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Abstract: In our article we introduced and analysed the concept of residuated relational systems ordered

under co-quasiorder. In this article, as a continuation of the mentioned paper, we introduce two types of

quotient structures of residuated relational systems are constructed, one of which is a specificity of Bishop’s

constructive framework and has no counterpart in the classical theory. The paper finished by a theorem

which can be viewed as the first isomorphism theorem for these algebraic structures.

Keywords: Bishop’s constructive mathematics, set with apartness, co-quasiordered residuated system,

se-homomorphism.

1. Introduction

In [4], Bonzio and Chajda introduced and analyzed the structure of the residual relational system.

Previously, this system was studied in Bonzio’s doctoral thesis [3]. In our article [13], we are devel-

oped this concept within the Bishop’s constructive framework. (On this principled-philosophical

orientation, see for example [1, 2, 5, 6, 15].) In that article, we observed and analyzed a residuated

relational system ⟨A, ·,→, 1, R⟩ on a set with apartness (A,=, ̸=) as the carrier of the algebraic

construction, and additionally R was a co-quasiorder relation on the set (A,=, ̸=).

In this article we continue our analyze of co-quasiordered residuated relational systems

[13, 14]. Important contribution in this paper are Theorem 3.6 and Theorem 3.7, in which two

types of quotient structures are constructed, one of which is one of the specificities of Bishop’s

constructive framework and has no counterpart in the classical theory. The second quotient

structure appears naturally in this logical environment. The strong link between the two structures

is described in Theorem 3.8. The paper finished by a theorem (Theorem 3.10) which can be viewed

as the first isomorphism theorem for these algebraic structures.
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2. Preliminaries

The setting of this research is the Bishop’s constructive mathematics Bish in the sense of the

following books [1, 2, 5, 6] - a mathematics based on the intuitionistic logic IL (see [15]) and

principled-philosophical orientation on Bishop’s constructive mathematics.

In this paper, we literally use the notions and notations from our three previous papers

[12–14] dedicated to this topic.

Let (S,=, ̸=) be a (constructive) set in the sense of Bishop [1], Mines et all. [6], Troelstra

and van Dalen [15]. On set S = (S,=, ̸=) in this mathematics we look as on a relational system

with an one binary relation extensive with respect to the equality. The relation “ ̸=” is a binary

relation on S with the following properties:

¬(x ̸= x), x ̸= y =⇒ y ̸= x , x ̸= z =⇒ x ̸= y ∨ y ̸= z ,

x ̸= y ∧ y = z =⇒ x ̸= z .

It is called apartness. Let S and T be two sets with apartness. Then the relation “ ̸=” on S × T

is defined by

(x, y) ̸= (u, v) ⇐⇒ (x ̸= u ∨ y ̸= v)

for any x, u ∈ S and any y, v ∈ T .

Let Y be a subset of S and x ∈ S . We put it the following notation “�” as a relation

between an element x and subset Y with (for more details on this relation, the readers can see

the following texts [11, 12])

x� Y ⇐⇒ (∀y ∈ Y )( x ̸= y).

Following the orientation in books [1], [2], [5] we define a subset

Y � = {x ∈ S : x� Y }

of S called the complement of Y in S .

For subset Y of S we say that it is a strongly extensional subset if

(∀x, y ∈ S)(y ∈ Y =⇒ x ̸= y ∨ x ∈ Y ).

For a relation R on S it is called a strongly extensional if holds

(∀x, y, z, u ∈ S)((x, y) ∈ R =⇒ ((x, y) ̸= (z, u) ∨ (z, u) ∈ R))

. For example, for a mapping f : S −→ T it is called a strongly extensional (shortly: se-mapping)

if holds
(∀x, y ∈ S)(f(x) ̸= f(y) =⇒ x ̸= y).

Also, the following specific terms for this domain should be mentioned:
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• A se-mapping f : S −→ T is an embedding if holds

(∀x, y ∈ S)(x ̸= y =⇒ f(x) ̸= f(y)),

• A se-mapping f : S −→ T is a se-isomorphism if it is injective, embedding and onto.

