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Abstract

In this work, we bene�t from hybrid systems that are advantageous because of their analytical and compu-
tational usefulness in the case of inferential modeling. In fact, many biological and physiological systems
exhibit historical responses such that the system and its responses depend on the whole history rather than
a combination of historical events. In this work, we use and improve hybrid systems with memory (HSM)
in the subclass of piecewise linear di�erential equations. We also include stochastic calculus to our model
to exhibit uncertainties and random perturbations clearly, and we call this model stochastic hybrid systems
with memory (SHSM). Finally, we choose tumor-immune system data from the literature and show that the
model is capable to model history dependent behavior.
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1. Introduction

Tumor dynamics exhibit complex interactions such as immune responses. Immune response to tumor
growth has been widely investigated in the literature. Through these models, important parameters have
been obtained and some predictions have been estimated and some predictions have been performed [30].
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Some other approaches and models can be given as in references [5, 7, 12]. For a more detailed analysis of
further models in the literature, one may refer to [1], and the references therein. In the case of potential
use in treatment planning, instead of applying �rst-principles models which require a lot of a priori infor-
mation which might not be available, we employ a model that has the ability of adapting to a subject by
subject variability and to unknown factors; this has the advantage of suggesting the best choice for each
case. One of the well-known solution approaches to this problem is, inferring parameters and deciding on
the behavior of the system based on empirical observations. In inferential modeling, a class of model is
chosen and the parameters are derived from the observations. In such a case, hybrid systems, which can
be described as systems formed by continuous and Boolean variables regulating each other [24], are useful
in inferential modeling because of their analytical and computational advantages. Hybrid systems also o�er
several advances for various modeling [14, 16] and theoretical problems [15] in natural sciences. In order to
investigate di�erent applications and various modeling versions and analyses of hybrid systems, one may see
[6, 19, 32] and the references given there. Moreover, for piecewise linear approaches applied in regulatory
systems, [37] o�ers a good source.

One of the most important properties of a regulatory system is that it is able to memorize its history. In
other words, a combination of the previous inputs of the system decides its stationary behavior, and in turn,
the system's stationary state decides on the response of the system's future external input. This is the crucial
mechanism for adoption and learning in these systems. Delbruck's suggestion mentions that multistationarity,
which is the existence of more than one stationary steady state of a system, might be reproduced by epigenetic
di�erentiation in gene networks [10, 42]. Subclasses of hybrid systems, like piecewise linear ones, which are
typical examples of non-trivial multistationary systems, are successfully used in modeling gene networks [14].
Some other models of similar phenomena which are also abstractions of hybrid systems, such as Boolean
Networks [26, 42] and Boolean Delay Equations (BDE) [9, 35] are given, too. History-dependent responses of
perturbations, or future inputs, can be obtained through the co-existence of multistationarity with delays. In
[41], it has been stated that time delays could a�ect the stimulus responses in gene networks and, therefore,
the answer of a model to a stimulus is history dependent. Some of such behaviors were demonstrated with
the help of BDE [36]. By using hybrid systems with memory phenomena, one can e�ciently model the
representation of factors which may depend on the whole history, rather than on a combination of historical
events. Systems which use existing past information and involve it for intervention or decision making are
known to be history dependent: associative memory (neural system) [3] and immune response [23]. Therefore,
to consider functional extensions of hybrid systems is a strong motivation. Furthermore, involving delays
in the piecewise constant part of hybrid systems was suggested to handle the analytical and computational
di�culties of traditional delay di�erential equations (DDEs) with arbitrary initial functions [25]. Di�erent
types of Functional Di�erential Equations (FDEs), which are generally developed by considering naturally
occurring delays in dynamical systems [4], can establish the history-dependent behavior observed in biological
systems [8, 38]. For a more general and abstract model of hybrid systems with memory, one may refer to [31].
In this work, we construct a subclass of hybrid systems with memory to use in inferential modeling. In order
to realize this goal, we propose to use Stochastic Hybrid System with Memory (SHSM) which di�ers from
Hybrid Systems with Memory (HSM) by their �ows and employ this approach to tumor-immune interaction
dynamics. To �nd the parameter values of the model, we bene�t from SDE Toolbox in MATLAB. We �nd
parameter values for every state of the model. Here, we bene�t from data that can be found the literature
[13], in order to obtain more realistic values. The experiment that the authors of the reference [13] have
conducted and the data values that they have obtained can be summarized as follows: Essentially, there are
two di�erent groups of mice and they are examined under IL1-α e�ect which is a variable in immune system.
The group with IL1-α in their system is capable of defending itself against tumor growth, and the other group
fails in this process. Their defense mechanisms and cancer growth processes di�er widely. This shows us
that the memorization ability of the immune system is crucial for the organism. The biological background
can be found in Section 3. In this work, we consider a piecewise linear appraoch and for a nonlinear version,
one may see [22].
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2. Mathematical Model and Illustrative Examples

