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Abstract: In this paper by employing the fractional power of operators and semi group theory we

obtain some new criteria ensuring the existence and exponential stability of a class of impulsive neutral

stochastic integrodifferential equations with Poisson jumps. We use fixed point strategy to establish some

new sufficient conditions that ensure the exponential stability of mild solution in the mean square moment

by utilizing an impulsive integral inequality.
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1. Introduction

Stochastic differential equations have been investigated as mathematical models to describe the

dynamical behavior of real life phenomena. It is essential to take into account the enviromental

disturbances as well as the time delay while constructing realistic models in the area of engineering,

biology, etc. In the past few decades many authors studies on quantitative and qualitative

properties of neutral stochastic functional differential equations were carried out see [1, 2, 4, 6–8, 13]

and references therein.

Impulsive differential equations thrive to be a promising area and have gained much attention

among the researchers due to their potential application in various fields such as orbital transfer

of satellite, dosage supply in pharmacokinetics, etc. It is worth mentioning that many real world

systems are subjected to stochastic abrupt changes, and therefore it is necessary to investigate them

using impulsive stochastic differential equations. Several authors have investigated the neutral

stochastic integrodifferential equation with impulsive effects, refer to [5, 6, 10–12].

Furthermore, several practical systems (such as sudden price variations [jumps] due to mar-
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ket crashes, earthquakes, hurricanes, epidemics, and so on) experiences some jump type stochastic

perturbations. The sample paths are not being continuous. Thus it is seize considering stochastic

processes with jumps in describing the models. Generally, the jump models are derived from pois-

son random measure. The sample paths of systems being right continuous possess left limits. In the

recent trend, researchers are focusing more on the theory and applications of impulsive stochastic

functional differential equations with poisson jumps. Precisely, existence and stability results on

impulsive stochastic functional differential equations with poisson jumps are found in [2–5] and the

references therein. Successively, few works have been reported in the study of stochastic differential

equations with poisson jumps, refer to [2, 10, 12–14].

However, motivated by the above consideration, the aim of this paper is to establish the

results on existence and exponential stability of mild solution of impulsive neutral stochastic

integrodifferential equations with Poisson jumps of the form:

d [x(t) + q(t, xt)] = [Ax(t) + f(t, xt) + ∫
t

0
g(t, s, xs)ds]dt + σ(t, xt)dw(t)

+ ∫
U
h(t, xt, u)Ñ(dt, du), t ∈ [0, b], t ≠ tk, (1)

∆x(tk) = Ik(x(t−k)), t = tk, k = 1,2, ..., (2)

x(t) = φ(t) ∈PC ([−r,0];X ), −r ≤ t ≤ 0. (3)

where A is the infinitesimal generator of an analytic semigroup (S(t)) , t ≥ 0 of bounded linear

operators in a Hilbert space X . The functions q, f ∶ [0,+∞) ×PC → X , σ ∶ [0,+∞) ×PC →

L0
2(Y,X ) , h ∶ [0,+∞) ×PC × U → X and Ik ∶ X → X are appropriate functions. The impulsive

moments tk satisfy the condition 0 < t1 < t2 < ⋯ < tk < ⋯, limk→∞ tk =∞ , ∆x(tk) = x(t+k) − x(t−k)

is the jump size of the state x at tk . For φ ∈ PC , ∥φ∥PC = sups∈[−r,0] ∥φ(s)∥ < +∞ , where

PC = {φ ∶ [−r,0]→ X ∶ φ(t) is continuous everywhere except a finite number of points t̄ at which

φ(t̄−), φ(t̄+) exist and φ(t̄−) = φ(t̄+) } . For any t ∈ [0, b] and any continuous functions x , the

element of PC is defined by xt(θ) = x(t + θ) .

