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Abstract: Dynamic equations, operators and inequalities have recently increased their motivating role in time scales. Time scales
have been the field of study of many mathematicians and scientists working in different sciences for the last 30 years. Dynamic
equations and inequalities on time scales have many applications in quantum mechanics, neural networks, heat transfer, elec-
trical engineering, optics, economics and population dynamics. It is possible to give an example from the economics, seasonal
investments and incomes. In this research, we will prove that, for 1 < p(x) <∞, the variable exponent Lp(.) norm of the restricted
centered fractional Maximal delta integral operator Mc

a,δ equals the norm of the centered fractional Maximal delta integral operator
Mc
a for all 0 < δ <∞.
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1 Introduction

The theory of time scales was initiated by mathematician Stefan Hilger [1]. Later, this theory was quickly developed by many mathemati-
cians and scientists working in other disciplines. And they have demonstrated various aspects of integral inequalities and operators [2]-[13].
Recently, time scales have played an important role in differential calculus, difference calculus, dynamics equations, quantum calculus and
integral inequalities. Operators and integral inequalities have many applications. For example; electrical engineering, fluid dynamics, quantum
mechanics, phsical problems, wave equations, heat transfer and economic problems [14, 21]-[25]-[26].

In this study, we will demonstrated some properties inequalities of fractional Maximal type with norm of Lp(.)(Rm) in time scales.

2 Preliminaries

Let Lp(.)(Ω) denote the Banach function space of measurable functions f on Ω such that for some λ > 0,
∫

Ω |
f(t)
λ |

p(t)dt <∞ with norm

‖f‖p(.),Ω = inf{λ > 0;

∫
Ω

(
|
f

(t)|λ
)p(t)

dt ≤ 1}.

These spaces are referred to as the variable L(p(.) spaces. We can define the centered fractional maximal operator by

Mc
af(x) = sup

r>0

1

|B(x, r)|(n−a)/n

∫
B(x,r)∩Ω

|f(y|dy (1)

and the uncentered fractional maximal operator by

Maf(x) = sup
r>0

1

|B|(n−a)/n

∫
B∩Ω

|f(y|dy. (2)

Let’s define the restricted centered fractional maximal operator and the restricted uncentered fractional maximal operator [22], respectively.

Mc
a,δf(x) = sup

δ>r>0

1

|B(x, r)|(n−a)/n

∫
B(x,r)∩Ω

|f(y|dy (3)

and

Ma,δf(x) = sup
δ>r>0,|t−x|<r

1

|B(t, r)|(n−a)/n

∫
B∩Ω

|f(y|dy (4)

for x ∈ Rm and δ ∈ R+.
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Definition 2.1. [22] If f a measurable function on Rm, then distribution function df on [0,+∞] is defined by

df (β) = |{x ∈ Rm : |f(x)| > β}| (5)

where |{x ∈ Rm : |f(x)| > β}| is the Lebesgue measurable of the measurable of {x ∈ Rm : |f(x)| > β}.

Lemma 2.2. [23] If f ∈ Lp(Rm) with 0 < p <∞, then we have

‖f‖p
Lp(Rm)

= p

∫∞
0
βp−1df (β)dβ. (6)

Lemma 2.3. (Lemma 2.4, [22]) If operators Ma and Ma,δ are defined as in (2) and (4), then the equality

dMaf (β) = lim
δ→∞

dMa,δf (β) (7)

holds ∀f ∈ Lp(Rm) and β > 0.

Let’s give information about the time scales that will help us in our work. T is a non-empty closed subset of R. [a, b] is an arbitrary inter-
val on time scale T . And [a, b]T is denoted by [a, b] ∩ T.

Definition 2.4. [19] The mappings σ, ρ : T → T defined by σ(t) = inf s ∈ T : s > t, ρ(t) = sup s ∈ T : s > t, for t ∈ T. Respectively,
σ(t) is forward jump operator and ρ(t) is backward jump operator.
If σ(t) > t, then t is right-scattered and if σ(t) = t, then t is called right-dense. If ρ(t) < t, then t is left-scattered and if ρ(t) = t, then t is
called left-dense.

