that || = —1. In addition, under the
classical matrix product,

e=(15)=(1o)(18)=(21)
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W =N
N———

are available.

If we continue in a similar way, we reach Q" = Fryr o Fn matrix [6].
Fn Fp—1

Theorem 1.2.1 [6] Let n > 1. Then Q" = Fng1 o Fno)
Fn Fn—l

Proposition 1.2.2 [6] Let n. > 1. Then F,, 1 F},_1 — F2 = (—1)".
Examples 1.2.3 Some examples are given in this section.

L. F?n-l—n-l—l = Fm+1Fn+1 + Fm i [6]

2. Lm+n+1 = Fm+1Ln+1 + Fm Ly [7]

3. FyLyyg — FpypLn = 2(=1)" "1 7]
4. Ly_1Lns1 + Fp_1Fny1 = 6F3 [7]

5. Lnmen + Fanfn =2Fn [7]

6. F3,, = 5Fp, +4(—1)"F2, [7]

1.3 Lorentzian Matrix Product

Let A = [a;;] € Ry and B = [b;] € Ry, where Ry is a matrix of type m x n, Ry is a matrix of type n X p.

A, B=[-ajby + > =2 Qij b;;] matrix product is defined with ".". This product is named with Lorentzian matrix product.

Naturally, A., B is a matrix of type m x p. Ly" represents Lorentzian matrices’s sets of type m x p.

If we let i** row of A with A; and jth column of B with B, < A;, B? >, inner product (i, 7) of A, B.

If we take = (z1, 22, - ,mn) as the first row of A matrix, y = (y1,¥2, - ,Yn) as the first column of B, (1, 1) element of A ; B matrix
<A1, B' >p=—zy1 + X1 iy

Each element of A., B € Ly’ is an inner product [3].

Theorem 1.3.1 [3] The following equations are provided.

i.ForVAe Ly, Be Ly, C € LQ, AL(BLC) = (ALB)LC

ii. ForVAe L', B,C € Ly, A.(B4+C)=A. B+ A.C

iii. ForVA,Be Ly, C e Ly, (A+ B)..C=A.C+B..,C
iv.ForVk e R,VA € L)', B€ Ly, k(A.B) = (kA).. B = A.L(kB)

Theorem 1.3.2 [3] According to the L -product, the L -unit matrix of type n X n is denoted by Ir,.

ForAe Ly, Im. A=Al =A
For example forn = 2 ;

Let I = 1 (1)

0
1 0
(3 1)
_ <Il7[ >
o <]2711>
_( <(1,0),(1 < (1,
<(0,1),(1, <(
—-1.1+0.0 -1.0+40.
—-0.1+1.0 —-0.0+1

(-1 0
Lo 1)

Proposition 1.3.3 [3] L, with L— multiplied is a unit algebra.

é?)
Z,fi)
Nenz)

)

<
<

) 0)
0) >

1
0,
1
1

Definition 1.3. 4 [3] A is a matrix of type n X n, if there is a B matrix of type n x n such that A.; B = B.; A = I, is called reversible and
denoted by AL

Definition 1.3.5 [3] Transpose of A = [a;;] € L;," demonstrations with AT and define with AT = laj;] € Ly,

Definition 1.3.6 [3] If A~ L= AT for A e L} matrix, A is called L— orthogonal.
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Definition 1.3.7 [3] Determinant of A = [a;;] € Ly matrix demontrations with detA and define with detA =3 €5, Go11ac22 " Aonn.
In here, Sy, is all permutations’s set of {1,2,--- ,n} and s(o) is sign of o permutations.

Theorem 1.3.8 [3] For A, B € Ly, det(A., B) = —(detA)(detB).

Example 1.3.9 Let find the matrix obtained by multiplying M = i é ) and Q = ( i (1) ) under Lorentzian matrix product.

11 11

M'LQ:(1 2)(1 0>

,(<M1,Q1> <M1,Q2>)

T\ <M, Q> < My, Q%>
<M1,Q1 >=—-11+11.=0
<M1,Q >=-11.4+10=-1
<M2,Q >=—-11.+21=1
<M2,Q >——11+20——

0 -1

2  Material and Method
2.1  Finding the n*® Power of a Matrix Under the Lorentzian Matrix Product and Related Identities

Let us find the n'" power of < 31 (1) ) matrix under Lorentzian matrix product.