2. Preliminaries

Let X , Y be real separable Hilbert spaces and L(Y,X ) be the space of bounded linear operators

mapping Y into X . Let (Ω,I,P) be a complete probability space with an increasing right

continuous family {It}t≥0 of complete sub σ algebra of I . Let {w(t) ∶ t ≥ 0} denote a Y -valued

Wiener process defined on the probability space (Ω,I,P) with covariance operator Q , that is

E < w(t), x >Y< w(s), y >Y= (t ∧ s) < Qx, y >Y , for all x, y ∈ Y , where Q is a positive, self-adjoint,

trace class operator on Y . We assume that there exists a complete orthonormal system {ei}i≥1 in
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Y , a bounded sequence of non-negative real numbers λi such that Qei = λiei , i = 1,2, ..., and a

sequence {βi}i≥1 of independent Brownian motions such that ⟨w(t), e⟩ = ∑∞n=1
√
λi ⟨ei, e⟩βi(t), e ∈

Y, and It = Iwt , where Iwt is the sigma algebra generated by {w(s) ∶ 0 ≤ s ≤ t} . Let L0
2 = L2(Y0,X )

denote the space of all Hilbert-Schmidt operators from Y0 into X . It turns out to be a separable

Hilbert space equipped with the norm ∥ζ∥2L0
2
= tr ((ζQ 1

2 )(ζQ 1
2 )∗) for any ζ ∈ L0

2 . Clearly for any

bounded operators ζ ∈ L(Y,X) this norm reduces to ∥ζ∥2L0
2
= tr (ζQζ∗) .

Suppose {P (t), t ≥ 0} is a σ -finite stationary It -adapted Poisson point process taking

values in measurable space (U,B(U)) . The random measure Np defined by Np((0, t] × Λ) ∶=

∑s∈(0,t] 1Λ(P (s)) for Λ ∈ B(U) is called the Poisson random measure induced by P (⋅) , thus,

we can define the measure Ñ by Ñ(dt, dz) = NP (dt, dz) − v(dz)dt , where v is the characteristic

measure of NP , which is called the compensated Poisson random measure.

Let us state some notations and basic facts about the theory of semi groups and fractional

power operators. Let A ∶ D(A) → X be the infinitesimal generator of an analytic semigroup,

(S(t)) , t ≥ 0, of bounded linear operators on X . For the theory of strongly continuous semigroup,

we refer to [9]. We will point out here some notations and properties that will be used in this work.

It is well known that there exists M ≥ 1 and λ ∈ R such that

∥S(t)∥ ≤ Meλt, t ≥ 0.

If (S(t)) , t ≥ 0, is a uniformly bounded and analytic semigroup so as 0 ∈ ρ(A) , where ρ(A) being

the resolvent set of A , then it is possible to define the fractional power (−A)ζ for 0 < ζ ≤ 1, as a

closed linear operator on its domain D(−A)ζ . Furthermore, the subspace D(−A)ζ is dense in X ,

and the assertion

∥h∥ζ = ∥(−A)ζh∥

interprets a norm in D(−A)ζ . If Xζ denotes the space D(−A)ζ endowed with the norm ∥⋅∥ζ , then

the following properties are well known in see [9].

Lemma 2.1 [9] Suppose the following conditions hold:

(1) If 0 < ζ ≤ 1 , then Xζ is a Banach space.

(2) If 0 < β ≤ ζ , then the injection Xζ ↪ Xβ .

(3) There exists Mζ > 0 such that

∥(−A)ζS(t)∥ ≤ Mζt
ζe−λt, t > 0, λ > 0.
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Definition 2.2 An X -valued stochastic process x(t) , t ∈ [−r, b] is called a mild solution of system

(1)-(3) if

(1) x(⋅) ∈PC ([−r, b];L(Ω,X )) ,

(2) x(t) = φ(t) for t ∈ [−r,0] ,

(3) For t ∈ [0, b] , x(t) satisfies the following integral equation

x(t) = S(t) [φ(0) − q(0, φ)] + q(t, xt) + ∫
t

0
AS(t − s)q(s, xs)ds + ∫

t

0
S(t − s)f(s, xs)ds

+ ∫
t

0
∫

s

0
S(t − s)g(s, τ, xτ)dτds + ∫

t

0
S(t − s)σ(s, xs)dw(s)

+ ∫
t

0
∫
U
S(t − s)h(s, xs, u)Ñ(ds, du) + ∑

0<tk<t
S(t − tk)Ik(x(t−k)). (4)