Definition 2.5. [19] Let two mappings µ, ϑ : T → R+ such that µ(t) = σ(t)− t, ϑ(t) = t− ρ(t) are called graininess mappings.

Definition 2.6. [20] If H : T → R is defined a ∆− antiderivative of h : T → R, then H = h(t) holds for ∀t ∈ T . And we define the ∆−
integral of h by ∫ t

s
h(τ)∆τ = H(t)−H(s)

for s, t ∈ T .

In [24], we can define the restricted centered fractional maximal delta integral operator and the restricted uncentered fractional maximal
delta integral operator, respectively

Mc
a,δf(x) = sup

δ>r>0

1

|B(x, r)|(m−a)/m

∫
B(x,r)∩Ω

|f(y|∆y

and

Ma,δf(x) = sup
δ>r>0,|t−x|<r

1

|B|(n−a)/n

∫
B(t,r)∩Ω

|f(y|∆y

for x ∈ Rm and δ ∈ R+.

3 Main Result

Theorem 3.1. Let Ma,δf be defined by (4) and δ > 0. If function f is ∆− integrable, then

‖Ma,δf‖Lp(.)(Rm)→Lp(.)(Rm) = ‖Maf‖Lp(.)(Rm)→Lp(.)(Rm)

holds for 1 < p(.) ≤ ∞.

Proof. We conclude from the definition of the operator Ma,δf in (4) that

Ma,δf(δx) = sup
δ>r>0,|t−δx|<r

1

|B|(n−a)/n

∫
B(t,r)

|f(y|∆y = sup
δ>r>0,|t−x|<r/δ

1

|vmr(m−a)/m|(n−a)/n

∫
|t|<r

|f(δt− y|∆y

sup
δ>r>0,|t−x|<r/δ

δ(m−a)/m

|vmr(m−a)/m|(n−a)/n

∫
|t|<r/δ

|f(δ(t− y)|∆y = sup
1> r

δ>0,|t−x|<r/δ

1

|vm( rm )(m−a)/m|(n−a)/n

∫
|t|<r/δ

|(τδf)(t− y|∆y

sup
1>r>0,|t−x|<r

1

vmr(m−a)/m

∫
|t|<r

|(τδf)(x− y|∆y = Ma,1(τδf)(x) (8)
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Thus we have
‖Ma,δf‖Lp(.)(Rm)→Lp(.)(Rm) = ‖Ma,1f‖Lp(.)(Rm)→Lp(.)(Rm) (9)

for all δ > 0 and 1 < p(.) <∞. Next we will prove that

‖Ma,δf‖Lp(.)(Rm)→Lp(.)(Rm) = ‖Maf‖Lp(.)(Rm)→Lp(.)(Rm)

for 1 < p(.) ≤ ∞.
If f ∈ Lp(.)(Rm), then we have Mf ∈ Lp(.)(Rm. It follows from Lemma 2.2, Lemma 2.3, and equation (9) that

‖Ma‖p(.)Lp(.)(Rm)
= p(.)

∫∞
0
µp(.)−1dMaf (µ)∆µ = p(.)

∫∞
0
µp(.)−1 lim

δ→∞
dMa,δf (µ)∆µ = lim

δ→∞
p(.)

∫∞
0
µp(.)−1dMa,δf (µ)∆µ = lim

δ→∞
‖Ma,δ‖

p(.)

Lp(.)(Rm)

lim
δ→∞

‖Ma,δ‖
p(.)

Lp(.)(Rm)→Lp(.)(Rm)
‖f‖p(.)

Lp(.)(Rm)
= ‖Ma,1‖

p(.)

Lp(.)(Rm)→Lp(.)(Rm)
‖f‖p(.)