As is usual in Bishop’s constructive orientation, a dual concept Y , determined by apartness

relation and strongly extensional predicates, to a classical algebraic concept X should be associated

with these classical concept. This correlation is shown by proving that the strong complement Y �

of concept Y has the properties of concept X determined in the classical way. In this regard, see

Lemma 2.2.

2.1. Co-Quasiorder Relation

The constructive notion of a co-quasiorder relation is the dual notion to the classical notion of a

quasi-order relation. Let (S,=, ̸=) be a set with apartness. A consistent and co-transitive relation

σ defined on S is called a co-quasiorder ([11, 12]):

• (∀x, y ∈ S)((x, y) ∈ σ =⇒ x ̸= y) (consistency),

• (∀x, y, z ∈ S)((x, z) ∈ σ =⇒ ((x, y) ∈ σ ∨ (y, z) ∈ σ)) (co-transitivity).

Example 2.1 A subset K of S is a detachable subset of S if holds

(∀u ∈ S)(u ∈ K ∨ ¬(u ∈ K)).

If we additionally assume that K is a strongly extensional non empty subset of S , then in the case

¬(u ∈ K) we have

x ∈ K =⇒ (∀u ∈ S)(u ̸= x ∨ u ∈ K).

Thus it follows u ̸= x ∈ K , and hence u�K . Let us define a relation σK on S by

(∀x, y ∈ S)((x, y) ∈ σK ⇐⇒ (x ∈ K ∧ y �K)).

Then, the following hold:

• (x, y) ∈ σK =⇒ x ̸= y , i.e. the relation σK is consistent.

• Let x, y, z ∈ S be such that (x, z) ∈ σK . Then x ∈ K ∧ z �K . On the other hand, for the

element y ∈ S we have y ∈ K ∨ y �K . In the first option y ∈ K we have (y, z) ∈ σK . In

the second option y�K , we have (x, y) ∈ σK . So, σK is a co-transitive relation. Therefore,

σK is a co-quasiorder relation on S .
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We accept that the empty set ∅ is also a co-quasiorder relation on set S . The strong

complement σ� of a co-quasiorder σ has the well known property.

Lemma 2.2 ([11], Lemma 2.2) If σ is a co-quasiorder on S , then the relation σ� = {(x, y) ∈

S × S : (x, y)� σ} is a quasi-order on S .

In what follows, we will also use the following notion. A co-quasiorder relation “
” is a

co-order if it satisfies the following condition

(∀x, y ∈ S)(x ̸= y =⇒ (x 
 y ∨ y 
 x)) (linearity).

2.2. Co-Ordered Residuated System

In our paper [13], following the ideas of Bonzio and Chajda [4], we introduced the notion of

residuated relational systems ordered under a co-quasiorder - residuated relational systems A =

⟨A, ·,→, 1, R⟩ where R is a co-quasiorder relation on set (A,=, ̸=).

Our intention in paper [13] was to introduce the concept of residuated relational system

A = ⟨A, ·,→, 1, R⟩ where R is a co-quasiorder relation on set A = (A,=, ̸=). If R is a co-

quasiorder relation on set (A,=, ̸=), then the axiom (2) in Definition 1.1 gives (1, 1) ∈ R ⊆ ̸=

which is a contradiction. That is why we transformed this axiom into the next formula

(2 ′ ) (∀x ∈ A)(x ̸= 1 =⇒ (x, 1) ∈ R).

Let (A,=, ̸=) be a set with apartness. A co-quasiordered residuated system is a residuated

relational system A = ⟨A, ·,→, 1, σ⟩ , where the axiom (2 ′ ) is replaced by (2) and where σ is

a co-quasiorder on A .