A typical hybrid system H = (Q,Y, Init, f, Inv,E,G,R) is formally de�ned as a combination of discrete
states, continuous variables, initial states, vector �elds, invariant sets, edges, guard conditions and reset
maps [24, 39]. Some extensions of hybrid systems are hybrid I/O systems which consider external inputs to
the system [33], hybrid control systems involving a controller to determine a set of inputs forcing the system
to supposedly optimal states [18], stochastic hybrid systems involving random perturbations to the system
[29].

In the subsequent representation, a memory set has been included for the purpose of investigation of the
behavior's dependence on history. Furthermore, we give the execution of the model. In fact, the behavior of
the system and its response to external inputs are determined by the whole history rather than the initial
values in many classes of switching systems in nature and technology [20, 41]. Particularly, modeling some
biological systems that exhibits history memorization it is necessary to involve an element to keep such
information. More precisely, we have the following de�nition for Hybrid Systems with Memory.

A Hybrid system with memory H is [20, 22];

H = (Q, X, U, T, Init, M, f, Inv, E, G, R)

consisting of

• a set of discrete states Q = {q1, . . . , qm} which are also called locations,

• a space of continuous variables X = Rn,

• a set of initial conditions Init ⊆ Q×X ×M ,

• a space of inputs U = Rz (control, disturbance or both),

• a space of independent variables T = Rk, typically the time T = [t0,∞),

• a vector �eld f : Q×X × U ×M −→ X, governing the continuous evolution,

• an invariant set (domain, subspace) for each q ∈ Q, Inv : Q −→ P (X) where P (·) denotes the power
set. Each state's governing dynamics is valid within its invariant set;

• a set of edges (state transitions) E ⊂ Q×Q,

• guard conditions for each edge G : E ×M −→ P (X),

• a reset map for each edge R : E ×X × U −→ P (X),

• M(t) ∈M is a growing memory of past state transitions such that

� M(0) = {M0} = {(t0, x0, q0)},
� if M(t−) = {M0,M1, . . . ,Mi} and x(tj) ∈ g{q(t), q ∈ Q}, then
M(t+) = {M(t−),Mi+1},

� Mi+1 = (tj , x(t
−
j ), q(t

−
j ))

In this de�nition, the previous progress of the system, containing the values of variables and the time before
and after the state transition, is sampled at state transitions. The memory set, M(t), is a piecewise constant
variable between state transitions and, moreover, the memory grows at each state transition. Thus, a HSM
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has a complexity that is increasing with time. A subclass of HSM can be considered as a piecewise linear
hybrid system with memory, and it can be described with a state space description as follows [20]:

dx

dt
= Aq(t),M(t) x(t) +Bq(t),M(t) u(t) + kq(t),M(t),

x(0) = x0, q(0) = q0

q(t) = qj if x(t) ∈ Xj .

If x(t−0 ) ∈ Xj , x(t
+
0 ) /∈ Xj and M(t−0 ) = {M1, . . . ,Mk}, then,

M(t+0 ) = {M(t−0 ),Mk+1},
Mk+1 = {t0, x(t−0 ), x(t

+
0 )}.

An example for the stochastic case can be given. Let Q = {q0, q1, q2}, Y = R, Init = {q = q0, y0 ∈ (b1, b2)},
Inv(q0) = y0 ∈ (b1, b2). The system evolution at the initial state and until it hits one of the boundaries of
the initial set b1 or b2, looks as follows:

if q = q0 then, dyt = σ0YtdWt,

The above stochastic system is Geometric Brownian Motion without drift; hence its solution can be found
widely in the literature. We give the solution under Itô interpretation:

yt = y0 exp{σ0Wt −
1

2
σ2t}.

The hitting times of each barrier are de�ned by stopping times as seen in the literature:

τ1 = inf{t ∈ R+ : Yt ≥ b2}, (1)

τ2 = inf{t ∈ R+ : Yt ≤ b1}. (2)

Here, τ1 and τ2 are random variables. Thus, in each run, and when the �rst transition occurs by hitting b1
or b2 is totally random. Thus, as a �rst transition time we take τ∗ = min{τ1, τ2} and so the memory set will
be

M = {m0, (τ
∗, b)} =

{
{m0, (τ

∗, b1)}, if yτ∗ = b1,
{m0, (τ

∗, b2)}, if yτ∗ = b2.