(3) (4 ) )

—
[¢]
-t
—
[es)
O =

(_11 (l))SLZ(_ll é).L(ll (1)):(—2 —11>:<—FP;3 —FP;2>:>d6t<—12 —11):_1

(—11 é)4L_(12 El>,L< 11 é):(fﬂ ) (_F;% F;>:>det<§2 _21>:1

(_11 (1)) :(_32 _21).L( 1 é):(g 2) (*Flis FF4):>det<;5 723):71
1 (-5 -3 . 1) _( 8 5 By By w55 )

E 11 2%“% 25 §3§ZE 1 zgg 53 )> <( —?7 ?“))Zdet(( 5813 352>1
- T 6 5

“ﬂ S e G e R

(D)™ E e (1) Fyy — (—1)" 1 Fp(— 1)"F PN

2n+1F +1F'n 1 - (_1)2n+1F7% — (_1)n+1

- n+1Fn—1+F2 ( 1)n+1
F?2 _—Fyi1Fp_1 = (—1)"h

If we examine to be true F,% —Fh b1 = (—1)""'1 identity with the inductive method
Itis true forn =1

F} — Fpp1Fyq = (—1)",

F? — PyFy = (—1)2

Let we assume that for n = k

( ! 1)’“'L_(<—1>’f+1Fk+1 (—1)’“+1Fk>
-0 (DR, (DR

Let us show that true forn = k + 1

(4 é)km_(_ﬂ 3)1«L,L(_ﬁ L)< (P C0AG) (L)

104 © CPOST 2020



_ ( ()" Fyy — (DM R (1) R )
T\ (CDMME - ()R (1) E,

(D2 Fy — (DM = ()P - Fopy - By = (1) P2 [Flpq + F] = ()2 Fp 0
(- E, — (~1)F Py = ()= F — Fr_y] = (“D)"F + Fr) = (-1 R

k1.
11 b (—D)"2Fpys (D) Fy
-1 0 (_1)k+1Fk+1 (_1)k+1Fk

On the other hand
1 1)\** 1 1\ -2 -1 3 2\ (8 5\ (1 1
-1 0 L\ -1 0 “\v1 1 )Lt 2 -1 )7\ -5 3]\ -10
1 1\ 1 1\ /11 8 5\ _ [ -13 -8\ _ 1
-1 0 L -1 0 “\-1 0 )L\ -5 =3 )~ 8 5 )~ 0
1 1\** 1 1\*" (-2 -1 5 -3\ _(-13 -8\ _ (1 br
-1 0 Ly -1 0 - 1 1 )L\ 3 2 )~ 8 5 )~ =1

For diffrent m and n numbers,

( 11 )m'L _ ( (D)™ E 1 ()™ R, )

-1 0 (=1)"Fm (=1)™Fm

(40) =(" e Ghe)

Then
e < ()™ Ey (1), >L< ()" Ep ()" R, )

O =

o1\ 1 1
-1 0 L -1 (_1)mFm (_1)m 1 (_1)"LFn (_1)n o
_ ( (_1)m+n+1Fm+n+1 (_1)m+n+1Fm+n )Z ( 1 1 )m+n.L
(*1)m+nFm+n (*1)m+nFm+n71 -10

3 Results

The following equations can be given from the equality of the two matrices.

Proposition 3.1
1. Fm+n+1 = Fm+1Fn+1 + FnFhn
2. Fm+n = Fm+1Fn + FmnFpn
3-Fm+n :Fan+1 + Fpn—1Fn
4. Fernfl =FnFn+ Fp1Fh 1
5. 0n = Fmo1 =P
Iy n—1—Fnt1
6-Fm+n+1 +Fpn1Fp1= Fm+n—1 + Fm+1Fn+1
7. Fm+n + Fernfl = Fm+2Fn + Fm+1Fn71
8.2Fm+4n = LmFn+ LnFm
9. Font1=Fyi1 + F3
10. F5,, = F, Ly,
1. Fy, 1 = F2 + F2_,
12 Fop = Fiyyy = Fp_y
13. Fopy1 = FnpoFn + Fri1 P
14. Fopy1 = FoLn + F2 + F2_,
15.2Fp, = Fnln + F2,, — F2_,
16. Fopq1 + Fop_1 = F +2F; + F7_,
17.2Fy 41 = F2 +2F5 + F2_{ + FyLy
18.2F5, 41 = Lyp4oFn + LnFn_1
Proof:
The Lorentzian matrix product of

