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Abstract: Conventional estimators for indirect effects using a difference in 

coefficients and product of coefficients produce the same results for continuous 

outcomes. However, for binary outcomes, the difference in coefficient estimator 

systematically underestimates the indirect effects because of a scaling problem. 

One solution is to standardize regression coefficients. The residual from a 

regression of a predictor on a mediator, which we call the residualized variable in 

this paper, was used to address the scaling problem. In simulation study 1, different 

point estimators of indirect effects for binary outcomes are compared in terms of 

the means of the estimated indirect effects to demonstrate the scaling problem and 

the effects of its remedies. In simulation study 2, confidence and credible intervals 

of indirect effects for binary outcomes were compared in terms of powers, coverage 

rates, and type I error rates. The bias-corrected (BC) bootstrap confidence intervals 

performed better than did other intervals. 

1. INTRODUCTION 

Mediation analysis tests hypotheses about the mechanism through which a focal independent 

variable influences an outcome of interest. In mediation analysis, a third intermediate variable 

named a mediator accounts for the relationship between the independent variable and the 

outcome, and the effect of the independent variable on the outcome via the mediator is referred 

to as an indirect effect (Baron & Kenny, 1986). In the literature, two estimators have been 

widely used to estimate the indirect effect: the difference in coefficients of two nested 

regression models (Clogg, Petkova, & Shihadeh, 1992; Freedman & Schatzkin, 1992) and the 

product of coefficients in a path model (Alwin & Hauser, 1975; Bollen, 1987; Sobel, 1982). 

For a given sample, the estimates of the two estimators are exactly the same when the outcome 

is continuous (MacKinnon, Warsi, & Dwyer, 1995). However, when the outcome is binary, the 

estimates from the two estimators are not the same (Breen, Karlson, & Holm, 2013; 

MacKinnon, Lockwood, Brown, Wang, & Hoffman, 2007). For a binary outcome, the 

difference in coefficients estimator underestimates the indirect effect because the regression 

coefficients of two nested probit or logit models are estimated in different scales (Allison, 1999; 

Karlson, Holm, & Breen, 2012; Winship & Mare, 1983). One solution to the scaling problem 
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is to use standardized regression coefficients for the difference in coefficients estimator 

(MacKinnon & Dwyer, 1993; Winship & Mare, 1983). Breen et al. (2013) proposed another 

solution in which a residualized variable was used to address the scaling issue in the use of the 

difference in coefficients estimator for a binary outcome. Traditionally, confidence or credible 

intervals based on the delta (Sobel, 1982), bootstrap (Bollen & Stine, 1990; MacKinnon, 

Lockwood, & Williams, 2004), and Bayesian methods (Yuan & MacKinnon, 2009) have been 

widely used to make statistical inference about indirect effects. Previous studies on the indirect 

effect for a continuous outcome showed that the normality assumption about the sampling 

distribution might not be valid in small samples in which the true sampling distribution is 

asymmetric (Bollen & Stine, 1990; MacKinnon et al., 2004). Given the various methods 

researchers may choose for testing indirect effects for a binary outcome, the performances of 

those methods are not fully compared yet.  

This study aims to compare various point and interval estimators of the indirect effect for a 

binary outcome using Monte Carlo simulation studies. The point estimators in our study include 

the conventional difference in coefficients estimator, the difference in coefficients estimator 

with standardized regression coefficients, the difference in coefficients estimator with 

residualized variables, and the product of coefficients estimator. Also, the interval estimates or 

confidence intervals of the indirect effects obtained using the delta, bootstrap, and Bayesian 

methods are also of interest. In simulation study 1, the point estimators were compared in terms 

of the means of estimated indirect effects across replications. In simulation study 2, the 

confidence intervals based on the delta, bootstrap, and Bayesian methods were compared in 

terms of powers, type I error rates, and coverage rates. We first present the scaling problem 

using the difference in coefficients estimator for a binary outcome. Then, we describe two 

solutions to the scaling problem. The delta, bootstrap, and Bayesian methods are briefly 

introduced before the method section, in which more details on the Monte Carlo simulation 

studies are presented. 

1.1. The Scaling Problem in Estimating an Indirect Effect for a Binary Outcome 

The indirect effects for binary outcomes are frequently of interest in social science. For 

example, in prevention studies, the outcomes of interest are often binary variables such as heart 

disease or drug use incidence. Since prevention programs are typically designed to change some 

mediating constructs that are assumed to be related to the outcomes of interest, the success of 

prevention programs can be evaluated by testing the indirect effect of prevention programs on 

binary outcomes via mediating constructs (MacKinnon & Dwyer, 1993; MacKinnon et al., 

2007). 

Binary outcomes in mediation analysis can be modeled using probit or logit regressions. 

However, the indirect effect estimated by the difference in probit or logit regression coefficients 

can be inaccurate because the coefficients of two nested probit or logit regressions are measured 

in different scales and therefore are not directly comparable (Allison, 1999; Karlson et al., 2012; 

Winship & Mare, 1983). For a more detailed discussion of the scaling issue, let us consider the 

following simple mediation model in which the latent response variable y∗ is used to model a 

binary outcome: 

                                                   𝑦∗ = 𝛽1 + 𝛽𝑦𝑥𝑥 + 𝑒1 ,         (1) 

                                                          𝑦∗ = 𝛽2 + 𝛽𝑦𝑥.𝑚𝑥 + 𝛽𝑦𝑚.𝑥𝑚 + 𝑒2 ,       (2) 

                                                          𝑚 = 𝛽3 + 𝛽𝑚𝑥𝑥 + 𝑒3 ,         (3) 

where 𝑦∗ is a continuous latent response variable, 𝛽𝑦𝑥 is the total effect of 𝑥 on 𝑦∗, 𝛽𝑦𝑥.𝑚 is the 

direct effect of 𝑥 on 𝑦∗net of 𝑚, 𝛽𝑦𝑚.𝑥 is the direct effect of m on 𝑦∗ net of 𝑥, and 𝑒1, 𝑒2, and 
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𝑒3 represent error terms. In the latent response variable formulation, a continuous latent 

response variable 𝑦∗ is introduced to represent the propensity of the occurrence of a certain 

category in a categorical outcome. Then, a categorical outcome is considered an observed 

categorical indicator of an unobserved continuous latent response variable (Muth´en, 1979, 

1984). For a binary outcome 𝑦, a continuous latent response variable 𝑦∗ is related to the binary 

outcome 𝑦 via a threshold 𝜏 as follows: 

                                                    𝑦 = 1   𝑖𝑓   𝑦∗ > 𝜏   𝑜𝑟    0    𝑖𝑓     𝑦∗ ≤ 𝜏 ,       (4) 

where the threshold 𝜏 is typically assumed to be zero for an identification purpose. Note that, 

in Equations 1 and 2, the specific form of the model for a binary outcome, i.e., a probit or logit 

model, is determined by the distribution of an error term: normally distributed error terms result 

in probit models, and logistically distributed error terms result in logit models (Winship & 

Mare, 1983). 