Definition 2.3 ([13], Definition 2.1) A co-quasiordered residuated relational system is a struc-

ture A = ⟨A, ·,→, 1, σ⟩ , where A = (A,=, ̸=) is a set with apartness and where ⟨A, ·,→, 1⟩ is

an algebra of type ⟨2, 2, 0⟩ and σ is a co-quasiorder relation on A and satisfying the following

properties:

(1) ⟨A, ·, 1⟩ is a commutative monoid,

(2 ′ ) (∀x ∈ A)(x ̸= 1 =⇒ (x, 1) ∈ σ) ,

(3) (∀x, y, z ∈ A)((x · y, z) ∈ σ ⇐⇒ (x, y → z) ∈ σ) .

We will refer to the operation “ ·”as multiplication, to “→”as its residuum and to condition (3)

as residuation.

Apart from the difference in the carrier of this constructed algebraic structure, the difference

between the residuated relational system in our definition and the definition in article [4] is in the
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strong extensionality of the internal binary operations in A . Let us note that the internal operations

“ ·” and “→” are total strongly extensional function from A×A into A :

(∀a, b, a′, b′ ∈ A)(a · b ̸= a′ · b′ =⇒ (a, b) ̸= (a′, b′)),

(∀a, b, a′, b′ ∈ A)(a → b ̸= a′ → b′ =⇒ (a, b) ̸= (a′, b′)).

Proposition 2.4 ([13], Proposition 2.3) Let A be a co-quasiordered residuated relational sys-

tem. Then
(∀x, y ∈ A)((x, y) ∈ σ ⇐⇒ 1 ̸= x → y).

In the following theorem we show that the co-quasiorder σ is compatible with the internal

operation “ ·”.

Theorem 2.5 ([13], Theorem 2.1) Let A be a co-quasiordered residuated system. Then

(∀x, y, a, b ∈ A)(a · x, a · y) ∈ σ ∨ (x · b, y · b) ∈ σ =⇒ (x, y) ∈ σ).

In the following theorem we show that the co-quasiorder σ is left compatible and right

anti-compatible with the internal operation “→”.

Theorem 2.6 ([13], Theorem 2.2) Let A be a co-quasiordered residuated system. Then

(a) (∀x, y, a ∈ A)((a → x, a → y) ∈ σ =⇒ (x, y) ∈ σ) .

(b) (∀x, y, b ∈ A)((y → b, x → b) ∈ σ =⇒ (x, y) ∈ σ) .

Speaking by the language of classical algebra, when we speak of the compatibility of the

internal binary operations “ ·”and “→” with the relation σ , we mean on the cancellativity of these

operations with respect to σ .

3. The Main Results

3.1. Concept of Co-Ideals

Definition 3.1 A subset K of A is a co-ideal of a residuated system A ordered under a co-

quasiorder σ if the following conditions hold

(K1) (∀x, y ∈ A)(x · y ∈ K =⇒ x ∈ K ∨ y ∈ K) ,

(K2) (∀x, y ∈ A)(x ∈ K =⇒ (x, y) ∈ σ ∨ y ∈ K) .

Condition (K1) states that a co-ideal K is a co-subgroupoid in (A, ·).

Remark 3.2 If we assume that σ ∩ σ−1 = ∅ , then we conclude that ¬(1 ∈ K) . Indeed, suppose

that 1 ∈ K and y �K . Then 1 ∈ K =⇒ ((1, y) ∈ σ ∨ y ∈ K) by (K2). We get a contradiction

in both cases. So, ¬(1 ∈ K) if there exists an element y ∈ A such that y �K .
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3.2. Mappings on Co-Quasiordered Residuated Systems

In this subsection, we introduce the concept of se-homomorphism between residuated relational

systems ordered under co-quasiorders. Let A = ⟨A, ·,→, 1A, σ⟩ and B = ⟨B, ·,→, 1B, τ⟩ be two

co-quasiordered residuated systems. We can not make a graphical distinction between operations in

A and B systems since it is clear from context which carrier of the algebraic structure is involved.