3. Existence Results

In this section, we first formulate and prove sufficient conditions for the existence and uniqueness

of a mild solution of system (1)-(3) by using the fixed point theory. To guarantee the existence

and uniqueness of the solution, we impose some hypotheses:

(H1) A is the infinitesimal generator of an analytic semigroup (S(t))t≥0 , of bounded linear

operators on X such that 0 ∈ ρ(A) , the resolventset of −A , and S(t) is uniformly bounded

∥S(t)∥ ≤M and ∥(−A)1−ζS(t)S(t)∥ ≤
M1−ζ

t1−ζ

for some constants M,M1−ζ and every t ∈ [0, T ] .

(H2) For all t ∈ [0, b] there exist constants 1
2
<∞ < 1 and k1 > 0 such that, for φi ∈PC , i = 1,2

the Xα -valued function q ∶ [0,+∞) ×PC → X satisfies the condition

∥(−A)αq(t, φ1) − (−A)αq(t, φ2)∥ ≤ k1 ∥φ1 − φ2∥ .

Also, k̄1 = sup
t∈[0,b]

∥(−A)αq(t,0)∥ .

(H3) (−A)αq is a continuous function in the quadratic mean sense.

lim
t→s

E ∥(−A)αq(t, φ) − (−A)αq(s,φ)∥2 = 0.

(H4) The mapping f ∶ [0,+∞)×PC → X , σ ∶ [0,+∞)×PC → L(Y,X ) and h ∶ [0,+∞)×PC ×U →

X satisfies the following Lipschitz condition for all t ∈ [0, b] , k2, k3, k4 > 0 such that φi ∈PC ,
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i = 1,2

∥f(t, φ1) − f(t, φ2)∥ ≤ k2 ∥φ1 − φ2∥ , ∥σ(t, φ1) − σ(t, φ2)∥ ≤ k3 ∥φ1 − φ2∥ .

∫
U
∥h(t, φ1, u) − h(t, φ2, u)∥2 v(du) ∨

(∫
U
∥h(t, φ1, u) − h(t, φ2, u)∥4 v(du)1/2) ≤ k4 ∥φ1 − φ2∥ .

(∫
U
∥h(t, φ, u)∥4 v(du)1/2) ≤ k4 ∥φ∥ .

Here k̄2 = sup
t∈[0,b]

∥f(t,0)∥ , k̄3 = sup
t∈[0,b]

∥σ(t,0)∥ , k̄4 = sup
t∈[0,b]

∥h(t,0, u)∥ .

(H5) The mapping g ∶ [0,+∞)×[0,+∞)×PC → X satisfies the Lipschitz condition for all t ∈ [0, b] ,

k5 > 0 such that φi ∈PC , i = 1,2

∥∫
t

0
[g(t, s,φ1) − g(t, s,φ2)]ds∥ ≤ k5 ∥φ1 − φ2∥ .

Here k̄5 = sup
t∈[0,b]

∥g(t, s,0)∥ .

(H6) The impulsive function Ik ∶ X → X is continuous and there exist positive numbers qk ,

k = 1,2, ... such that ∑∞k=1 qk <∞

∥Ik(φ1) − Ik(φ2)∥ ≤ qk ∥φ1 − φ2∥ , ..., ∥Ik(0)∥ = 0 for φ1, φ2 ∈PC .

Theorem 3.1 Assume that (H1)-(H6) are satisfied for all φ ∈PC , b > 0 and

6M2∑∞k=1 q2k
(1 − k)2

< 1, (5)

where k = k1 ∥(−A)−β∥ . Then system (1)-(3) has a unique mild solution on [−r, b] .