The scaling issue in estimating indirect effects using probit or logit models can be illustrated 

by considering the relationship between the regression coefficients in a latent response variable 

formulation and those in probit or logistic models (Allison, 1999; Breen et al., 2013; Karlson 

et al., 2012). To examine the relationship, let us assume that the error distributions in Equations 

1 and 2 follow normal distributions. That is, 𝑒1 = 𝜎1𝑢 and 𝑒2 = 𝜎2𝑢, where 𝑢 is a random 

variable following a standard normal distribution, and 𝜎1 and 𝜎2 are scale factors. Then, the 

probit model for Equation 1 can be described as follows: 

                                    𝑔[Pr(𝑦 = 1|𝑥)] = 𝑔[Pr(𝑦∗ > 0|𝑥)]            (5) 

                                                                  = 𝑔 [Φ (
𝐸(𝑦∗|𝑥)

√𝑉(𝑦∗|𝑥)
)]                   (6) 

                                                                 =
𝐸(𝑦∗|𝑥)

√𝑉(𝑦∗|𝑥)
                    (7) 

                                                                 =
𝛽1+𝛽𝑦𝑥𝑥

𝜎1
           (8) 

                                                                 = 𝑏1 + 𝑏𝑦𝑥𝑥 ,          (9) 

where 𝑔 is the probit link function or the inverse of the cumulative distribution function of a 

standard normal distribution, Φis the cumulative distribution function of a standard normal 

distribution, and 𝑏1 and 𝑏𝑦𝑥 are the regression coefficients in the probit model. Similarly, the 

probit model for Equation 2 can be expressed as the following equation: 

                       𝑔[Pr(𝑦 = 1|𝑥, 𝑚)] =
𝛽2+𝛽𝑦𝑥.𝑚𝑥+𝛽𝑦𝑚.𝑥𝑚

𝜎2
= 𝑏2 + 𝑏𝑦𝑥.𝑚𝑥 + 𝑏𝑦𝑚.𝑥𝑚.     (10) 

Then, by comparing the regression coefficients from the latent response variable 

formulation in Equations 1 and 2, and those from the probit model in Equations 9 and 10, we 

obtain the following equations: 

                                                                         𝑏𝑦𝑥 =
𝛽𝑦𝑥

𝜎1
 ,        (11) 

                                                                       𝑏𝑦𝑥.𝑚 =
𝛽𝑦𝑥.𝑚

𝜎2
 ,       (12) 

                                                 𝑏𝑦𝑥 − 𝑏𝑦𝑥.𝑚 =
𝛽𝑦𝑥

𝜎1
−

𝛽𝑦𝑥.𝑚

𝜎2
≠ 𝛽𝑦𝑥 − 𝛽𝑦𝑥.𝑚.     (13) 
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By using logistically distributed error terms and logit link functions, it can be shown that 

Equations 11, 12, and 13 are also valid for a logit model. Notice that the probit or logit 

regression coefficients 𝑏𝑦𝑥 and 𝑏𝑦𝑥.𝑚 in Equations 11 and 12 involve different scale factors 𝜎1 

and 𝜎2, which implies that the coefficients of two nested probit or logit models are not directly 

comparable because they are measured in different scales. Furthermore, because the model in 

Equation 2 has an additional variable m, the residual variance of the model in Equation 2 should 

be smaller than that of the model in Equation 1, i.e., 𝜎2 ≤ 𝜎1. Therefore, the difference in probit 

or logit regression coefficients in Equation 13, i.e., 𝑏𝑦𝑥 − 𝑏𝑦𝑥.𝑚, would underestimate the true 

amount of an indirect effect, i.e., 𝛽𝑦𝑥 − 𝛽𝑦𝑥.𝑚 (Breen et al., 2013; MacKinnon et al., 2007). 

1.2. The Solutions to the Scaling Problem 

One solution to the scaling problem is to make the scale equivalent across nested models by 

standardizing regression coefficients before estimating indirect effects (MacKinnon, 2008; 

MacKinnon & Cox, 2012; Winship & Mare, 1983). A residualized variable was recently used 

to address the scaling problem (Breen et al., 2013; Karlson et al., 2012). Those two approaches 

are briefly illustrated in this section. 

1.2.1. Standardized Coefficients 

In order to make the scale equivalent or comparable across two nested probit or logit models, 

Winship and Mare (1983) suggested to standardize regression coefficients using the variance 

of a latent response variable 𝑦∗. For probit models, the variances of 𝑦∗ in Equations 1 and 2 can 

be obtained using the following equations (MacKinnon, 2008): 

                                                             𝑉𝑎𝑟[𝑦∗] = 𝑏𝑦𝑥
2 𝑉𝑎𝑟[𝑥] + 1.        (14) 

               𝑉𝑎𝑟[𝑦∗] = 𝑏𝑦𝑥.𝑚
2 𝑉𝑎𝑟[𝑥] + 𝑏𝑦𝑚.𝑥

2 𝑉𝑎𝑟[𝑚] + 2𝑏𝑦𝑥.𝑚𝑏𝑦𝑚.𝑥𝐶𝑜𝑣[𝑥, 𝑚] + 1     (15) 

For logit models, the constant 1 in Equations 14 and 15 needs to be replaced by 𝜋2/3, which is 

the variance of the standard logistic distribution. Then, the standardized coefficients can be 

obtained by dividing probit or logit coefficients in Equations 9 and 10 by the square root of the 

variances of 𝑦∗ in Equations 14 and 15, and the indirect effect using the standardized 

coefficients can be expressed as follows: 

                                                     𝑏̅𝑦𝑥 − 𝑏̅𝑦𝑥.𝑚 =
𝑏𝑦𝑥

√𝑉𝑎𝑟[𝑦∗]
−

𝑏𝑦𝑥.𝑚

√𝑉𝑎𝑟[𝑦∗]
 ,      (16) 

where  𝑏̅𝑦𝑥 and 𝑏̅𝑦𝑥.𝑚 represent the standardized regression coefficients for 𝑏𝑦𝑥 and 𝑏𝑦𝑥.𝑚, 

respectively. The standard error of 𝑏̅𝑦𝑥 − 𝑏̅𝑦𝑥.𝑚, which is needed for statistical inferences, can 

be expressed as the following equation 

                             𝑆𝐸[𝑏̅𝑦𝑥 − 𝑏̅𝑦𝑥.𝑚] = √𝑆𝐸[𝑏̅𝑦𝑥] + 𝑆𝐸[𝑏̅𝑦𝑥.𝑚] − 2𝐶𝑜𝑣[𝑏̅𝑦𝑥, 𝑏̅𝑦𝑥.𝑚] ,     (17) 

where 𝑆𝐸[𝑏̅𝑦𝑥] = 𝑆𝐸[𝑏𝑦𝑥]/√𝑉𝑎𝑟[𝑦∗] and 𝑆𝐸[𝑏̅𝑦𝑥.𝑚] = 𝑆𝐸[𝑏𝑦𝑥.𝑚]/√𝑉𝑎𝑟[𝑦∗]. For logit 

models, 𝐶𝑜𝑣[𝑏̅𝑦𝑥, 𝑏̅𝑦𝑥.𝑚] can be obtained using the formula described in Freedman and 

Schatzkin (1992). However, we are unaware of any analytical method for calculating the 

covariance between coefficients of two nested probit models. In our Monte Carlo simulation 

study, therefore, the bootstrap method was used to construct the confidence intervals of  𝑏̅𝑦𝑥 −

𝑏̅𝑦𝑥.𝑚. 
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1.2.2. Residualized Variables 

Breen et al. (2013) proposed another solution to the scaling problem in estimating the indirect 

effect for a binary outcome. In their method, the mediator 𝑚 in Equation 2 is replaced by the 

residualized variable 𝑚̃ as shown in the following equation: 

                                                          𝑦∗ = 𝛽2 + 𝛽𝑦𝑥.𝑚̃𝑥 + 𝛽𝑦𝑚̃.𝑥𝑚̃ + 𝑒4,      (18) 

where 𝑚̃ is the residual from a regression of 𝑚 on 𝑥, 𝑒4 = 𝜎4𝑢, 𝑢 is a standard normal 

distribution for probit models and a standard logistic distribution for logit models, and 𝜎4 is a 

scale factor. Since 𝑥-residualized 𝑚̃ is uncorrelated with 𝑥, adding 𝑚̃ will not change the 

coefficient of 𝑥, which gives the following equation: 