Lp(.)(Rm)
(10)

Since we have the obvious inequality

‖Ma‖p(.)Lp(.)(Rm)→Lp(.)(Rm)
≥ ‖Ma,1‖

p(.)

Lp(.)(Rm)→Lp(.)(Rm)
(11)

we derive from (10) that

‖Ma‖p(.)Lp(.)(Rm)→Lp(.)(Rm)
= ‖Ma,1‖

p(.)

Lp(.)(Rm)→Lp(.)(Rm)

Thus, we get the desired result.

This completes the proof of Theorem 3.1.

Theorem 3.2. Let Ma,δf be defined by (4) and δ > 0. If function f is O− integrable, then

‖Ma,δf‖Lp(.)(Rm)→Lp(.)(Rm) = ‖Maf‖Lp(.)(Rm)→Lp(.)(Rm)

holds for 1 < p(.) ≤ ∞.

Proof. The proof of the theorem can be made analogous to the proof of Theorem 3.1 by using the properties of the O−derivative.

We conclude from the definition of the operator Ma,δf in (4) that

Ma,δf(δx) = sup
δ>r>0,|t−δx|<r

1

|B|(n−a)/n

∫
B(t,r)

|f(y|Oy = sup
δ>r>0,|t−x|<r/δ

1

|vmr(m−a)/m|(n−a)/n

∫
|t|<r

|f(δt− y|Oy

sup
δ>r>0,|t−x|<r/δ

δ(m−a)/m

|vmr(m−a)/m|(n−a)/n

∫
|t|<r/δ

|f(δ(t− y)|Oy = sup
1> r

δ>0,|t−x|<r/δ

1

|vm( rm )(m−a)/m|(n−a)/n

∫
|t|<r/δ

|(τδf)(t− y|Oy

sup
1>r>0,|t−x|<r

1

vmr(m−a)/m

∫
|t|<r

|(τδf)(x− y|Oy = Ma,1(τδf)(x) (12)

Thus we have
‖Ma,δf‖Lp(.)(Rm)→Lp(.)(Rm) = ‖Ma,1f‖Lp(.)(Rm)→Lp(.)(Rm) (13)

for all δ > 0 and 1 < p(.) <∞. Next we will prove that

‖Ma,δf‖Lp(.)(Rm)→Lp(.)(Rm) = ‖Maf‖Lp(.)(Rm)→Lp(.)(Rm)

for 1 < p(.) ≤ ∞.
If f ∈ Lp(.)(Rm), then we have Mf ∈ Lp(.)(Rm. It follows from Lemma 2.2, Lemma 2.3, and equation (13) that

‖Ma‖p(.)Lp(.)(Rm)
= p(.)

∫∞
0
µp(.)−1dMaf (µ)Oµ = p(.)

∫∞
0
µp(.)−1 lim

δ→∞
dMa,δf (µ)Oµ = lim

δ→∞
p(.)

∫∞
0
µp(.)−1dMa,δf (µ)Oµ = lim

δ→∞
‖Ma,δ‖

p(.)

Lp(.)(Rm)

lim
δ→∞

‖Ma,δ‖
p(.)

Lp(.)(Rm)→Lp(.)(Rm)
‖f‖p(.)

Lp(.)(Rm)
= ‖Ma,1‖

p(.)

Lp(.)(Rm)→Lp(.)(Rm)
‖f‖p(.)

Lp(.)(Rm)
(14)

Since we have the obvious inequality

‖Ma‖p(.)Lp(.)(Rm)→Lp(.)(Rm)
≥ ‖Ma,1‖

p(.)

Lp(.)(Rm)→Lp(.)(Rm)
(15)

we derive from (14) that

‖Ma‖p(.)Lp(.)(Rm)→Lp(.)(Rm)
= ‖Ma,1‖

p(.)

Lp(.)(Rm)→Lp(.)(Rm)

Thus, we get the desired result.
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This completes the proof of Theorem 3.2.