Definition 3.3 A se-mapping f : A −→ B is a se-homomorphism between systems A and B if

the following hold

(1) f(1A) = 1B ,

(2) (∀x, y ∈ A)(f(x · y) = f(x) · f(y)) ,

(3) (∀x, y ∈ A)(f(x → y) = f(x) → f(y)) ,

(4) f is an isotone mapping if

(∀x, y ∈ A)((x, y) ∈ σ =⇒ (f(x), f(y)) ∈ τ),

(5) f is a reverse isotone mapping if

(∀x, y ∈ A)((f(x), f(y)) ∈ τ =⇒ (x, y) ∈ σ).

Onto se-homomorphism is a se-epimorphism. Injective se-homomorphism is a se-monomorphism.

The following statements can be proven without difficulty.

Lemma 3.4 Let f : A −→ B be a se-mapping between systems A and B . Then

(a) The relation f−1(τ) = {(x, y) ∈ A×A : (f(x), f(y)) ∈ τ} is a co-quasiorder relation on

A ,

(b) f is a reverse isotone se-mapping if and only if f−1(τ) ⊆ σ ,

(c) f is an isotone se-mapping if and only if σ ⊆ f−1(τ) .

Example 3.5 Let f be a reverse isotone se-homomorphism between systems A and B . The

subset f−1({1B}�) is a co-ideal of A . Indeed:

x · y ∈ f−1({1B}�) ⇐⇒ f(x) · f(y) = f(x · y) ̸= 1B

=⇒ f(x) ̸= 1B ∧ f(y) ̸= 1B

⇐⇒ x ∈ f−1({1B}�) ∧ y ∈ f−1({1B}�) ,

where ∧ is the notation for logical conjunction.

Let x, y ∈ A be elements such that x ∈ f−1({1B}�) . Then f(x) ̸= 1B . Thus, (f(x), 1B) ∈ τ

by (2 ′ ). It follows that (f(x), f(y)) ∈ τ ∨ (f(y), 1B) ∈ τ by co-transitivity of τ . Hence, (x, y) ∈ σ

or f(y) ̸= 1B . So, the set f−1({1B}�) satisfies the condition (K2).
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3.3. Quotient Structures

In what follows, we use the following two specific terms that appear in this logical environment.

The first of these is the notion of co-equivalence on a set with apartness S . A relation q on S

is a co-equivalence on S if it is consistent, symmetric and co-transitive (see, for example [8]). In

addition to the above, suppose S is supplied by an internal binary operation “ ·”. In that case,

co-equality q is a co-congruence ([7, 12]) on structure (S, ·) if the following holds

(∀x, y, u, v ∈ S)((x · u, y · v) ∈ q =⇒ ((x, y) ∈ q ∨ (u, v) ∈ q)).

If the previous formula is valid, we say that co-equivalence q is compatible with the operation in S .

Without much difficulty, it can be shown that this formula is equivalent to the following formula

(∀x, y, u, v ∈ S)(((u · x, u · y) ∈ q ∨ (x · v, y · v) ∈ q) =⇒ (x, y) ∈ q).

Speaking in the classical algebra language, a co-equality q is a co-congruence in S if the operation

in S is cancellative with respect to q .

Let us recall that any co-quasiorder relation σ on a set (A,=, ̸=) generates a co-equality

relation θ = σ ∪ σ−1 ([9], Lemma 1) (θ is a co-equality relation on set A if it is a consistent,

symmetric and co-transitive relation on A). We only need to prove that θ is compatible with

the multiplication and its residuum. According to Theorem 2.1 and Theorem 2.2 in [12], the

co-quasiorder relation σ is compatible with the operation “ ·”. σ is left compatible and right

anti-compatible with the operation “→”. Now it’s easy to show that θ is compatible with these

operations. So, θ is a co-congruence on A . The importance of relation θ is justified by the fact

that the quotient-set A/(θ�, θ) = {[x] : x ∈ A} with

(∀x, y ∈ A)(([x] =1 [y] ⇐⇒ (x, y)� θ) and ([x] ̸=1 [y] ⇐⇒ (x, y) ∈ θ))

is naturally constructed groupoid (for example, see [9, 10]) ordered under a co-order “
” ([10],

Lemma 1) defined by

(∀x, y ∈ A)([x] • [y] =1 [x · y])

and

(∀x, y ∈ A)([x] 
1 [y] ⇐⇒ (x, y) ∈ σ).