                                                                                 𝛽𝑦𝑥 = 𝛽𝑦𝑥.𝑚̃       (19) 

Also, it can be shown that the model in Equation 18 can be obtained by reparameterizing the 

model in Equation 2, which implies that the residuals in Equations 2 and 18 should be the same: 

                                                                                       𝜎2 = 𝜎4        (20) 

Given Equations 19 and 20, we have the following equation: 

                             𝑏𝑦𝑥.𝑚̃ − 𝑏𝑦𝑥.𝑚 =
𝛽𝑦𝑥.𝑚̃

𝜎4
−

𝛽𝑦𝑥.𝑚

𝜎2
=

𝛽𝑦𝑥−𝛽𝑦𝑥.𝑚

𝜎2
=

𝛽𝑚𝑥𝛽𝑦𝑚.𝑥

𝜎2
= 𝑏𝑚𝑥𝑏𝑦𝑚.𝑥 ,    (21) 

where 𝑏𝑚𝑥 is used to represent 𝛽𝑚𝑥 for notational consistency. Note that, unlike in Equation 13 

in which 𝛽𝑦𝑥 and 𝛽𝑦𝑥.𝑚 are measured on difference scales, 𝛽𝑦𝑥.𝑚̃ and 𝛽𝑦𝑥.𝑚 in Equation 21 are 

measured on the same scale. Therefore, Equation 21 implies that 𝑏𝑦𝑥.𝑚̃ − 𝑏𝑦𝑥.𝑚 measures the 

change in the coefficient of 𝑥 due to the inclusion of 𝑚, or an indirect effect, on the same scale 

(Karlson et al., 2012). Another implication of Equation 21 is that it provides the exact 

decomposition of the total effect 𝑏𝑦𝑥.𝑚̃ = 𝛽𝑦𝑥/𝜎2 into the direct 𝑏𝑦𝑥.𝑚 = 𝛽𝑦𝑥.𝑚𝜎2 and indirect 

𝑏𝑚𝑥𝑏𝑦𝑚.𝑥 = 𝛽𝑚𝑥𝛽𝑦𝑚.𝑥/𝜎2 effects. 

1.3. Confidence Intervals for Indirect Effects 

Confidence intervals have been widely used as interval estimators for indirect effects because 

they are more informative than hypothesis tests. Confidence intervals can provide information 

about the variability and direction of the true effect as well as the binary decision on the 

statistical significance (Gardner & Altman, 1986; Harlow, Mulaik, & Steiger, 2013). Three 

types of confidence intervals for indirect effects have been discussed in the literature: 

confidence intervals based on the delta method (Sobel, 1982), the bootstrap method (Bollen & 

Stine, 1990; MacKinnon et al., 2004), and the Bayesian method (Yuan & MacKinnon, 2009). 

A delta method is a general approach for approximating asymptotic standard errors of the non-

linear function of statistics. Once the standard error is obtained using the delta method, 

confidence intervals can be constructed by assuming that the sampling distribution of the non-

linear function of statistics follows a normal distribution. However, the normality assumption 

on the sampling distribution may not be valid in practice. For example, confidence intervals 

using the delta method performed poorer than did confidence intervals using the bootstrap 

method for small samples in which the true sampling distribution of the indirect effect deviates 

from the normal distribution (Bollen & Stine, 1990; MacKinnon et al., 2004). 

Unlike the delta method, the bootstrap method does not assume any specific form of the 

sampling distribution. In the bootstrap method, the analytical derivation of the sampling 

distribution in the asymptotic theory is replaced with the sampling distribution’s empirical 
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construction. Bootstrap samples of the same size as the original sample are randomly drawn 

from the original sample with replacement, and then the statistic of interest is calculated for the 

bootstrap samples to construct the empirical sampling distribution of the statistic. Because no 

distributional assumption is required in the bootstrap method, confidence intervals using the 

bootstrap method can be asymmetric to reflect the asymmetric nature of the true sampling 

distribution. The asymmetric confidence intervals using the bootstrap method may perform 

better than the symmetric confidence intervals using the delta method when the actual sampling 

distribution deviates from a normal distribution. 

One of the simplest bootstrap confidence intervals is the percentile bootstrap confidence 

interval in which the lower and upper bounds of 100(1-𝛼)% confidence intervals are defined as 

𝛼 and 1-𝛼/2 percentiles of the values of the statistic calculated from the bootstrap samples. 

Note that the justification for the percentile bootstrap confidence interval requires the existence 

of a monotone transformation of the statistic such that the transformed statistic on the 

transformed scale is symmetrical and centered on the observed statistic. However, such 

transformation rarely exists in practice, and therefore the percentile bootstrap confidence 

intervals are often incorrect. This limitation led to the development of the bias-corrected (BC) 

bootstrap confidence intervals in which bias in the sampling distribution of the statistic is 

adjusted using a correction factor (Davison & Hinkley, 1997). More specifically, let 𝜃 and  𝜃(𝑏) 

be the statistics that are calculated from the original and b-th bootstrap sample respectively, 

where b = 1, …, B and B is the total number of bootstrap samples. In the BC bootstrap 

confidence intervals, the estimated is defined as the z score of the percentile of the observed θˆ. 

That is, 𝑧̂0 = Φ−1(𝑝/𝐵), where 𝑝 is the number of  𝜃(𝑏)s that are less than  𝜃 and Φ−1 is the 

inverse cumulative distribution function for a standard normal distribution. Then, the upper and 

lower bounds of 100(1-𝛼)% confidence intervals are defined as 2 𝑧̂0 + 𝑧1−𝛼/2 and 2 𝑧̂0 + 𝑧𝛼/2, 

respectively (MacKinnon et al., 2004; Carpenter & Bithell, 2000). 

Confidence intervals using the delta method and the bootstrap method are based on the 

frequentist approach in which an unknown parameter is treated as an unknown fixed value. In 

the frequentist approach, a confidence interval gives an estimated range of values that are likely 

to include the unknown fixed value of the parameter. On the contrary, the Bayesian approach 

treats an unknown parameter as a random variable with a probability distribution. In the 

Bayesian approach, prior information on the parameter of interest is quantified as a prior 

distribution, and the Bayes theorem is used to update the prior distribution to the posterior 

distribution by incorporating the observed data. All knowledge and uncertainty about the 

unknown parameter can be inferred from the posterior distribution. A credible interval in the 

Bayesian approach is the counterpart of the confidence interval in the frequentist approach, and 

the 95% credible interval is defined as the range between 0.025 and 0.975 percentiles of the 

posterior distribution. Yuan and MacKinnon (2009) pointed out that the Bayesian method is 

appealing for studies with complex mediation models and small samples because the Bayesian 

method does not impose restrictive normality assumptions on the sampling distribution of 

estimates. 

