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Abstract: Time scales have been in the study area of many mathematicians for the last 30 years. Some of these studies are
inequalities and dynamic equations. And also, inequalities and dynamic equations, differential calculus, difference calculus and
quantum calculus contributed to the solution of many problems in various branches of science. Dynamic equations and inequali-
ties on time scales have many applications in quantum mechanics, neural networks, heat transfer, electrical engineering, optics,
economics and population dynamics. It is possible to give an example from the economics, seasonal investments and incomes. In
this study, we will prove a special case of inequalities Minkowski’s integral type on time scale via the delta integral.
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1 Introduction

The concept of dynamic equations in time scales was launched by Stefan Hilger [1]. Recently, the plurality of applications has an accelerating
effect on the development of mathematical inequalities and dynamic equations. This caused the attention of researchers in the literature.
And they have demonstrated various aspects of integral inequalities [2, 13]-[18]-[19]. The most important examples of time scale studies are
differential calculus, difference calculus and quantum calculus [12]. Ozkan et al. [10] demonstrated the extensions of some integral inequalities
on time scales. Yang [13] obtained a extension of the diamond alfa integral Holder’s inequality. Tuna and Kutukcu [14] have had some general
conclusions about Hardy’s integral inequalities by using Holder inequalities with delta integral on time scales. In 2013, Chen demonstrated
some generalizations of the Minkowski’s integral inequality [15].

Our aim of this article is to demonstrate a special case of inequalities Minkowski’s integral type on time scale via the delta integral.

2 Auxillary statements and definitions

In this section, some statements will be given that will be necessary for our main result. For more detailed information, the reader can refer to
the references [1]-[19].

Definition 2.1. [16] The mappings σ, ρ : T → T defined by σ(t) = inf s ∈ T : s > t, ρ(t) = sup s ∈ T : s > t, for t ∈ T (T is a time scale
and a nonempty closed subset of R). Respectively, σ(t) is forward jump operator and ρ(t) is backward jump operator. [a, b] is an arbitrary
interval on time scale T. And [a, b]T is denoted by [a, b]T. If σ(t) > t, then t is right-scattered and if ρ(t) < t, then t is left-scattered and if
ρ(t) = t, then t is called left-dense.

If σ(t) > t, then t is right-scattered and if σ(t) = t, then t is called right-dense. If ρ(t) < t, then t is left-scattered and if ρ(t) = t, then
t is called left-dense. The graininess function µ is defined by µ(t) = σ(t)− t. Let f : T → R be any function. The notation fσ(t) denotes
f(σ(t)). The constant t ∈ T and let Θ : T → R.Define Θ∆(t) to be the number with the property that given any ε > 0 there is a neighborhood
V of t with

|[Θ(σ(t))−Θ(s)]− θ∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|,

for all s ∈ V.

A function f : T → R is said to be right-dense continuous (rd-continuous) provided f is continuous at right-dense points and at left-dense
points in T . The set of all rd-continuous functions is denoted by Crd(T ).
Assume that f : T → R and let the constant s ∈ T.
(i) If f is differentiable at s, then f is continuous at s.
(ii) If f is continuous at s and s is right-scattered, then f is differentiable at s with

f∆(s) =
f(σ(s))− f(s)

µ(s)
.
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(iii) If f is differentiable and s is right-dense, then

f∆(s) = lim
t→s

f(s)− f(t)

s− t .

(iv) If f is differentiable at s, then f(σ(s)) = f(s) + µ(s)f∆(s) (For details see [16]).

Definition 2.2. [17] If H : T → R is defined a ∆− antiderivative of h : T → R, then H∆ = h(t) holds for ∀t ∈ T . And we define the ∆−
integral of h by

∫
st h(τ)∆τ = H(t)−H(s) for s, t ∈ T.

Remark 2.3. [17] If T = R, then σ(s) = s, µ(s) = 0, g∆(s) = g′(s),
∫b
a g(s)∆s =

∫b
a g(s)ds.

If T = Z, then σ(s) = s+ 1, µ(s) = 1, g∆(s) = ∆g(s),
∫b
a g(s)∆s =

∑b−1
s=a g(s).

If T = λZ, λ > 0, then σ(s) = s+ λ, µ(s) = λ, and

θ∆(s) = ∆λθ(s) =
θ(s+ λ)− θ(s)

λ
,

∫b
a
g(s)∆s =

b−a
λ −1∑
k=0

g(a+ kλ)λ.