Proof For b > 0, the Banach space of all continuous functions from [−r, b] into L2(Ω,X ) stands

for the set Γb =PC ([−r, b];L2(Ω,X )) equipped with the norm

∥ϕ∥2Γb
= sup

s∈[−r,b]
E ∥ϕ∥2 .
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Denote Γ̂b = {x ∈ Γb ∶ x(τ) = φ(τ) for τ ∈ [−r,0]} , which is a closed subset of Γb provided with

the norm ∥⋅∥Γb
. Now we define G ∶ Γ̂b → Γ̂b by

(Gx)(t) = φ(t), t ∈ [−r,0],

(Gx)(t) = S(t) [φ(0) − q(0, φ)] + q(t, xt) + ∫
t

0
AS(t − s)q(s, xs)ds + ∫

t

0
S(t − s)f(s, xs)ds

+ ∫
t

0
∫

s

0
S(t − s)g(s, τ, xτ)dτds + ∫

t

0
S(t − s)σ(s, xs)dw(s)

+ ∫
t

0
∫
U
S(t − s)h(s, xs, u)Ñ(ds, du) + ∑

0<tk<t
S(t − tk)Ik(x(t−k)).

Now, to prove the existence of mild solutions of (1)-(3), it is sufficient to show that G has a fixed

point.

Step 1: We claim that t→ (Gx)(t) is continuous on the interval [0, b] .

Let x ∈ Γ̂b , 0 < t < b , and let ∣γ∣ be sufficiently small. Then we have

E ∥(Gx)(t + γ) − (Gx)(t)∥2 ≤ 8 ∥S(t + γ) − S(t) [φ(0) + q(0, φ)]∥2 + 8
7

∑
i=1
∥Ki(t + γ) −Ki(t)∥2 .

Then employing the Lebesgue dominated theorem and the strong continuity of S(t) implies that

lim
γ→0
∥S(t + γ) − S(t)∥2E ∥[φ(0) + q(0, φ)]∥2 → 0.

Next, it is well known that (−A)−β is bounded,

E ∥K1(t + γ) −K1(t)∥2 ≤ ∥(−A)−β∥
2
E ∥(−A)−βq(t + γ, xt+γ) − (−A)−βq(t, xt)∥

2
.

By assumption (H3), we obtain that limγ→0E ∥K1(t + γ) −K1(t)∥2 → 0.

Next, for the term K2 , using (H2), Holder’s inequality, we get

E ∥K2(t + γ) −K2(t)∥2 ≤ 2E∥∫
t

0
[S(t + γ − s) − S(t − s)] (−A)1−β(−A)βq(s, xs)ds∥

2

+ 2E∥∫
t

0
[S(t + γ − s)] (−A)1−β(−A)βq(s, xs)ds∥

2

≤ 2t∫
t

0
∥S(t + γ − s) − S(t − s)∥2 ∥(−A)1−β∥

2
E [k1 ∥xs∥2 + k̄1]

+ 2h∫
t+γ

0
∥S(t + γ − s)∥2 ∥(−A)1−β∥

2
E [k1 ∥xs∥2 + k̄1]

→ 0 as ∣γ∣→ 0.
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A similar computation gives us E ∥Ki(t + γ) −K2(i)∥2 → 0 as ∣γ∣→ 0 for i = 3,4,5,7.

Similarly,

E ∥K6(t + γ) −K6(t)∥2 ≤ 2E∥∫
t

0
∫
U
[S(t + γ − s) − S(t − s)]h(s, xs, u)Ñ(ds, du)∥

2

+ 2E∥∫
t+γ

0
∫
U
[S(t + γ − s)]h(s, xs, u)Ñ(ds, du)∥

2

→ 0 as ∣γ∣→ 0.

Hence, the above arguments imply that t→ (Gx)(t) is continuous on the interval [0, b] .

Step 2: Next, we verify that G is a contraction mapping in Γ̂b1 with some b1 ≤ b to be specified

later. Let x, y ∈ Γ̂b and t ∈ [0, b] .Then we have

E ∥G(x(t)) − G(y(t))∥2 ≤ 1

k
E ∥(−A)−β∥

2 ∥(−A)βq(t, xt) − q(t, yt)∥
2

+ 6

1 − k
E∥∫

t

0
(−A)1−βS(t − s)(−A)β [q(s, xs) − q(s, ys)]ds∥

2

+ 6

1 − k
E∥∫

t

0
S(t − s)(−A)β [f(s, xs) − f(s, ys)]ds∥

2

+ 6

1 − k
E∥∫

t

0
S(t − s)(−A)β [σ(s, xs) − σ(s, ys)]ds∥

2

+ 6

1 − k
E∥∫

t

0
∫

s

0
S(t − s) [g(s, τ, xτ) − g(s, τ, yτ)]dτds∥

2

+ 6

1 − k
E∥∫

t

0
∫
U
S(t − s) [h(s, xs, u) − h(s, ys, u)] Ñ(ds, du)∥

2

+ 6

1 − k
E
XXXXXXXXXXX
∑

0<tk<t
S(t − tk) [Ik(x(tk)) − Ik(y(tk))]

XXXXXXXXXXX

2

.