So far, we have discussed various point and interval estimators of indirect effects for binary 

outcomes. As we mentioned earlier, this study aims to compare various point and interval 

estimators using Monte Carlo simulation studies. In the following sections, more detail on the 

Monte Carlo simulation studies are discussed. 
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2. Simulation Study  

2.1. Simulation Study 1 

2.1.1. Simulation Description 

Simulation study 1 was designed to demonstrate the difference between various point 

estimators of indirect effects for binary outcomes in terms of averages of estimated indirect 

effects across replications. Data sets for a simulation were generated based on Equations 2 and 

3. The effect sizes of 𝛽𝑦𝑥.𝑚, 𝛽𝑦𝑚.𝑥, and 𝛽𝑚𝑥 in Equations 2 and 3 were set equal to one another 

for simplicity and set at 0.14, 0.39, and 0.59 to represent small, medium, and large effect sizes, 

respectively (MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002). The independent 

variable 𝑥 was sampled from a standard normal distribution. Given 𝑥, the mediator 𝑚 was 

generated based on Equation 3 under the assumption that the error term 𝑒3 follows a standard 

normal distribution. Then, a continuous latent response variable 𝑦∗ was generated based on 

Equation 2 by setting the error term 𝑒2 as a standard normal distribution for a probit model and 

a standard logistic distribution for a logit model. Note that the scale factor 𝜎2 was defined as 

𝑒2 = 𝜎2𝑢, where 𝑢 is a standard normal distribution for a probit model and a standard logistic 

distribution for a logit model. Therefore, the scale factor 𝜎2 in this simulation study was one 

because 𝑒2 = 𝑢 in our study. Sample sizes were set at 50, 100, 200, 500, 1000, and 5000 

following MacKinnon et al. (2007). In all, 3 (effect sizes) × 6 (sample sizes) = 18 conditions 

were simulated for both probit or logit models, and each simulation condition was replicated 

1000 times. The R software package (R Core Team, 2014) was used to generate data sets and 

to estimate the probit or logistic regression coefficients. For each simulation condition, the 

averages of estimated indirect effects from five different estimators were calculated: two 

product of coefficients estimators and three difference in coefficients estimators. To be more 

specific, an example showing how to calculate five different estimates for indirect effects is 

presented below. The data set in the example was generated based on the previously described 

procedure. 

2.1.2. An Example 

Given a generated data set, the probit regressions described in Equations 9 and 10, and the linear 

regression described in Equation 3 were fitted to give the following regression coefficients: 

                𝑔[Pr(𝑦 = 1|𝑥)]= 0.0508(0.0433) + 0.7536(0.0524)x,      (22) 

                𝑔[Pr(𝑦 = 1|𝑥, 𝑚)]= 0.0346(0.0461) + 0.5656(0.0586)x + 0.5927(0.0521)m,    (23) 

                          𝑚 = 0.0391(0.0309) + 0.5249(0.0311)𝑥,       (24) 

where the numbers in parentheses indicate the standard errors for the coefficients. The 

conventional product of coefficients estimate and the difference in coefficients estimate are 

𝑏̂𝑚𝑥 𝑏̂𝑦𝑚.𝑥= 0.5249 × 0.5927 = 0.3111 and 𝑏̂𝑦𝑥 − 𝑏̂𝑦𝑥.𝑚 = 0.7536 − 0.5656 = 0.1880, 

respectively. Note that the difference in coefficients estimator underestimates the indirect effect 

because of the scaling issue. 

On the other hand, the variances of 𝑦∗ described in Equations 14 and 15 can be obtained as the 

following: 

     𝑉𝑎𝑟[𝑦∗] = 𝑏𝑦𝑥
2 𝑉𝑎𝑟[𝑥] + 1 = (0.7536)2(0.9839)  +  1 =  1.5588        (25) 

     𝑉𝑎𝑟[𝑦∗] = 𝑏𝑦𝑥.𝑚
2 𝑉𝑎𝑟[𝑥] + 𝑏𝑦𝑚.𝑥

2 𝑉𝑎𝑟[𝑚] + 2𝑏𝑦𝑥.𝑚𝑏𝑦𝑚.𝑥𝐶𝑜𝑣[𝑥, 𝑚] + 1      (26) 

                   = (0.5656)2(0.9839) + (0.5927)2(1.2229) + 2(0.5656)(0.5927)(0.5165) + 1   (27) 

                   = 2.0906.            (28) 
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With the variances of 𝑦∗, the standardized regression coefficients can be obtained by dividing 

the regression coefficients by the square root of the variances of 𝑦∗: 𝑏̅̂𝑦𝑥= 0.7536/√1.5588 = 

0.6036, 𝑏̅̂𝑦𝑥.𝑚= 0.5656/√2.0906 = 0.3912, and 𝑏̅̂𝑦𝑚.𝑥= 0.5927/√2.0906 = 0.4099. Then, the 

rescaled product of coefficients and difference in coefficients estimates can be obtained using 

the standardized regression coefficients: 𝑏̂𝑚𝑥 𝑏̅̂𝑦𝑚.𝑥= 0.5249 × 0.4099 = 0.2152 and 𝑏̅̂𝑦𝑥 −

𝑏̅̂𝑦𝑥.𝑚= 0.6036 − 0.3912 = 0.2124. Note that two rescaled estimates are very similar, but not the 

same. 

Finally, the difference in coefficients estimate can be obtained using the residualized 𝑚, which 

is the residual of 𝑚 in Equation 24. In our study, the residualized 𝑚 is denoted as 𝑚̃. Given 𝑚̃, 

another probit regression can be fitted to the data to give the following regression coefficients: 

  𝑔[Pr(𝑦 = 1|𝑥, 𝑚)] = 0.0577(0.0461)  +  0.8767(0.0596)x +  0.5927(0.0521)𝑚̃. (29) 

Then, the difference in coefficients estimate is 𝑏̂𝑦𝑥.𝑚̃ − 𝑏̂𝑦𝑥.𝑚= 0.8767 − 0.5656 = 0.3111. Note 

that 𝑏̂𝑦𝑥.𝑚̃ − 𝑏̂𝑦𝑥.𝑚 and 𝑏𝑚𝑥 𝑏̂𝑦𝑚.𝑥 are exactly the same. In this example, we have demonstrated 

how to calculate five different estimates of indirect effects for binary outcomes: 

𝑏̂𝑚𝑥𝑏̂𝑦𝑚.𝑥, 𝑏̂𝑦𝑥 − 𝑏̂𝑦𝑥.𝑚, 𝑏̂𝑦𝑥𝑏̂𝑦𝑥.𝑚, 𝑏̅̂𝑦𝑥 − 𝑏̅̂𝑦𝑥.𝑚, and 𝑏̂𝑦𝑥.𝑚̃ − 𝑏̂𝑦𝑥.𝑚. The results of simulation 

study 1 are presented below. 

2.1.3. Results 

The averages of estimated indirect effects from the five different estimators for probit and logit 

models are presented in Tables 1 and 2, respectively. Note that true parameter values for some 

estimators were unknown. In this simulation, the effect sizes of 𝛽𝑦𝑥.𝑚, 𝛽𝑦𝑚.𝑥, and 𝛽𝑚𝑥 were 

manipulated. Therefore, the true values of 𝑏𝑦𝑥.𝑚 and 𝑏𝑦𝑚.𝑥 can be calculated using Equation 10 

in which the scale factor 𝜎2 can be set to one because we have used the standard normal and the 

standard logistic distributions as error distributions. Also, the true value of 𝑏𝑚𝑥 was known 

because 𝛽𝑚𝑥 was just relabeled as 𝑏𝑚𝑥 for notational consistency, i.e., 𝛽𝑚𝑥 = 𝑏𝑚𝑥. However, 

the true values of other coefficients, byx and byx.m, were unknown. Therefore, following 

MacKinnon et al. (2007), the averages of estimated indirect effects for samples of 106 were 

calculated across 1000 replications and were considered as true values. The estimated true 

values were exactly the same as the known true values up to four decimal points. For example, 

when 𝛽𝑦𝑥.𝑚 = 𝛽𝑦𝑚.𝑥 = 𝛽𝑚𝑥= 0.14, the true value of 𝑏𝑚𝑥𝑏𝑦𝑚.𝑥 was 0.14 × 0.14 = 0.0196, which 

was exactly the same as the value obtained for samples of 106. 