And if T = {s : s = pk, k ∈ N0, p > 1}, then σ(s) = ps, µ(s) = (p− 1)s,

Θ∆(s) = ∆Θ(s) =
θ(ps)− θ(s)

(p− 1)s
,

∫∞
s0

g(s)∆s =

∞∑
k=n0

g(pk)µ(pk),

where s0 = pn0 , and if T = N2
0 = {n2 : n ∈ N0}, then σ(s) = (

√
s+ 1)2,

µ(s) = 1 + 2
√
s, ∆Nθ(s) =

θ(σ(s))− θ(s)
1 + 2

√
s

.

IfG∆(s) = g(s), then delta integral of g is defined by
∫s
a g(t)∆t = G(s)−G(a). It can be shown (see [17]) that if g ∈ Crd(T ), then delta

integral G(s) =
∫s
s0
g(t)∆t exists, s0 ∈ T, and satisfies G∆(s) = g(s), s ∈ T. We will make use of the following product gf and quotient

g/f rules for the derivative (where ffσ 6= 0, here fσ = f ◦ σ of two differentiable functions g, f (for details see [16, 17]).

(gf)∆ = g∆f + gσf∆ = gf∆ + g∆fσ, and

(
g

f

)
=
g∆f − gf∆

ffσ
.

A function π : T → R is regressive provided 1 + µ(s)π(s) 6= 0, s ∈ T.
The Keller’s chain rule [17, Theorem 1.90] defined by

(Θδ(s))∆ = δ

∫1

0
[gΘσ + (1− g)Θ]δ−1dgΘ∆(s),

Using fσ(s) = f(s) + µ(s)f∆(s), we obtain

(Θδ(s))∆ = δ

∫1

0
[Θ + gµ(s)Θ∆(s)]δ−1dgΘ∆(s).

The integration is given by ∫b
a
x(s)y∆(s)∆s = [x(s)y(s)]ba −

∫b
a
x∆(s)yσ(s)∆s.

The inverse Holder inequality to help us with our results is defined as follows. Let a, b ∈ T. For x, y ∈ Crd(T,R), we have[∫b
a
|x(s)|q∆s

] 1
q
[∫b
a
|y(s)|p∆s

] 1
p

≤ Cp
∫b
a
x(s)y(s)∆s,

where p > 1 and 1/p+ 1/q = 1.

3 Main Result

Theorem 3.1. If h is ∆− integrable on [a,b], then |h| is ∆−integrable on [a,b] and we have

|
∫b
a
h(γ)∆γ| ≤

∫b
a
|h(γ)|∆γ.

Proof. For details of proof see [Theorem 2, 14]
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Theorem 3.2. Two mappings g, h : I → R are ∆− integrable functions on I = [a, b] ∈ T with 1 < l ≤ gp, hp ≤ L <∞. If p > 1, then
we have (∫b

a
|g(γ)|p∆γ

)1/p

+

(∫b
a
|h(γ)|p∆γ

)1/p

≤ 2 (L/l)1/p

(∫b
a
|g(γ) + h(γ)|p∆γ

)1/p

. (1)

Proof. We know that if 0 < l ≤ gp ≤ L <∞, then we have

l1/p ≤ g ≤ L1/p (2)

Similarly, if 0 < l ≤ hp ≤ L <∞, then we have

l1/p ≤ h ≤ L1/p (3)

Respectively, if we multiply both sides of (2) and (3) by
(∫b
a |g(γ)|p∆γ

)1/p
and

(∫b
a |h(γ)|p∆γ

)1/p
, then we have

l1/p
(∫b

a
|g(γ)|p∆γ

)1/p

≤ L1/p

(∫b
a
|g(γ)|p∆γ

)1/p

≤ L1/p

(∫b
a
|g(γ) + h(γ)|p∆γ

)1/p

(4)

and

l1/p
(∫b

a
|h(γ)|p∆γ

)1/p

≤ L1/p

(∫b
a
|h(γ)|p∆γ

)1/p

≤ L1/p

(∫b
a
|g(γ) + h(γ)|p∆γ

)1/p

(5)

Now, if we add (4) and (5) inequalities to each other, then we have

l1/p

(∫b
a
|h(γ)|p∆γ

)1/p

+

(∫b
a
|g(γ)|p∆γ

)1/p
 ≤ 2L1/p

(∫b
a
|g(γ) + h(γ)|p∆γ

)1/p

(6)

Thus, we have proved (1) inequality.