Theorem 3.3. Let Ma,δf be defined by (4) and δ > 0. If function f is ♦α− integrable, then

‖Ma,δf‖Lp(.)(Rm)→Lp(.)(Rm) = ‖Maf‖Lp(.)(Rm)→Lp(.)(Rm)

holds for 1 < p(.) ≤ ∞.

Proof. The proof of the theorem can be made analogous to the proof of Theorem 3.2 by using the properties of the ♦α−derivative.

Let f(t) be differentiable on T for ∀α, t ∈ T . Then, we define f♦α(t) by

f♦α(t) = αf∆(t) + (1− α)fO(t)

for 0 ≤ α ≤ 1 (for details see [20]).

If we get α, b, t ∈ T and f : T −→ R, then we have∫ t
b
f(γ)♦αγ = α

∫ t
b
f(γ)∆γ + (1− α)

∫ t
b
f(γ)Oγ

for 0 ≤ α ≤ 1 (for details see [20]).

We conclude from the definition of the operator Ma,δf in (4) that

Ma,δf(δx) = sup
δ>r>0,|t−δx|<r

1

|B|(n−a)/n

∫
B(t,r)

|f(y|♦αy = sup
δ>r>0,|t−x|<r/δ

1

|vmr(m−a)/m|(n−a)/n

∫
|t|<r

|f(δt− y|♦αy

sup
δ>r>0,|t−x|<r/δ

δ(m−a)/m

|vmr(m−a)/m|(n−a)/n

∫
|t|<r/δ

|f(δ(t− y)|♦αy = sup
1> r

δ>0,|t−x|<r/δ

1

|vm( rm )(m−a)/m|(n−a)/n

∫
|t|<r/δ

|(τδf)(t− y|♦αy

sup
1>r>0,|t−x|<r

1

vmr(m−a)/m

∫
|t|<r

|(τδf)(x− y|♦αy = Ma,1(τδf)(x) (16)

Thus we have
‖Ma,δf‖Lp(.)(Rm)→Lp(.)(Rm) = ‖Ma,1f‖Lp(.)(Rm)→Lp(.)(Rm) (17)

for all δ > 0 and 1 < p(.) <∞. Next we will prove that

‖Ma,δf‖Lp(.)(Rm)→Lp(.)(Rm) = ‖Maf‖Lp(.)(Rm)→Lp(.)(Rm)

for 1 < p(.) ≤ ∞.

If f ∈ Lp(.)(Rm), then we have Mf ∈ Lp(.)(Rm. It follows from Lemma 2.2, Lemma 2.3, and equation (17) that

‖Ma‖p(.)Lp(.)(Rm)
= p(.)

∫∞
0
µp(.)−1dMaf (µ)♦αµ = p(.)

∫∞
0
µp(.)−1 lim

δ→∞
dMa,δf (µ)♦αµ = lim

δ→∞
p(.)

∫∞
0
µp(.)−1dMa,δf (µ)♦αµ = lim

δ→∞
‖Ma,δ‖

p(.)

Lp(.)(Rm)

lim
δ→∞

‖Ma,δ‖
p(.)

Lp(.)(Rm)→Lp(.)(Rm)
‖f‖p(.)

Lp(.)(Rm)
= ‖Ma,1‖

p(.)

Lp(.)(Rm)→Lp(.)(Rm)
‖f‖p(.)

Lp(.)(Rm)
(18)

Since we have the obvious inequality

‖Ma‖p(.)Lp(.)(Rm)→Lp(.)(Rm)
≥ ‖Ma,1‖

p(.)

Lp(.)(Rm)→Lp(.)(Rm)
(19)

we derive from (18) that

‖Ma‖p(.)Lp(.)(Rm)→Lp(.)(Rm)
= ‖Ma,1‖

p(.)

Lp(.)(Rm)→Lp(.)(Rm)

Thus, we get the desired result.

This completes the proof of Theorem 3.3.
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