For probit models, several trends can be identified from the results presented in Table 1. First, 

the conventional difference in coefficients estimator, 𝑏̂𝑦𝑥 − 𝑏̂𝑦𝑥.𝑚, underestimated the indirect 

effect compared to the conventional product of coefficients estimator, 𝑏̂𝑚𝑥𝑏̂𝑦𝑚.𝑥. For example, 

when 𝛽𝑦𝑥.𝑚 = 𝛽𝑦𝑚.𝑥 = 𝛽𝑚𝑥= 0.59 and the sample size is 106, the means of estimated indirect 

effects from 𝑏̂𝑚𝑥𝑏̂𝑦𝑚.𝑥 and 𝑏̂𝑦𝑥 − 𝑏̂𝑦𝑥.𝑚 were 0.3481 and 0.2180, respectively. The result 

showed the scaling problem in directly comparing regression coefficients of two nested probit 

models. As can be seen from Equation 13, the regression coefficients of two nested probit 

models are measured in different scales, and therefore are not directly comparable. The 

difference in estimated indirect effects from the two estimators increased as the effect size of 

coefficients increased, which is consistent with MacKinnon et al. (2007). 

Second, the difference in coefficients estimator and the product of coefficients estimator with 

standardized coefficients, which are  𝑏̂𝑚𝑥 𝑏̅̂𝑦𝑚.𝑥 and 𝑏̅̂𝑦𝑥 − 𝑏̅̂𝑦𝑥.𝑚, yielded very similar, but not 

identical, results across all simulation conditions. This result showed that the use of the 

standardized regression coefficients can reduce the difference in estimated indirect effects from 
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the difference in coefficients and the product of coefficients estimators, but the difference still 

exists. That is, the total effect can not be exactly decomposed into the direct and indirect effects 

with the estimators using the standardized regression coefficients, which might cause some 

problems in calculating the proportion of the indirect effect in the total effect or the effect size 

of the indirect effect. 

Lastly, the conventional product of coefficients estimator, 𝑏̂𝑚𝑥𝑏̂𝑦𝑚.𝑥 and the difference in 

coefficients estimator with the residualized variable, 𝑏̂𝑦𝑥.𝑚̃−𝑏̂𝑦𝑥.𝑚, produced exactly the same 

estimate for the indirect effect. The result indicates that the total effect can be exactly 

decomposed into the direct and indirect effects by using the residualized variable (Breen et al., 

2013). The results for logit models in Table 2 also show similar patterns, as shown in Table 1. 

Table 1. Averages of Estimated Indirect Effects from Different Estimators (Probit Models). 

 Products  Differences  

𝑛 𝛽  𝑏̂𝑚𝑥 𝑏̂𝑦𝑚.𝑥 𝑏̂𝑚𝑥 𝑏̅̂𝑦𝑚.𝑥  𝑏̂𝑦𝑥 − 𝑏̂𝑦𝑥.𝑚 𝑏̅̂𝑦𝑥 − 𝑏̅̂𝑦𝑥.𝑚 𝑏̂𝑦𝑥.𝑚̃ − 𝑏̂𝑦𝑥.𝑚 

50 0.14  0.0223 0.0203  0.0180 0.0208 0.0223 

100 0.14  0.0204 0.0192  0.0171 0.0192 0.0204 

200 0.14  0.0196 0.0189  0.0173 0.0189 0.0196 

500 0.14  0.0195 0.0189  0.0177 0.0189 0.0195 

1000 0.14  0.0196 0.0191  0.0180 0.0191 0.0196 

5000 0.14  0.0198 0.0194  0.0182 0.0194 0.0198 

106 0.14  0.0196 0.0192  0.0181 0.0192 0.0196 
         

50 0.39  0.1675 0.1341  0.1185 0.1287 0.1675 

100 0.39  0.1593 0.1278  0.1151 0.1271 0.1593 

200 0.39  0.1596 0.1279  0.1169 0.1300 0.1596 

500 0.39  0.1546 0.1260  0.1143 0.1276 0.1546 

1000 0.39  0.1523 0.1263  0.1148 0.1266 0.1523 

5000 0.39  0.1526 0.1266  0.1149 0.1267 0.1526 

106 0.39  0.1521 0.1265  0.1150 0.1265 0.1521 
         

50 0.59  0.4075 0.2383  0.2076 0.2422 0.4075 

100 0.59  0.3714 0.2362  0.2189 0.2379 0.3714 

200 0.59  0.3598 0.2346  0.2178 0.2349 0.3598 

500 0.59  0.3518 0.2333  0.2184 0.2335 0.3518 

1000 0.59  0.3515 0.2339  0.2185 0.2338 0.3515 

5000 0.59  0.3492 0.2336  0.2183 0.2336 0.3492 

106 0.59  0.3481 0.2332  0.2180 0.2332 0.3481 

Notes. The number in each cell represents the averages of estimated indirect effects across 3000 replications for 
a given condition. The effect sizes of coefficients were set to be equal, i.e., 𝛽 = 𝛽𝑚𝑥 = 𝛽𝑦𝑚.𝑥 = 𝛽𝑦𝑥.𝑚.  The bar 

over a coefficient indicates that the coefficient is standardized using the variance of a latent response variable 
𝑦∗. The hat over a coefficient indicates that it is a estimated value. 𝑚̃ represents the x-residualized 𝑚 variable, 
i.e., the residual of 𝑚 when 𝑚 is regressed on 𝑥. 
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Table 2. Averages of Estimated Indirect Effects from Different Estimators (Logit Models). 

 Products  Differences  

𝑛 𝛽  𝑏̂𝑚𝑥 𝑏̂𝑦𝑚.𝑥 𝑏̂𝑚𝑥 𝑏̅̂𝑦𝑚.𝑥  𝑏̂𝑦𝑥 − 𝑏̂𝑦𝑥.𝑚 𝑏̅̂𝑦𝑥 − 𝑏̅̂𝑦𝑥.𝑚 𝑏̂𝑦𝑥.𝑚̃ − 𝑏̂𝑦𝑥.𝑚 

50 0.14  0.0200 0.0102  0.0154 0.0096 0.0200 

100 0.14  0.0213 0.0113  0.0185 0.0108 0.0213 

200 0.14  0.0204 0.0110  0.0187 0.0107 0.0204 

500 0.14  0.0202 0.0110  0.0190 0.0108 0.0202 

1000 0.14  0.0192 0.0105  0.0183 0.0103 0.0192 

5000 0.14  0.0196 0.0107  0.0188 0.0105 0.0196 

106 0.14  0.0196 0.0107  0.0188 0.0106 0.0196 

         

50 0.39  0.1675 0.1341  0.1185 0.1287 0.1675 

100 0.39  0.1593 0.1278  0.1151 0.1271 0.1593 

200 0.39  0.1596 0.1279  0.1169 0.1300 0.1596 

500 0.39  0.1546 0.1260  0.1143 0.1276 0.1546 

1000 0.39  0.1523 0.1263  0.1148 0.1266 0.1523 

5000 0.39  0.1526 0.1266  0.1149 0.1267 0.1526 

106 0.39  0.1521 0.1265  0.1150 0.1265 0.1521 

         

50 0.59  0.4075 0.2383  0.2076 0.2422 0.4075 

100 0.59  0.3714 0.2362  0.2189 0.2379 0.3714 

200 0.59  0.3598 0.2346  0.2178 0.2349 0.3598 

500 0.59  0.3518 0.2333  0.2184 0.2335 0.3518 

1000 0.59  0.3515 0.2339  0.2185 0.2338 0.3515 

5000 0.59  0.3492 0.2336  0.2183 0.2336 0.3492 

106 0.59  0.3481 0.2332  0.2180 0.2332 0.3481 

Notes. The number in each cell represents the averages of estimated indirect effects across 3000 replications for a 

given condition. The effect sizes of coefficients were set to be equal, i.e., 𝛽 = 𝛽𝑚𝑥 = 𝛽𝑦𝑚.𝑥 = 𝛽𝑦𝑥.𝑚.  The bar over 

a coefficient indicates that the coefficient is standardized using the variance of a latent response variable 𝑦∗. The 

hat over a coefficient indicates that it is a estimated value. 𝑚̃ represents the x-residualized 𝑚 variable, i.e., the 

residual of 𝑚 when 𝑚 is regressed on 𝑥. 
 