By using Holder’s inequality, together with assumptions (H1)-(H6), we get

E ∥G(x(t)) − G(y(t))∥2 ≤ kE ∥x − y∥2 + 6

1 − k
[M2

1−βk
2
1 (

t2β−1

2β − 1
)

+ M2 (t(k22 + k25) + k23 + k24) ]∫
t

0
E ∥x − y∥2s ds +

6

1 − k
M2

∞
∑
k=1

q2kE ∥x − y∥
2
t .

Hence,

sup
s∈[−r,t]

E ∥G(x(s)) − G(y(s))∥2 ≤ ρ(t) sup
s∈[−r,t]

E ∥x(s) − y(s)∥2 ,
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where ρ(t) = k+ 6
1−k[M

2
1−βk

2
1 ( t

2β−1

2β−1 )+ tM
2 (t(k22 + k25) + k23 + k24) ]+ 6

1−kM
2∑∞k=1 q2k by (5), we have

ρ(0) = k + 6
1−kM

2∑∞k=1 q2k =
6M2∑∞k=1 q2k
(1−k)2 < 1. Then there prevails 0 < b1 ≤ b such that 0 < ρ(T1) < 1

and G is a contraction mapping on Γ̂b1 and thus has a unique fixed point, being a mild solution

of equation (1)-(3) on [−τ, b1] . By repeating a similar process the solution can be extended to the

entire interval [−τ, b] in finitely many steps. This completes the proof. ◻

4. Stability Analysis

In this section, to initiate adequate conditions securing the exponential decay to zero in mean

square for mild solution of equation (1)-(3), we need to state the following additional assumptions:

(H7) (S(t))t≥0 satisfies the following conditions in addition to (H1). There exists

λ > 0, M > 0 such that ∥S(t)∥ ≤Me−λt for all t ≥ 0,

we note that the semigroup is exponentially stable.

(H8) There exist non-negative real numbers N1,N2,N3,N4,N5 ≥ 0 and continuous functions

η1, η2, η3, η4, η5 ∶ [0,+∞)Ð→ R+ such that for all t ≥ 0 and x, y ∈ X .

1. ∥(−A)ζp(t, x)∥
2
≤ N1 ∥x∥2 + η1(t),

2. ∥f(t, x)∥2 ≤ N2 ∥x∥2 + η2(t),

3. ∥σ(t, x)∥2 ≤ N3 ∥x∥2 + η3(t),

4.∥∫
t

0
g(t, s, φ)dt∥ ≤ N4 ∥x∥2 + η4(t),

5.∫
U
∥h(t, x, u)∥2 v(du) ∨ (∫

U
∥h(t, x, u)∥2 v(du))

1
2

≤ N5 ∥x∥2 + η5(t).

(H9) There exist non-negative real numbers Qj ≥ 0, j = 1,2,3,4,5 such that

ξj(t) ≤ Qje
−λt for all t ≥ 0, j = 1,2,3,4,5.

Lemma 4.1 Let N ∶ [−τ,+∞) Ð→ [0,+∞) be a function and suppose that there exist some

constants γ > 0 , λi > 0 (i = 1,2,3) such that

N(t) ≤ λ1e
−γt + λ2 sup

θ∈[−τ,0]
N(t + θ) + λ3 ∫

t

0
e−γ(t−s) sup

θ∈[−τ,0]
N(s + θ)ds, t ≥ 0

and

N(t) ≤ λ1e
−γt, t ∈ [−τ,0].
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If λ2 + λ3

γ
< 1 . Then, we have N(t) ≤ Me−µt (t ≥ −τ) , where µ is a positive root of the algebra

equation λ2 + λ3

γ
eµτ = 1 and M =max{λt(γ−µ)

λ3eµτ , λ1} .