(4 )™ ) = (P R )R C452)

= ( (1) Fp ()" F g+ ()T E (1) Fn (=1 e (1) R (1) E (1) F g )
—(=1)" Fn (=1 Fogr + (=1) " Frno1 (-1)" Fr (=) Fn (1) (= 1) Frp1 (-1)" Fa

(O B T B (T () )
(1) E F gy 4+ ()™ P 1 Py (1) PR By (- 1) E 1 Fy
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= ( (_1)m+n+1Fm+n+1 (_1)m+n+1Fm+n )
(*1)m+nFm+n (*1)m+nFm+nfl

Then;

L. (*1)m+n+1Fm+n+1 = (*1)m+n+3Fm+1Fn+1 + (*1)m+n+lFan

If both sides of equality are simplified with (—1)™ " +!
Frgnt1 = (—1)?Frg1 Pyt + FinFn

Fm+n+1 - Fm+1Fn+1 + Fan

2-(_1)m+n+1Fm+n = (_1)m+n+3FnL+1Fn + (_1)m+n+1Fan_1

If both sides of equality are simplified with (—1)"+7+1
Fern = (_1)2Fm+1Fn + Fan—l

Fern = Fm+1Fn + Fan—l

3 (=)™ " Ep = (=)™ 2R Py + ()™ E, _ Fy
If both sides of equality are simplified with (—1)"*T"
Fm—i—n = (—1)2Fan+1 + Fm—an

Fm—i—n = Fan+1 + Fn—1Fn

4.(=1) " Egy = (=)™ 2R By 4+ (=)™, By

If both sides of equality are simplified with (—1)™*"
Fernfl = (*1)2Fan + Fn-1Fp—1

Fernfl =FnFn+Fp_1F,1

5. From (2) and (3);

Fogn = Fmg1Fn + FmFr—1

Froyn = FmFp41 + F—1Fn

Foi1Fn+ FFn_1 = FnFpy1 + Froo1Fn
FnFn_1— FFpy1 = Fp—1Fn — Fopp1 Fn

Fm(Fn—l - Fn+1) = Fn(Fm—l - Fm+1)

Fpp _ Frno1—Fmp
Fn anl_Fni»l

6. From (1) and (4);

Frotnt1 = Fmp1Fnp1 + Fm Py

FmFn = Fognt1 — Fm41Fnt1

Frin-1 = FmFn + Fy1Fn_1

FnFn = Fryin_1— F1Fn_1

Frvinit — Fog1Fat1 = Frnin1 — F1Fn_1

Fm+n+1 + meanfl - Fernfl + Fm+1Fn+1
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7. From (2) and (4);

Fogn = Fmt+1Fn + FmFn—1

Frogn—1=FmFn+ Fpn-1Fn—1

Fogn+ Fogn-1=Fmt1Fn + FnmFn_1+ FnFn + Fr—1Fn—1
= (Fpt1+ Fm)Fn + (Fm + Frn—1)Fr—1

= Fm+2Fn + F7n+1F7L—1

8. From (2) and (3);

Fpon = Fpy1 Fn + Fin P

Fpgn = FnFyp1 + Fp1Fn

2Fm4n = Fy1Fn+ FmFn_1+ FnFps1 + Frn—1Fn
= (F41+ F—1)Fn + (Fg1 + Fn1)Fm

= LmFn+ LpFm

2Fm+n = LinFn + LpnFn

9. If m = n is taken in (1) identity
Fm+n+1 = Fm+1Fn+1 + Fm I
Fony1 = Fpi1Fnp1 + PP = F3+1 + Fy

Fany1 = Fig + Ff

10. If m = n is taken in (2) identity
Fo4n = Fm41Fn + FmFn—1
Foy, = Fpi1Fn + FnFp—1

= Fn(Fpq1 + Fno1)

= Fy,Ln

F2n = FnLn

11. If m = n is taken in (4)
Fernfl =FnFn+Fp_1Fh1
Fopn_1=FnFn+Fy_1Fy_1=F2+F2_,

Fop1=F3+F?_,

12. If m = n is taken in (6) identity

Fritn+1 + Fn—1Fn—1 = Fnyn—-1 + Fmy1 a1
Fnint1+Fno1Fp—1 = Fopyn-1+ Fap1Fnp1
Fany1+ Fa_y = Fan—1+ Friy