2.2. Simulation Study 2 

In simulation study 2, confidence and credible intervals of the product of coefficients estimator, 

𝑏̂𝑚𝑥 𝑏̂𝑦𝑚.𝑥, were constructed using the delta, bootstrap, and Bayesian methods, and their 

performance were compared in terms of powers, type I error rates, and coverage rates. As can 

be seen from the simulation study 1, the values of 𝑏̂𝑦𝑥.𝑚̃ − 𝑏̂𝑦𝑥.𝑚 were exactly the same as the 

values of 𝑏̂𝑚𝑥𝑏̂𝑦𝑚.𝑥. Also, testing 𝐻0: 𝑏̂𝑚𝑥 𝑏̂𝑦𝑚.𝑥 = 0 and 𝐻0: 𝑏̂𝑚𝑥 𝑏̅̂𝑦𝑚.𝑥 = 0 are equivalent. 

Mplus (L. K. Muth´en & Muth´en, 2010) was used to construct confidence and credible 

intervals. Note that the bootstrap confidence interval implemented in Mplus is the BC bootstrap 

confidence interval. In this simulation, date sets were generated using only the probit model 

because Mplus limits the data generation to the Probit model. In order to model binary 

outcomes, the weighted least square estimation should be used in Mplus. However, the 

weighted least square estimation allows only the probit link. Also, the Bayesian estimation in 

Mplus only allows the probit link. Therefore, data sets in this simulation were generated using 

the probit model by setting the error term e2 in Equation 2 as a standard normal distsribution, 

and then the probit model was used to estimate relevant coefficients to calculate estimates for 

indirect effects. 
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Data sets were generated using the latent response variable as described in simulation study 1. 

However, unlike in the simulation study 1, only the effect sizes of 𝛽𝑚𝑥 and 𝛽𝑦𝑚.𝑥 were set equal 

to one another, and the effect sizes of 𝛽𝑚𝑥 and 𝛽𝑦𝑥.𝑚 were set at 0.14, 0.39, and 0.59. Sample 

sizes were set at 50, 100, 200, 500, and 1000. In all, 32 (effect sizes) × 5 (sample sizes) = 45 

conditions were simulated to calculate powers and coverage rates. For type I error rates, 𝛽𝑚𝑥 

and 𝛽𝑦𝑚.𝑥 are set equal to zeros, and 𝛽𝑦𝑥.𝑚 were set at 0.14, 0.39, and 0.59. Therefore, 3 (effect 

sizes) × 5 (sample sizes) = 15 conditions were simulated for type I error rates. Each simulation 

condition was replicated 3000 times. 

Given data sets, confidence or credible intervals were constructed using Mplus. In constructing 

confidence intervals using the delta and bootstrap methods, the weighted least square estimation 

was used by setting the ESTIMATOR = WLSMV option, and the indirect effects were defined 

using the MODEL CONSTRAINT command. In constructing credible intervals, the Bayesian 

estimation was used by setting the ESTIMATOR = BAYES option. Because the option for 

bootstrap confidence intervals was not compatible with the built-in Monte Carlo facility in 

Mplus, author-written R code was used to automatically run Mplus and extract relevant 

estimates from generated output files. The coverage rate was evaluated using the criteria 

suggested by Bradley (1978); the confidence interval is considered to be liberally, moderately, 

or strictly robust if the coverage rate falls within the range [.925, .975], [.940, .960], or [.945, 

.955], respectively. 

2.2.1. Results 

Confidence and credible intervals for the indirect effect estimator, 𝑏̂𝑚𝑥 𝑏̂𝑦𝑚.𝑥, were constructed 

using the delta, bootstrap, and Bayesian methods, and their powers, coverage rates, and type I 

error rates are presented in Tables 3, 4, and 5. Several trends can be identified from the tables. 

First, the powers of the BC bootstrap confidence intervals were higher than the powers of other 

confidence or credible intervals in almost every simulation condition. The differences in powers 

among methods are prominent when the sample sizes and effect sizes are small. For example, 

the powers of the confidence and credible intervals using the delta, bootstrap, and Bayesian 

methods were 0.048, 0.217, and 0.125 respectively when the sample size is 200, and 𝛽𝑚𝑥 =
𝛽𝑦𝑚.𝑥 = 𝛽𝑦𝑥.𝑚= 0.14. The only exceptions were the conditions in which sample sizes were 50, 

and 𝛽𝑚𝑥 = 𝛽𝑦𝑚.𝑥 = 0.59. In those conditions, the powers of the credible intervals using the 

Bayesian method were little bit higher than the powers of the confidence intervals using the 

bootstrap method. 

Second, the BC bootstrap confidence intervals performed better than did other intervals in terms 

of coverage rates. In our study, confidence and credible intervals were constructed with a 95% 

confidence level. Therefore, the nominal coverage rate of confidence and credible intervals is 

.95. In Tables 3, 4, and 5, The values marked with *, **, and *** indicate that the coverage 

rates are liberally [.925, .975], moderately [.94, .96], and strictly [.945, .955] robust based on 

the criteria suggested by Bradley (1978). As can be seen from the tables, the BC bootstrap 

confidence intervals were more robust than other intervals. The coverage rates of the intervals 

seemed to become close to the nominal level of .95 as the sample sizes and effect sizes increase. 

However, the pattern is less clear for sample sizes. 

Third, as shown in Table 3, the type I error rates of the delta, bootstrap, and Bayesian methods 

were very close to zero in all simulation conditions. Because confidence and credible intervals 

were constructed with a 95% confidence level in this study, the nominal type I error rate is .05. 

Therefore, our results indicate that the tests of indirect effects using confidence and credible 

intervals are very conservative. 
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Table 3. Powers, Coverage Rates, and Type I Error Rates of Confidence and Credible Intervals for 

𝑏̂𝑚𝑥 𝑏̂𝑦𝑚.𝑥 

 

 n βmx βym.x

 βyx.m  

 Delta  Bootstrap 

Pow 

Bootstrap 

Cov 

 

Typ 

 Bayesian 

Pow 

Bayesian 

Cov 

 

Typ 

𝑛 𝛽𝑚𝑥 𝛽𝑦𝑚.𝑥 𝛽𝑦𝑥.𝑚  Pow Cov Typ  Pow Cov Typ  Pow Cov Typ 

50 .14(0) .14 (0) .14  .002 .965* .000  .024 .976 .002  .020 .990 .002 

100 .14(0) .14 (0) .14  .008 .929* .000  .072 .936* .005  .027 .986 .003 

200 .14(0) .14 (0) .14  .048 .908 .000  .217 .938* .004  .125 .946*** .001 

500 .14(0) .14 (0) .14  .353 .929* .000  .640 .960** .003  .623 .939* .002 

1000 .14(0) .14 (0) .14  .844 .936* .001  .930 .958** .002  .873 .954** .001 

                
50 .14(0) .14 (0) .39  .002 .972* .000  .021 .980 .002  .014 .989 .002 

100 .14(0) .14 (0) .39  .008 .929* .000  .071 .929* .006  .024 .982 .002 

200 .14(0) .14 (0) .39  .044 .907 .000  .190 .927* .004  .114 .946*** .002 

500 .14(0) .14 (0) .39  .345 .922 .000  .627 .956** .002  .597 .939* .001 

1000 .14(0) .14 (0) .39  .831 .937* .000  .920 .954**

* 

.001  .862 .954*** .001 

                50 .14(0) .14 (0) .59  .001 .964* .000  .021 .979 .004  .014 .993 .001 

100 .14(0) .14 (0) .59  .007 .940** .000  .069 .931* .005  .022 .980 .002 

200 .14(0) .14 (0) .59  .042 .913 .000  .192 .928* .004  .112 .940** .001 

500 .14(0) .14 (0) .59  .314 .930* .000  .601 .958** .003  .580 .940** .002 

1000 .14(0) .14 (0) .59  .805 .942** .000  .921 .960** .003  .849 .964* .001 

Notes. Pow=powers, Cov=coverage rates, and Typ=type I error rates.  Each condition was replicated 3000 times. 