Therefore, (A/(θ�, θ), •,
1) is a commutative monoid ordered under the co-order relation

“
”. In addition, it is obvious that

(∀x ∈ A)([x] ̸=1 [1] =⇒ [x] 
1 [1])

is valid under assumption
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(S) (∀x ∈ A)¬((1, x) ∈ σ).

If we put [y] →1 [z] :=1 [y → z] , we get

[x] • [y] 
1 [z] ⇐⇒ [x · y] 
1 [z]

⇐⇒ (x · y, z) ∈ σ ⇐⇒ (x, y → z) ∈ σ

⇐⇒ [x] 
1 [y → z] ⇐⇒ [x] 
1 [y] →1 [z] .

In order to justify this procedure, it is sufficient to verify that “→1” is a strongly extensional

internal operation in A/(θ�, θ) correctly determined on this way.

To illustrate the techniques used in the proof, we show that “→1” is strictly a well-defined

extensive internal operation on A/(θ�, θ). Let y, y′, z, z′, u, v ∈ A be arbitrary elements such that

(u, v) ∈ θ .

(i) First suppose that [y] =1 [y′] and [z] =1 [z′] . Then (y, y′) � θ and (z, z′) � θ . Second,

from (u, v) ∈ θ it follows that

(u, y → z) ∈ θ ∨ (y → z, y′ → z′) ∈ θ ∨ (y′ → z′, v) ∈ θ

by co-transitivity of θ . Since from the second option it follows that (y, y′) ∈ θ or (z, z′) ∈ θ by

compatibility of θ with the operation “→”, we have a contradiction with hypothesis. Therefore,

(u, y → z) ∈ θ or (y′ → z′, v) ∈ θ . Thus, [y → z] ̸=1 [u] or [y′ → z′] ̸=1 [v] and ([y] →1 [y′], [z] →1

[z′])� θ . So, we have [y] →1 [y′] =1 [z] →1 [z′] which means that “→1 ” is a well-defined function

on A/(θ�, θ).

(ii) On the other hand, suppose that [y] →1 [y′] ̸=1 [z] →1 [z′] . Then [y → y′] ̸=1 [z → z′] .

This means that (y → y′, z → z′) ∈ θ . Thus, it follows immediately that (y, y′) ∈ θ ∨ (z, z′) ∈ θ ,

since θ is compatible with the operation “→”. This proves that “→1” is a strictly extensional

function on A/(θ�, θ).

Therefore, demonstrations (i) and (ii) prove that “→1” is a correctly determined internal

binary operation on A/(θ�, θ).

We can state the theorem in which the previous analysis is summarized.

Theorem 3.6 Let A = ⟨A, ·,→, 1, σ⟩ be a co-quasiordered residuated relational system where the

relation σ satisfies the additional condition (S). Then we can construct residual relational systems

⟨(A/(θ�, θ),=1, ̸=1), •, [1],
1⟩ where θ = σ ∪ σ−1 ordered under the co-order “
1”.

Also, we can construct the family [A : θ] = {xθ : x ∈ A} with

(∀x, y ∈ A)((xθ =1 yθ ⇐⇒ (x, y)� θ) and (xθ ̸=1 yθ ⇐⇒ (x, y) ∈ θ)).
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Analogous to the previous case, a strongly extensional internal operation “∗” can be natu-

rally constructed on [A : θ] as follows (for example, see [9, 10])

(∀x, y ∈ A)(xθ ∗ yθ =1 (x · y)θ).

In addition, a co-order “
1 ”, defined by

(∀x, y ∈ A)(xθ 
1 yθ ⇐⇒ (x, y) ∈ σ),

is compatible with the operation in [A : θ] .