Just as the system hits one of the boundaries, it experiences a di�erentiation depending on the barrier that
got hit.

q(t) =

{
q1, if b = b1,
q2, if b = b2,

(3)

dYt =

{
−a1 [Yt − c1] dt+ σ1dWt, if q(t) = q1,
−a2 [Yt − c2] dt+ σ2dWt, if q(t) = q2.

(4)

Thus, our system can exhibit two di�erent behaviors and, moreover, it has two di�erent asymptotic
distributions depending on its memory set. The stochastic systems used during each state are known as
Ornstein-Uhlenbeck processes and have been widely used because of their mean reversion properties. More-
over, they have a stationary probability distribution unlike Brownian Motions. Thus, our system can develop
according to two di�erent stationary probability distributions and revert to two di�erent means. The model
solution is given by

Yt =

{
y0e
−a1t + c1

(
1− e−a1t

)
+
∫ t
0 σ1e

a1(s−t)dWs, if q(t) = q1,

y0e
−a2t + c2

(
1− e−a2t

)
+
∫ t
0 σ2e

a2(s−t)dWs, if q(t) = q2,
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where y0 is assumed as constant from the initial set. Thus, the distribution of the system after di�erentiation
is apparently a Gaussian distribution with possible two distinct means and variance values. The system's
behavior will be

E(Yt) = y0e
−ait + ci

(
1− e−ait

)
, (5)

V(Yt) =
σ2i
2ai

(
1− e−2ait

)
, (6)

where i = 1 if b1 is achieved �rst, and i = 2 otherwise.

3. Biological Background and Application on Tumor-Immune System Dynamics

IL-1α inhibitors are being produced to avoid in�ammation, and the advancement of fever and sepsis; by
this way, they treat diseases. In the regulation of the immune responses, they play an important role. For
detailed information on IL-1α, one may refer to [11, 13, 34] and closer references provided there.

In [13], this e�ect of IL-1α inhibitors has been examined through some experiments, applied on di�erent
groups of mice. In a comparative study where the authors of [13] have investigated spleen cells from mice
injected with an IL1-α-positive (Clone 2) cell line or a non-IL1-α-expressing (Clone 5) �brosarcoma cell line,
they have analyzed tumor-immune responses. All IL1-α-positive �brosarcoma clones induced regression of
tumor growth when they have been injected into mice. At �rst stages of the experiment, cells started to
multiply and accordingly regressed (see Figure 1). On the other hand, cells of non-IL1-α-expressing clones
grow in a progressive manner and this results in the death of mice [13]. Both classes of cell lines (IL1-α-
positive and -negative) exhibit almost identical growth progress, initially. Their work expresses the role of
tumor cell-associated IL1-α in the induction of particular immune responses, ultimately leading to tumor
regression and the improvement of an immune memory, which saves the mice from a battle with the violent
tumor cells [13].

In our modeling framework, we will use the data of the experiment conducted by Dvorkin et al. [13].
We involve those data values which show tumor diameters of Clone 2 and Clone 5 according to days; in
the setting of experiment Clone 2 has been injected with IL1-α, whereas Clone 5 has not been. As we have
mentioned formerly, di�erent levels of tumor growth and e�ector cells have been observed, depending on
di�erent values of IL1-α. Figure 1, Figure 2 and Figure 3 represent these e�ects graphically. Furthermore,
the exact values may be observed from the Table 1. There, S.I. value refers to the Stimulator Index which
corresponds to the ratio for immune cells (the e�ector cell and stimulator cells) and the tumor size has been
measured in millimeters (mm) in that table. By examining the data values on the table, one can see that
Clone 2 and Clone 5 behave similarly until day 3 and after day 3, Stimulation Index decreases in Clone 5,
and after day 15 the tumor size is increasing in Clone 5. In order to illustrate those values in our model, we
have designed a system in such a way that we partition it into 4 main states: �rst state, i.e., q1, shows the
behavior of both Clone 2 and Clone 5 until day 3; second state, i.e., qm,m = 11, 12, include slightly di�erent
behaviors of Clone 2 and Clone 5 until day 15; third and fourth states, i.e., q2 and q3, respectively, show
entirely di�erent actions on tumor growth and S.I. values.