Type I error rates were calculated by setting 𝛽𝑚𝑥 = 𝛽𝑦𝑚.𝑥 = 0 as indicated by zeros within the parentheses. 

Bootstrap indicates the BC bootstrap confidenc intervals. The values marked with *, **, and *** indicate that the 

coverage rates are liberally [.925, .975], moderately [.94, .96], and strictly [.945, .955] robust (Bradley,1978). 

Table 4. Powers and Coverage Rates of Confidence and Credible Intervals for 𝑏̂𝑚𝑥 𝑏̂𝑦𝑚.𝑥 

 

n βmx βym.x

 βyx.m  

 Delta 

Pow 

Delta 

Cov 

 Bootstrap 

Pow Cov 

 Bayesian 

Pow 

Bayesian 

Cov 
𝑛 

50 

𝛽𝑚𝑥 

.39 

𝛽𝑦𝑚.𝑥 

.39 

𝛽𝑦𝑥.𝑚 

.14 

 Pow 

.158 

Cov  Pow Cov  Pow Cov 

50 .39 .39 .14  .158 .922  .401 .955***  .398 .942** 

100 .39 .39 .14  .645 .941**  .831 .962*  .750 .946*** 

200 .39 .39 .14  .979 .936*  .990 .953***  .990 .938* 

500 .39 .39 .14  1.000 .951***  1.000 .953***  1.000 .924* 

1000 .39 .39 .14  1.000 .942**  1.000 .948***  1.000 .955*** 

             
50 .39 .39 .39  .129 .925*  .383 .959**  .375 .949*** 

100 .39 .39 .39  .614 .938*  .810 .960**  .723 .935* 

200 .39 .39 .39  .968 .936*  .980 .951***  .983 .934* 

500 .39 .39 .39  1.000 .942**  1.000 .944**  1.000 .926* 

1000 .39 .39 .39  1.000 .946***  1.000 .950***  1.000 .954*** 

             50 .39 .39 .59  .119 .925*  .368 .962*  .364 .944** 

100 .39 .39 .59  .553 .938*  .779 .955***  .691 .933* 

200 .39 .39 .59  .961 .940**  .977 .954***  .982 .935* 

500 .39 .39 .59  1.000 .947***  1.000 .947***  1.000 .930* 

1000 .39 .39 .59  1.000 .953***  1.000 .955***  1.000 .960** 

Notes. Pow=powers and Cov=coverage rates. Each condition was replicated 3000 times. 

Bootstrap indicates the BC bootstrap confidence intervals. The values marked with *, **, and *** indicate that the 

coverage rates are liberally [.925, .975], moderately [.94, .96], and strictly [.945, .955] robust (Bradley, 1978). 
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Table 5. Powers and Coverage Rates of Confidence and Credible Intervals for 𝑏̂𝑚𝑥 𝑏̂𝑦𝑚.𝑥 

 

n βmx βym.x

 βyx.m  

 Delta 

Pow 

Delta 

Cov 

 Bootstrap 

Pow Cov 

 Bayesian 

Pow 

Bayesian 

Cov 
𝑛 

50 

𝛽𝑚𝑥 

.39 

𝛽𝑦𝑚.𝑥 

.39 

𝛽𝑦𝑥.𝑚 

.14 

 Pow 

.158 

Cov  Pow Cov  Pow Cov 

50 .59 .59 .14  .606 .950  .811 .954***  .842 .943** 

100 .59 .59 .14  .979 .947***  .987 .950***  .750 .946*** 

200 .59 .59 .14  1.000 .952***  1.000 .947***  .990 .938* 

500 .59 .59 .14  1.000 .953***  1.000 .951***  1.000 .924* 

1000 .59 .59 .14  1.000 .950***  1.000 .946***  1.000 .955*** 

             

50 .59 .59 .39  .555 .943**  .769 .954***  .808 .936* 

100 .59 .59 .39  .974 .952***  .984 .953***  .981 .935* 

200 .59 .59 .39  1.000 .948***  1.000 .953***  1.000 .932* 

500 .59 .59 .39  1.000 .947***  1.000 .946***  1.000 .926* 

1000 .59 .59 .39  1.000 .954***  1.000 .954***  1.000 .955*** 

             

50 .59 .59 .59  .723 .948***  .754 .948***  .791 .931* 

100 .59 .59 .59  .954 .934*  .971 .944**  .961 .923 

200 .59 .59 .59  1.000 .944**  1.000 .944**  1.000 .917 

500 .59 .59 .59  1.000 .953***  1.000 .954***  1.000 .932* 

1000 .59 .59 .59  1.000 .954***  1.000 .954***  1.000 .959** 

Notes. Pow=powers and Cov=coverage rates. Each condition was replicated 3000 times. 

Bootstrap indicates the BC bootstrap confidence intervals. The values marked with *, **, and *** indicate that the 

coverage rates are liberally [.925, .975], moderately [.94, .96], and strictly [.945, .955] robust (Bradley, 1978). 

3. DISCUSSION 

The indirect effect has been estimated in two ways: the difference in coefficients or the product 

of coefficients. Unlike for continuous outcomes, the difference in coefficients estimator for 

binary outcomes systematically underestimates the indirect effect because the estimator 

compares regression coefficients that are measured in different scales. To address the scaling 

issue, it was proposed to use standardized regression coefficients (Winship & Mare, 1983; 

MacKinnon, 2008) or residualized variables (Breen et al., 2013). The simulation study 1 was 

designed to contrast those estimators of indirect effects for binary outcomes in terms of the 

averages of estimated indirect effects. On the other hand, confidence or credible intervals have 

been widely used to test indirect effects. In the simulation study 2, confidence or credible 

intervals of the product of coefficients estimator for binary outcomes were constructed using 

the delta, bootstrap, and Bayesian methods, and their performance were compared in terms of 

powers, coverage rates, and type I error rates.  

In the simulation study 1, five different point estimators were compared in terms of the averages 

of estimated indirect effects. The results in Tables 1 and 2 showed that the conventional 

difference in coefficients estimator (𝑏̂𝑦𝑥 − 𝑏̂𝑦𝑥.𝑚) systematically underestimated the indirect 

effects compared to the conventional product of coefficients estimator (𝑏̂𝑚𝑥 𝑏̂𝑦𝑚.𝑥). The 

discrepancy between the two estimators can be reduced by using the standardized regression 

coefficients. That is, estimated indirect effects from  𝑏̂𝑚𝑥 𝑏̅̂𝑦𝑚.𝑥 and 𝑏̅̂𝑦𝑥 − 𝑏̅̂𝑦𝑥.𝑚 were similar 

but not identical. The estimated indirect effects from the conventional product of coefficients 

estimator (𝑏̂𝑚𝑥 𝑏̂𝑦𝑚.𝑥) and the difference in coefficients estimator using the residualized 

variable (𝑏̂𝑦𝑥.𝑚̃ − 𝑏̂𝑦𝑥.𝑚) were exactly the same, which indicates the exact decomposition of 

the total effect into the direct and indirect effects. In all, the conventional difference in 
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coefficients estimator (𝑏̂𝑦𝑥 − 𝑏̂𝑦𝑥.𝑚) should not be used for binary outcomes. Also, the 

counterparts of 𝑏̂𝑦𝑥.𝑚̃ − 𝑏̂𝑦𝑥.𝑚 and 𝑏̅̂𝑦𝑥 − 𝑏̅̂𝑦𝑥.𝑚 are the 𝑏̂𝑚𝑥𝑏̂𝑦𝑚.𝑥 and 𝑏̂𝑚𝑥 𝑏̅̂𝑦𝑚.𝑥, respectively. 