Theorem 4.2 Assume that (H7)-(H9) and the following inequality holds

7λ1−2β22(1−β)M2
1−βM

2Γ(2β − 1)N1/λ + 7M2[N2 +N3 +N4 +N5]/λ2 + 7M2∑∞k=1 qk)2

(1 − k)2
< 1, (6)

where k =
√
N1 ∥(−A)−β∥ . Then the mild solution of system (1)-(3) is exponentially stable in the

mean square moment.

Proof By inequality (6) theere is ϵ > 0 small enough such that

k +
7λ1−2β22(1−β)M2

1−βM
2Γ(2β − 1)N1

(λ − ϵ)(1 − k)
+ 7M2[N2 +N3 +N4 +N5]

λ(λ − ϵ)(1 − k)
+ 7M2(∑∞k=1 qk)2

1 − k
< 1.

Let µ = λ − ϵ and x(t) be the mild solution of (1)-(3). Then for t ≥ 0,

E ∥x∥2 ≤ 1

k
E ∥q(t, xt)∥2 +

7

1 − k
E
⎡⎢⎢⎢⎢⎣
∥S(t) [φ(0) + q(0, φ)]∥2

+ ∥∫
t

0
AS(t − s)q(s, xs)ds∥

2

+ ∥∫
t

0
S(t − s)f(s, xs)ds∥

2

+ ∥∫
t

0
S(t − s)σ(s, xs)dw(s)∥

2

+ ∥∫
t

0
∫

s

0
S(t − s)g(s, τ, xτ)dτds∥

2

+ ∥∫
t

0
∫
U
h(s, xs, u)Ñ(ds, du)∥

2

+ ∥ ∑
0<tk<t

S(t − tk)Ik(x(tk))∥
2⎤⎥⎥⎥⎥⎦

≤
8

∑
i=1

Gi(t).

From assumptions (H7)-(H9), we get

G1(t) =
1

k
E ∥q(t, xt)∥2

≤
∥(−A)−β∥2

k
[N1E ∥x∥2 + η1(t)]

≤ kE ∥xt∥2 + S1e
−λt,

where S1 =
∥(−A)−β∥2

k
Q1. From (H7)-(H9), we get

G2(t) =
14

1 − k
E ∥S(t)φ(0)∥2 + 14

1 − k
E ∥S(t)q(0, φ)∥2

≤ S2e
−λt,
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where 14M2

1−k [E ∥φ(0)∥
2 + ∥(−A)−β∥2 {N1E ∥φ∥2 +Q2}] .

Using Holder’s inequality and (H7)-(H9), we get

G3(t) =
7

1 − k
E∥∫

t

0
(−A)1−βT ( t − s

2
)T ( t − s

2
)(−A)βq(s, xs)ds∥

2

≤
7λ1−2β22(1−β)M2

1−βM
2Γ(2β − 1)N1

1 − k ∫
t

0
e−λ(t−s)E ∥xs∥2 ds + S3e

−ηt,

where S3 =
7λ1−2β22(1−β)M2

1−βM
2Γ(2β−1)N1

1−k
Q1

λ−η .

By assumptions (H7)-(H9), applying the Holder’s inequality, we get

G4(t) =
7

1 − k
E(∫

t

0
Me−λ(t−s) ∥f(s, xs)∥ds)

2

≤ 7M2N2

λ(1 − k) ∫
t

0
e−λ(t−s)E ∥xs∥2 ds + S4e

−λt,

where S4 = 7M2

λ(1−k)
Q2

λ−η .

Similarly,

G5(t) =
7

1 − k
(∫

t

0
e−λ(t−s)E ∥σ(s, xs)∥ds)

2

≤ 7M2N3

λ(1 − k) ∫
t

0
e−λ(t−s)E ∥x∥2s + S5e

−λt,

where S5 = 7M2

λ(1−k)
Q3

λ−η .