Therefore, ([A : θ], ∗,
1) is a commutative monoid ordered under the co-order relation

“
1 ”. In addition, it is obvious that

(∀x ∈ A)(xθ ̸=1 1θ =⇒ xθ 
1 1θ)

is valid since (S) holds. If we put yθ →1 zθ = (y → z)θ , we get

xθ ∗ yθ 
1 zθ ⇐⇒ (x · y)θ 
1 zθ

⇐⇒ (x · y, z) ∈ σ ⇐⇒ (x, y → z) ∈ σ

⇐⇒ xθ 
1 (y → z)θ ⇐⇒ xθ 
1 yθ →1 zθ .

Similarly, it is necessary to check that a strongly extensional internal binary operation “→1 ” in

the set [A : θ] is correctly determined in this way.

To illustrate the techniques used in the proof, we show that “→1” is strictly a well-defined

extensive internal operation on [A : θ]. Let y, y′, z, z′, u, v ∈ A be arbitrary elements such that

(u, v) ∈ θ .

(iii) First suppose that yθ =1 y′θ and zθ =1 z′θ . Then (y, y′)� θ and (z, z′)� θ . Second,

from (u, v) ∈ θ it follows that

(u, y → z) ∈ θ ∨ (y → z, y′ → z′) ∈ θ ∨ (y′ → z′, v) ∈ θ

by co-transitivity of θ . Since from the second option it follows that (y, y′) ∈ θ or (z, z′) ∈ θ by

compatibility of θ with the operation “→”, we have a contradiction with hypothesis. Therefore,

(u, y → z) ∈ θ or (y′ → z′, v) ∈ θ . Thus, (y → z)θ ̸=1 uθ or (y′ → z′)θ ̸=1 vθ and

(yθ →1 y′θ, zθ →1 z′θ) � θ . So, we have yθ →1 y′θ =1 zθ →1 z′θ which means that “→1”

is a well-defined function on [A : θ] .

(iv) On the other hand, suppose that yθ →1 y′θ ̸=1 zθ →1 z′θ . Then (y → y′)θ ̸=1

(z → z′)θ . This means that (y → y′, z → z′) ∈ θ . Thus, it follows immediately that (y, y′) ∈

θ ∨ (z, z′) ∈ θ , since θ is compatible with the operation “→”. This proves that “→1” is a strictly

extensional function on [A : θ] .
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Therefore, demonstrations (iii) and (iv) prove that “→1” is a correctly determined internal

binary operation on [A : θ] .

We can state the theorem in which the previous analysis is summarized.

Theorem 3.7 Let A = ⟨A, ·,→, 1, σ⟩ be a co-quasiordered residuated relational system where the

relation σ satisfies the additional condition (S). Then we can construct residual relational systems

⟨([A : θ],=1, ̸=1), ∗, 1θ,
1⟩ where θ = σ ∪ σ−1 ordered under co-order “
1”.

Although it is clear that this algebraic structure has no counterpart in the classical theory

of residuated systems, it does appear naturally in this logical environment. There is a strong

link between this residuated system and the residuated system constructed in Theorem 3.6. This

connection is described in more detail in the following theorem.

Theorem 3.8 Let A = ⟨A, ·,→, 1, σ⟩ be a co-quasiordered residuated relational system where the

relation σ satisfies the additional condition (S). Then there are a unique reverse isotone se-

epimorphism π : A −→ A/(θ�, θ) , defined by π(x) = [x] , a unique se-epimorphism ϑ : A −→

[A : θ] , defined by ϑ(x) = xθ and a unique onto, injective and embedding se-homomorphism

g : A/(θ�, θ) −→ [A : θ] , defined by g([x]) = xθ , such that ϑ = g ◦ π .

Proof (i) Let x, y, u, v ∈ A be elements such that x = y and (u, v) ∈ θ . Then (u, x) ∈

θ ∨ (x, y) ∈ θ ∨ (y, v) ∈ θ by co-transitivity of θ . Since (x, y) ∈ θ is impossible by the consistency

of θ , we have (x, y) ̸= (u, v) ∈ θ . Thus, [x] =1 [y] and hence π(x) =1 π(y). On the other hand,

if we assume that [x] =1 π(x) ̸=1 π(y) =1 [y] , then we have (x, y) ∈ θ . Thus, x ̸= y . This shows

that π is a well-defined se-mapping.