Here, it may be interesting to discuss the effect size measure of indirect effects for a binary 

outcome. At first, it may seem that the exact decomposition is necessary to interpret the effect 

size measures that are defined as the ratio of the indirect effect to the total effect, 

𝑏𝑚𝑥𝑏𝑦𝑚.𝑥/(𝑏𝑦𝑥.𝑚 + 𝑏𝑚𝑥𝑏𝑦𝑚.𝑥) as proportion. However, as Preacher and Kelley (2011) pointed 

out, 𝑏𝑚𝑥𝑏𝑦𝑚.𝑥/(𝑏𝑦𝑥.𝑚 + 𝑏𝑚𝑥𝑏𝑦𝑚.𝑥) is not a proportion, and can exceed one and even be 

negative in some cases. On the other hand, in our previous example, the values of 

𝑏𝑚𝑥𝑏𝑦𝑚.𝑥/(𝑏𝑦𝑥.𝑚 + 𝑏𝑚𝑥𝑏𝑦𝑚.𝑥) that were calculated using the original and standardized 

regression coefficients were exactly the same. The value of 𝑏𝑚𝑥𝑏𝑦𝑚.𝑥/(𝑏𝑦𝑥.𝑚 + 𝑏𝑚𝑥𝑏𝑦𝑚.𝑥) was 

(0.5249 × 0.5927)/(0.5656 + 0.5249 × 0.5927) = 0.3548 for the original coefficients, and the 

value of 𝑏𝑚𝑥 𝑏̅̂𝑦𝑚.𝑥/(𝑏̅̂𝑦𝑥.𝑚 + 𝑏𝑚𝑥 𝑏̅̂𝑦𝑚.𝑥) was (0.5249 × 0.5927 √2.0906)/(0.5656 √2.0906 + 

0.5249 × 0.5927/√2.0906) = 0.3548 for the standardized coefficients. It is apparent that the 

two values should be the same because the numerator and denominator in the effect size for 

original coefficients are divided by the same scaling factor. Moreover, Breen et al. (2013) also 

suggested to use 𝑏𝑚𝑥𝑏𝑦𝑚.𝑥/(𝑏𝑦𝑥.𝑚 + 𝑏𝑚𝑥𝑏𝑦𝑚.𝑥) as the effect size measures for the indirect 

effect with a residualized variable, which gives exactly the same effect size of 0.3548. 

Confidence and credible intervals have been widely used as interval estimators for indirect 

effects. In the literature, different methods for constructing interval estimators have been 

compared for indirect effects with continuous outcomes (MacKinnon et al., 2004; Yuan & 

MacKinnon, 2009). In this study, confidence and credible intervals using the delta, bootstrap, 

and Bayesian methods were compared for indirect effects with binary outcomes. The results in 

Tables 3, 4, and 5 showed that the BC bootstrap confidence intervals performed better than did 

other intervals in terms of powers, coverage rates, and type I error rates, especially when the 

sample sizes and effect sizes are small. This result is expected because the sampling 

distributions of estimators tend to deviate from the normal distribution in small samples 

(MacKinnon et al., 2004; Bollen & Stine, 1990; Yuan & MacKinnon, 2009). In Figure 1, 

histograms and normal Q-Q plots of estimated indirect effects for the worst- and best- case 

scenarios in our study are presented to demonstrate how much the sampling distribution of 

indirect effects could deviate from the normal distribution depending on the sample sizes and 

effect sizes. For the worst case scenario, the histogram and normal Q-Q plot for 𝛽𝑚𝑥 = 𝛽𝑦𝑚.𝑥 =

.14, 𝛽𝑦𝑥.𝑚 = .14 , and n = 50 are presented in Figures 1a and 1b, which show clear deviation 

from the normal distribution. On the contrary, the histogram and normal Q-Q plot for the best 

case scenario, where 𝛽𝑚𝑥 = 𝛽𝑦𝑚.𝑥 = .59, 𝛽𝑦𝑥.𝑚 = .59, and n = 1000, were very close to those 

for the true normal distribution. Therefore, the poor performance of the confidence intervals 

using the delta method seems to be reasonable because the assumption of the normal sampling 

distribution in the delta method is not valid in small samples. 

On the other hand, the comparison between the BC bootstrap confidence intervals and the 

Bayesian credible intervals is interesting. Both methods do not require any specific form of the 

sampling distribution. The sampling distribution in the bootstrap method is empirically 

constructed, and the posterior distribution in the Bayesian method is updated from the prior 

distribution. With the flexibility in the form of the sampling distribution, the two methods can 

capture the possible asymmetric nature of the true sampling distribution in small samples. 

Therefore, the better performance of the two methods over the delta method can be understood 

as the result of the flexible assumption about the sampling distribution. 
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Figure 1. Histograms and Normal Q-Q  plots. 

 

Note. The values of estimated indirect effects for histograms and normal Q-Q plots come from the bootstrap 

method. The estimated indirect effects were exactly the same for both bootstrap and delta methods. The estimated 

indirect effects from the Bayesian estimation were little bit different from those from the bootstrap and delta 

methods, but produced very similar histogram and normal Q-Q plot. In Figures (a) and (c), solid lines indicate 

density plots for the corresponding   histograms. 

 

Interestingly, the BC confidence intervals showed better performance than did the Bayesian 

credible intervals in most simulation conditions. One of the possible explanations may be the 

use of the default non-informative prior in Mplus. In general, inferences in the Bayesian method 

are made based on the posterior distribution, which is proportional to the product of the prior 

and likelihood distributions. The non-informative prior, which is the default prior in Mplus, is 

typically used when there is no prior knowledge on the parameter of interest. In such a case, the 

likelihood distribution is the only dominant factor for estimating the posterior distribution. Note 

that, even in the Bayesian method, we still need an assumption about the form of the likelihood 

distribution. Therefore, the use of non-informative prior may make the estimation procedure 

less flexible in capturing the asymmetric nature of the true sampling distribution because the 

estimation procedures heavily rely on the pre-specified form of the likelihood distribution. In 

our study, the average widths of intervals using the delta, bootstrap, and Bayesian methods were 

0.193, 0.276, and 0.250 respectively when 𝛽𝑚𝑥 = 𝛽𝑦𝑚.𝑥 = .14, 𝛽𝑦𝑥.𝑚 = .14, and n = 50, and 

were 0.144, 0.144, and 0.149 respectively when 

𝛽𝑚𝑥 = 𝛽𝑦𝑚.𝑥 = .59, 𝛽𝑦𝑥.𝑚 = .59, and n = 1000. In small samples, the BC confidence intervals 

were most wide, whereas all intervals were quite similar in their average widths in large 
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samples. This might indicate that the BC confidence intervals are most flexible in capturing 

possible asymmetric nature of the true sampling distribution. 

This study compared various point and interval estimators of the indirect effect for a binary 

outcome. The conventional difference in coefficients estimator should be avoided in estimating 

the indirect effect for a binary outcome because of the scaling problem. For interval estimations, 

the BC bootstrap confidence intervals seem to perform better than the intervals based on the 

delta and Bayesian methods. In this study, only non-informative prior was used in the Bayesian 

method. It would be interesting to compare the bootstrap method with the Bayesian methods 

with different prior distributions. Also, this study did not consider the case where the moderator 

is binary, which would be another interesting study. 
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