Also,

G6(t) =
7

1 − k
E(∫

t

0
∫

s

0
Me−λ(t−s) ∥h(s, τ, xτ)dτ∥ds)

2

≤ 7M2N4

λ(1 − k) ∫
t

0
e−λ(t−s)E ∥xs∥2 ds + S6e

−λt,
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where S6 = 7M2

λ(1−k)
Q4

λ−η .

Using (H7)-(H9), we get

G7(t) =
7

1 − k
E(∥∫

t

0
∫
U
S(t − s)h(s, xs, u)Ñ(ds, du)∥)

2

≤ 7

1 − k
M2(∫

t

0
∫
U
e−2λ(t−s)[E ∥h(s, xs, u)∥2 v(du)

+ (E ∥h(s, xs, u)∥2 v(du))
1/2
]ds)

≤ 7M2

λ(1 − k)
N5 ∫

t

0
e−λ(t−s)E ∥x∥2s ds + S7e

−λt,

where S7 = 7M2

λ(1−k)
Q5

λ−η .

By using (H6), one can get

G8(t) =
7M2

1 − k

∞
∑
k=1

q2ke
−2λ(t−tk)E ∥x(tk)∥2

≤ 7M2

1 − k

∞
∑
k=1

q2ke
µ(t−tk)E ∥x(tk)∥2 .

The above inequalities together with Lemma 4.1 imply that

E ∥x(t)∥2 ≤ δeµt t ∈ [−r,0]

and for each t ≥ 0,

E ∥x(t)∥2 ≤ δeµt + k sup
−r≤θ≤0

E ∥x(t + θ)∥2 + k̂∫
t

0
e−µ(t−s) sup

−r≤θ≤0
E ∥x(t + θ)∥2 ds

+
∞
∑
k=1

qke
−µ(t−tk)E ∥x(t−k)∥

2
,

where

k̂ =
7λ1−2β22(1−β)M2

1−βM
2Γ(2β − 1)N1

1 − k
+ 7M2[N2 +N3 +N4 +N5]

λ(1 − k)

and

δ = max(
7

∑
k=1

Si, sup
−r≤θ≤0

E ∥φ(θ)∥2) .

The mild solution of system (1)-(3) is exponentially stable in mean square moment, since k + k̂
µ
+

∑∞k=1 qk < 1 and by Lemma 4.1 there exist two positive constants S and θ such that E ∥x(t)∥2 ≤
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Se−θt for any t ≥ −r , where θ > 0. This ensures the exponential stability of mild solution in mean

square. Hence the proof. ◻

Remark 4.3 If the impulsive moments ∆x(tk) = Ik = 0 , k = 1,2, ... then system (1)-(3) reduces

to the following form

d [x(t) + q(t, xt)] = [Ax(t) + f(t, xt) + ∫
t

0
g(t, s, xs)ds]dt + σ(t, xt)dw(t)

+ ∫
U
h(t, xt, u)Ñ(dt, du), t ∈ [0, b], t ≠ tk, (7)

x(t) = φ(t) ∈PC ([−r,0];X ), −r ≤ t ≤ 0, (8)

where the operators A, q, f, σ, h are defined as before. Hence C = C ([−r,0];X ) is endowed with

the norm ∥φ∥C = supθ∈[−r,0] ∥φ(θ)∥ .

We can easily deduce the following corollary by using the same technique as in Theorem 4.2.

Corollary 4.4 Assume that (H7)-(H9) hold and

6λ1−2β22(1−β)M2
1−βM

2Γ(2β − 1)N1/λ + 6M2[N2 +N3 +N4 +N5]/λ2

(1 − k)2
< 1.

Then the mild solution of system (7)-(8) is exponentially stable in mean square moment.

5. Conclusion

In this paper by employing the fractional power of operators and semi group theory we obtain

some new criteria ensuring the existence and exponential stability of a class of impulsive neutral

stochastic integrodifferential equations with Poisson jumps. We use fixed point strategy to establish

some new sufficient conditions that ensure the exponential stability of mild solution in the mean

square moment by utilizing an impulsive integral inequality. Hence, in near future, we would like

to extend this precious problem to the impulsive neutral stochastic integrodifferential equations

with inclusions.
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