Let x, y, u, v ∈ A be elements such that x = y and (u, v) ∈ θ . Then (u, x) ∈ θ ∨ (x, y) ∈

θ ∨ (y, v) ∈ θ by co-transitivity of θ . Since (x, y) ∈ θ is impossible by the consistency of θ , we

have (x, y) ̸= (u, v) ∈ θ . Thus, xθ =1 yθ and hence ϑ(x) =1 ϑ(y). On the other hand, if we

assume that xθ =1 ϑ(x) ̸=1 ϑ(y) =1 yθ , then we have (x, y) ∈ θ . Thus, x ̸= y . This shows that

ϑ is a well-defined se-mapping.

In addition to the previous, the following equalities are valid

(∀x, y ∈ A)(π(x · y) =1 [x · y] =1 [x] • [y] =1 π(x) • π(y))

and

(∀x, y ∈ A)(π(x → y) =1 [x → y] =1 [x] →1 [y] =1 π(x) →1 π(y)).

So, π is a se-homomorphism. Since it is obvious that π is onto, we conclude that π is se-

epimorphism. It’s easy to check that π is unique.
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(ii) Similar to the previous one, one can check that ϑ : A −→ [A : θ] , defined by ϑ(x) =1 xθ ,

is a unique well-defined onto se-homomorphism.

(iii) Suppose that x, y ∈ A are arbitrary elements. Let g : A/(θ�, θ) −→ [A : θ] be defined

by g([x]) :=1 xθ . We conclude from two valid sequences of equalities

[x] =1 [y] ⇐⇒ (x, y)� θ ⇐⇒ xθ =1 yθ ⇐⇒ g([x]) =1 g([y])

and

g([x]) ̸=1 g([y]) ⇐⇒ xθ ̸=1 yθ ⇐⇒ (x, y) ∈ θ ⇐⇒ [x] ̸=1 [y],

that g is a well-defined injective and embedding se-mapping. It is obvious that g is onto.

Let us show that g is a homomorphism. Since we have

g([x] • [y]) =1 g([x · y]) =1 (x · y)θ =1 xθ ∗ yθ =1 g([x]) ∗ g([y])

and

g([x] →1 [y]) =1 g([x → y]) =1 (x → y)θ =1 xθ →1 yθ =1 g([x]) →1 g([y]),

we have shown that g is a se-homomorphism.

(iv) Finally, the equality (g ◦ π)(x) =1 g([x]) =1 xθ =1 ϑ(x) justifies the equality ϑ = g ◦ π

for any x ∈ A . 2

We end this section with the following theorem which can be viewed as the first isomorphism

theorem for these algebraic systems. Before that, we need the following lemma.

Lemma 3.9 Let f be a reverse isotone se-homomorphism between systems A and B . Then

relation

qf = {(x, y) ∈ A×A : f(x) ̸= f(y)}

is a co-congruence on A .

Theorem 3.10 Let f be a reverse isotone se-homomorphism between systems A and B such that

τ is a co-order relation in B . Then we can construct systems

⟨(A/(q�f , qf ),=1, ̸=1), •, [1],
1⟩ and ⟨([A : qf ],=1, ̸=1), ∗, 1q,
1⟩

and there exist unique embedding se-monomorphisms ha : A/(q�f , qf ) −→ B and hb : [A : qf ] −→ B

such that

f = ha ◦ π = hb ◦ ϑ = (hb ◦ g) ◦ π.

Proof As is usual in such theorems, se-mappings ha and hb are determined as follows

(∀x ∈ A)(ha([x]f ) = f(x) = hb(xqf )).
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Clearly, ha and hb are well-defined functions. Let x, y ∈ A be elements such that

ha([x]f ) ̸= ha([y]f ) and hb(xqf ) ̸= hb(yqf ).