Theorem 3.3. Two mappings g, h : I → R are O− integrable functions on I = [a, b] ∈ T with 1 < l ≤ gp, hp ≤ L <∞. If p > 1, then
we have (∫b

a
|g(γ)|pOγ

)1/p

+

(∫b
a
|h(γ)|pOγ

)1/p

≤ 2 (L/l)1/p

(∫b
a
|g(γ) + h(γ)|pOγ

)1/p

. (7)

Proof. The proof of the theorem can be made analogous to the proof of Theorem 3.2 by using the properties of the O−derivative.

We know that if 0 < l ≤ gp ≤ L <∞, then we have

l1/p ≤ g ≤ L1/p (8)

Similarly, if 0 < l ≤ hp ≤ L <∞, then we have

l1/p ≤ h ≤ L1/p (9)

Respectively, if we multiply both sides of (8) and (9) by
(∫b
a |g(γ)|pOγ

)1/p
and

(∫b
a |h(γ)|pOγ

)1/p
, then we have

l1/p
(∫b

a
|g(γ)|pOγ

)1/p

≤ L1/p

(∫b
a
|g(γ)|pOγ

)1/p

≤ L1/p

(∫b
a
|g(γ) + h(γ)|pOγ

)1/p

(10)

and

l1/p
(∫b

a
|h(γ)|pOγ

)1/p

≤ L1/p

(∫b
a
|h(γ)|pOγ

)1/p

≤ L1/p

(∫b
a
|g(γ) + h(γ)|pOγ

)1/p

(11)

Now, if we add (10) and (11) inequalities to each other, then we have

l1/p

(∫b
a
|h(γ)|pOγ

)1/p

+

(∫b
a
|g(γ)|pOγ

)1/p
 ≤ 2L1/p

(∫b
a
|g(γ) + h(γ)|pOγ

)1/p

(12)

Thus, we have proved (7) inequality.

Theorem 3.4. Two mappings g, h : I → R are ♦α− integrable functions on I = [a, b] ∈ T with 1 < l ≤ gp, hp ≤ L <∞. If p > 1, then
we have (∫b

a
|g(γ)|p♦αγ

)1/p

+

(∫b
a
|h(γ)|p♦αγ

)1/p

≤ 2 (L/l)1/p

(∫b
a
|g(γ) + h(γ)|p♦αγ

)1/p

. (13)
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Proof. The proof of the theorem can be made analogous to the proof of Theorem 3.3 by using the properties of the ♦α−derivative.

Let f(t) be differentiable on T for ∀α, t ∈ T . Then, we define f♦α(t) by

f♦α(t) = αf∆(t) + (1− α)fO(t)

for 0 ≤ α ≤ 1 (for details see [17]).

If we get α, b, t ∈ T and f : T −→ R, then we have∫ t
b
f(γ)♦αγ = α

∫ t
b
f(γ)∆γ + (1− α)

∫ t
b
f(γ)Oγ

for 0 ≤ α ≤ 1 (for details see [17]).

We know that if 0 < l ≤ gp ≤ L <∞, then we have

l1/p ≤ g ≤ L1/p (14)

Similarly, if 0 < l ≤ hp ≤ L <∞, then we have

l1/p ≤ h ≤ L1/p (15)

Respectively, if we multiply both sides of (14) and (15) by
(∫b
a |g(γ)|p♦αγ

)1/p
and

(∫b
a |h(γ)|p♦αγ

)1/p
, then we have

l1/p
(∫b

a
|g(γ)|p♦αγ

)1/p

≤ L1/p

(∫b
a
|g(γ)|p♦αγ

)1/p

≤ L1/p

(∫b
a
|g(γ) + h(γ)|p♦αγ

)1/p

(16)

and

l1/p
(∫b

a
|h(γ)|p♦αγ

)1/p

≤ L1/p

(∫b
a
|h(γ)|p♦αγ

)1/p

≤ L1/p

(∫b
a
|g(γ) + h(γ)|p♦αγ

)1/p

(17)

Now, if we add (16) and (17) inequalities to each other, then we have

l1/p

(∫b
a
|h(γ)|p♦αγ

)1/p

+

(∫b
a
|g(γ)|p♦αγ

)1/p
 ≤ 2L1/p

(∫b
a
|g(γ) + h(γ)|p♦αγ

)1/p

(18)

Thus, we have proved (13) inequality.
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