For SHSM simulation purposes, we have prefered Ornstein-Uhlenbeck type of stochastic di�erential equa-
tions and splitted up the system due to the data values with the following manner:

dX1(t) = [β
qk,mi
11 α

qk,mi
1 + β

qk,mi
12 α

qk,mi
2 − βqk,mi

11 X1
t − β

qk,mi
12 Xt

2]dt+ σ
qk,mi
1 dW 1

t , (7)

dX2(t) = [β
qk,mi
21 α

qk,mi
2 + β

qk,mi
22 α

qk,mi
2 − βqk,mi

21 X1
t − β

qk,mi
22 Xt

2]dt+ σ
qk,mi
1 dW 2

t . (8)

Depending on various memory values and di�erent states, we have di�erent parameter values: βqk,mi
11 ,

βqk,mi
12 , βqk,mi

21 , βqk,mi
22 , αqk,mi

1 , αqk,mi
2 , σqk,mi

1 , σqk,mi
2 where qk ∈ {q1, q11, q12, q2, q3} and i = 1, 2, ... Network

representation of the system can be seen in Figure 4. Now, let us consider a linear SDE:

dXt = α(t,Xt)dt+ β(t,Xt)dWt, (9)

where
α(t,Xt) = a1(t)Xt + a2(t),
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Figure 1: Clone 2 and Clone 5 tumor growth (in mm) depending on days [13, 21].

Clone 5 Clone 2
Days S.I. Size of Tumor (mm) S.I. Size of Tumor (mm)

0 1 3.125 1 3.05
3 2.129 3.75 1.988 3.7
7 1.443 4 2.344 4.35
10 0.914 5.5 2.822 6.35
15 0.914 8.5 3.011 7.345
20 0.886 15.125 3.411 6
40 0.943 29.125 3.266 3.7

Table 1: Stimulator Index, S.I., and tumor growth values for Clone 5 and Clone 2 [21].

β(t,Xt) = b1(t)Xt + b2(t).

For a general piecewise linear model, we use a similar statement in the works of Gebert et al. [17] and
Öktem [37], with a version which includes the memory variables;

α(t+ 1, Xt+1) =M qk,mi
1 Xt + kqk,mi

1 (t),

β(t+ 1, Xt+1) =M qk,mi
2 Xt + kqk,mi

2 (t),

where M s(t)
1 and M s(t)

2 are matrices and k1 and k2 are vectors. Then the linear SDE can be represented by

dXt+1 = (M qk,mi
1 Xt + kqk,mi

1 (t))Xt + (M qk,mi
2 Xt + kqk,mi

2 (t))dWt. (10)

In this formulation, parameter values are thresholds and focal points. To determine these parameter values,
one may refer to [37, 40]. By exchanging equations into a two dimensional Ornstein-Uhlenberg process we
get:
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Figure 2: S.I. and tumor growth of Clone 2 depending on days [13, 21].

[
dX1

dX2

]
=

[[
βqk,mi
11 βqk,mi

12

βqk,mi
21 βqk,mi

22

] [
αqk,mi
1

αqk,mi
2

]
−
[
βqk,mi
11 βqk,mi

12

βqk,mi
21 βqk,mi

22

] [
X1

X2

]]
dt+

[
σ1dW1

σ2dW2

]
,

or we can write in compact notation:

dX = (N qk,mi −M qk,miX)dt+ σdW. (11)

In the equation (11), the term N qk,mi is a focal point vector and M qk,mi is a matrix. The memory set
contains the �rst transition in the �rst state, time and state conditions. It will include and act according to
q11 or q12:

m = {t(i), ((X1 < 2.344 ∧X2 < 4) ∨ (X1 ≥ 2.344 ∧X2 ≥ 4)), qm},

where i = 1, 2. The described method below, that explains how to calculate the expected time for a stochastic
process to reach a state or if a stochastic process can reach a state or not, can be found in [2, Chapter8].
By using the same process, we can calculate the time or the state of SHSM. In our model, we can �nd those
values compartmentally. For a stochastic process to reach states A or B, can be given by the following
procedure. Suppose that X(t) be a stochastic process, and a solution of the stochastic di�erential equation
given by

dX(t) = a(X(t))dt+ b(X(t))dW (t), X(0) = x,

then the transition probability density function for the linear stochastic process gives us a solution to the
backward Kolmogorov di�erential equation [2, Chapter 8]:

∂p(y, x, t)

∂t
= a(x)

∂p(y, x, t)

∂x
+
b2(x)

2

∂2p(y, x, t)

∂x2
.
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Figure 3: S.I. and tumor growth of Clone 5 depending on days [13, 21].