2 2
Fiin—Fi_1=Fopi1 — Fop1 = Foy
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13. If m = n is taken in (7) identity
Fm+n + Fm+n—1 = Fm+2Fn + Fm—i—an—l
Fon + Fop—1 = FpyoFn + Fop1Fn—1

Fopp1 = FpqyolFn + Fpp1Fpa

14. From (10) and (11);
Fop1=F3+F;

Fop = Fp Ly

Fon + Fop—1 = FoLn + F2 + F2_,

Fopi1 = FpLy + F2 + F2_,

15. From (10) and (12);

Fop = FpLp

Fon=F2 —F2

Fop + Fon = FoLn + F2 ) — F2_y

2Fyy = FuLn + Fp — F2 4

16. From (9) and (11);
Fony1=Fp +F;
Fono1=Fp +F2_,
_ 2 2 2 2
Foptr+Fon1 =Fy o+ Fy +Fp + Fy_y

Lon =F3, +2F + F2_,

17. From (10) and (16);
F2n =FyLn

_ 2 2 2
Fopi1+ Fop1=Fj 1 +2F; + Fy_
Fopy1 + Fop + Fop—1 =
=F2, +2F; + Ff_| + FuLn

21 = F2  +2F3 + F2_ + FulLy

18. From (13) and (14);

Fopi1 =FpioFn + Frp1Fn_q

Fopy1 = FnLn + F2 + F2_,

2Fon i1 = FrioFn + Fpy1Fy_1 + FpLy + F2 + F2_,
= (Fnt2 + Fu)Fn + (Fog1 + Fno1)Fn—1 + Fnln
=Lp+1Fn+ LnFn_1+ FnlLn

= (Lng1 + Ln)Fn + LnFy_q

=LpioFn+ LnF,_1

2Font1 = LpyoFn + LnFp—1

108 © CPOST 2020



Let us examine the quadratic equation of the matrix and its characteristic roots. Let A and I are matrices of type n x n. The quadratic

equation of A is |A — xI| = 0. Roots of equation are charecteristic roots of A. If we examine the quadratic equation and characteristic roots
1

-1 0

of the nt" power of the 1
| )R (1), (L0
(-1)"Fy (-D)"Fp—1 0 1
1
0
n

n.r
'( _11 (1) —xl

matrix under the Lorentzian product, then

| )" Ry ()R, (= ‘
(~1)"F,  (=1)"Fn_1 0 x

N )" E -2 (-1D)"TEE, )'

B (=1)"Fn (-1)"Fpo1— =

If we take the determinant

(o) -

= ()" Fog1 = 2)(-)" Fpe1 — @) = (1) F(=1)"Fy

= (1) P 1 (1) Fp1 — a((=1)" T Fog + (=) F1) + 2° = (=1)" T Fo(=1)" Fa
= ()" 1 Py —2((—1)"Foo1 — (-1)"Fpq1) +2° — (-1)*" T F}

= —Fny1Fn1 —2((—1)"Fp_1 — (-1)"Fpp1) + 2° + F}

= —Fu1Foo1 + Ff = 2((=1)"Foo1 = (=1)" Fry1) + 2

= ()" — (=1)"@(Fp-1 — Fay1) + 2

= ()" 4 () "@(Fpp1 — Fpo1) + 2

= (=" f 2 (-1)"F, + 22

=22+ 2(-1)"Fp + (-1)" !

So, we can reach the characteristic roots using the quadratic equation as

—(—)"FF/FE A1)
2

::L‘ e

—(~1)" F F/FEHAC D"
r = D)

—(=1)" Fp4+/F2H4(—1)" —(—1)"Fp—+/F214(—1)"
gy = ZCV Pt FIRICTDT gy ()" P FEHACDT

. . . . . . 1 1 . .
In this study, we examine unlike the classical matrix product, the nth power of the matrix < 1 0 ) was found using the Lorentzian

matrix product. Quadratic equation Fﬁ —FpFn1 = (—1)"Jrl is found with the n*" power of a matrix( 1 é > .

Let m and n are positive integers,

1 1 \™* 11 \™ (1 1\t
-1 0 L\ -1 0 —\{L-10

equation is obtained under Lorentzian product and identities related to Fibonacci and Lucas numbers are obtained from the equations of two
matrices. Some of these identities obtained with the help of the nth powers of the matrices in the aforementioned studies. As a result, by the
nth power of a special matrix under Lorentzian product were achieved identities that accuracy previously known and different identities.
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