Then f(x) ̸= f(y). Thus, (x, y) ∈ qf and hence [x]f ̸=1 [y]f and xqf ̸=1 yqf . This means that

ha and hb are se-mappings.

On the other hand, if [x]f ̸=1 [y]f or xqf ̸=1 yqf , then we have (x, y) ∈ qf , that is, f(x) ̸=

f(y) in both cases. Thus, the equality ha([x]f ) ̸= ha([y]f ) and the equality hb(xqf ) ̸= hb(yqf ) are

valid equations. This shows that ha and hb are embedding.

Let us prove that ha and hb are injective mappings. Let x, y, u, v ∈ A be such that

ha([x]f ) = ha([y]f ) or hb(xqf ) = hb(yqf ) and (u, v) ∈ qf . In both cases, we have f(x) = f(y).

It follows from f(u) ̸= f(v) that f(u) ̸= f(x) ∨ f(x) ̸= f(y) ∨ f(y) ̸= f(v) by co-transitivity of

the apartness in B . Then [x]f ̸=1 [u]f or [v]f ̸=1 [y]f and xqf ̸=1 uqf or vqf ̸=1 yqf . Thus,

([x]f , [y]f ) ̸= ([u]f , [v]f ) ∈ qf and (xqf , yqf ) ̸= (uqf , vqf ) ∈ qf . Since u, v ∈ A are such that

(u, v) ∈ qf are taken at will, we conclude that ([x]f , [y]f )� qf and (xqf , yqf )� qf are valid. This

means that [x]f =1 [y]f and xqf =1 yqf . Therefore, ha and hb are injective mappings.

Since its rest of evidence consists of direct verification, we omit it. 2

4. Final Reflection

Bishop’s constructive mathematics includes the following two aspects:

(1) The intuitionistic logic and

(2) The principled-philosophical orientations of constructivism.

Intuitionistic logic does not accept the TND principle (Tercium non datur principle (Lat.) -

the principle of exclusion of the third) as an axiom. In addition, intuitionistic logic does not accept

the validity of the “double negation”principle. In addition, the next deduction

F ∨ G ,¬F � G

is valid in intuitionistic logic. We have referred to this intuitionistically acceptable demonstration

in more of our evidences. This makes it possible to have a difference relation in sets which is not

a negation of the equality relation. Therefore, we accept that we consider set S as one relational

system (S,=, ̸=) in Bishop’s constructive mathematics. In Bishop’s constructive algebra, we always

encounter the following two problems:

(a) How to choose a predicate (or more predicates) between several classically equivalent

ones by which an algebraic concept is determined.

(b) Since every predicate has at least one of its duals, how to construct a dual of the algebraic

concept defined by a given predicate(s).
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In this case, we are faced with the problem of describing a residuated relational system based

on a set with apartness as the carrier for constructing an algebraic structure. By our orientation

that a groupoid (A, ·) is ordered under a co-quasiorder relation instead of a quasi-order relation

in this construction, a significantly different logical-sets framework is formed. In addition to the

above, we have described some of the important features of a class of substructures (in this case -

the class of co-ideals) in residuated relational systems constructed on sets with apartness in which

both internal binary operations are strongly extensional functions in this report.

In the process of introducing new concepts in given algebraic structures, we have sought to

almost always respect the following orientation. As is usual in Bishop’s constructive orientation,

a dual concept Y , determined by apartness relation and strongly extensional predicates, to a

classical algebraic concept X should be associated with these classical concept. This correlation

is shown by proving that the strong complement Y � of concept Y has the properties of concept

X determined in the classical way.

Many aspects of constructive mathematics are not just logical hygiene: avoid indirect proofs

in favor of explicit constructions, detect and eliminate needless uses of the axiom of choice and so

on. Of course, constructivism goes deeper than that. By accepting the non-existence of the TND

principle, it is possible to have the multi-layered properties of algebraic objects and processes with

them.
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