Equation 7
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Figure 4: Representation of the states, [21].

If Q(x, t) is the probability that measures whether the process does not reach states A or B in time [0, t],
and if A < x < B, then we have [2, Chapter 8]:

Q(x, t) =

∫ B

A
p(y, x, t)dy.

If T (x) is the random variable which refers the time for the stochastic process to reach states A or B, then
expected time can be found by the following integral [2, Chapter 8]:

E(T (x)) =

∫ ∞
0

Q(x, t)dt.

In order to simulate the stochastic dynamics, and estimate parameter values, we have bene�ted from SDE
toolbox in MATLAB. Besides the parameter values, we are able to �nd Monte-Carlo statistics results includ-
ing process mean, process variance, process median, con�dence interval for the trajectories, process skewness,
process kurtosis, process moments by utilizing this toolbox (cf. Figures 5-9). Since we can �nd the values of
the unknown parameters, the equations for each state can also be determined. Some data values have been
kept and modeled according to these data in order to test the model. You may see the Figures 10 and 11.
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Figure 5: Results of the simulation of Ornstein-Uhlenberg process for state q1. On the �rst row, statistical results for X1 and
on the second row, the same results for X2 [21].

Figure 6: Results of the simulation of Ornstein-Uhlenberg process for state q11. On the �rst row, statistical results for X1 and
on the second row, the same results for X2 [21].
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Figure 7: Results of the simulation of Ornstein-Uhlenberg process for state q12. On the �rst row, statistical results for X1 and
on the second row, the same results for X2 [21].

Figure 8: Results of the simulation of Ornstein-Uhlenberg process for state q2. On the �rst row, statistical results for X1 and
on the second row, the same results for X2 [21].
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Figure 9: Results of the simulation of Ornstein-Uhlenberg process for state q3. On the �rst row, statistical results for X1 and
on the second row, the same results for X2 [21].

Figure 10: Estimation values for state q2. In that state, we expect the system to show a similar behavior as Clone 5. Variable
X1 (left) and Variable X2 (right) [21].
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Figure 11: Estimation values for state q3. In that state, we expect the system to show a similar behavior as Clone 2. The
variable X1 (left) and the variable X2 (right) [21].

4. Discussion

The biological example used here can be thought of, e.g., as an example to an alternative way to use
FDEs or DDEs. In the �rst state, Clone 2 and Clone 5 acts similarly, and after day 3, the tumor size starts
to change slightly in di�erent clones. Clone 2 remembers the values of t, q1, x and acts between days
3-15 as it did in the past. Therefore, qm, which includes q11 and q12 and the host choosing one of the states
according to its memory set, can be considered as the delay state for Clone 2 in the experiment. After
day 15 it changes its behavior. This behavior can be considered in such a way that the immune system
remembers the memory set of t, q, x and after day 15 it changes its behavior according to IL1-α which
can be considered as the control input u of the host. The simulations have been done compartmentally.

5. Conclusions

In this work, we utilized Stochastic Hybrid Systems with Memory (SHSM) to model the history dependent
behavior in hybrid systems and stochastic hybrid systems. The work can be considered either as introducing
memory into stochastic hybrid systems or introducing switching behavior into FDEs. The introduced class
can be used in modeling of many systems with pattern memorization capability and subject to external
inputs. Various hybrid systems involving delays have already been investigated. We selected a system
exhibiting the same pattern, which is simple but not easy to model with traditional hybrid systems. Various
types of functional di�erential equations were also implied in modeling history dependent systems by other
scientists. We discussed stochastic case, where stochastic hybrid systems with memory can be a tool for
modeling non-Markovian Stochastic Dynamical Systems. In this work, we have seen that our modeling
scheme can be employed to model tumor-immune dynamics. We have worked with raw data found from the
literature and have seen that complex networks, which exhibits history-dependent behavior, can be modeled
in a simpler way by applying this modeling framework where the dynamics of the system is determined by the
location of the state vector and the memory. For instance, gene-regulatory networks that has memorization
capability can be mimicked by this approach. As a future work, SHSM can be employed in modeling some
complicated genetic or neurological systems. Another possible use can be the design of learning adaptive
systems or controllers. Moreover, since fractional di�erential equations are said to capture and exhibit
memory dependent behavior, they are used in modeling real world applications [27] and they are used to
check stability where the equation is very sensitive to delays [28]. Therefore, an extension of this method to
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fractional di�erential equations and checking and comparing the stability of the system can also be considered
as a future work.
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