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1. Introduction

Paracontact metric structures have been examined in [5], as a natural odd-dimensional counterpart
to para-Hermitian structures, like contact metric structures correspond to the Hermitian ones.
Paracontact metric manifolds have been characterized by many authors, particularly since the
appearance of [13]. An important class among this manifolds is that of the paracontact (k,pu)-

manifolds, which satisfy [1]
R(X,Y)E = k(n(Y)X = n(X)Y) + p(n(Y)hX - n(X)hY') (1)

for all X,Y vector fields on M, where k and p are constants and h = %Egcﬁ. This class includes
the para-Sasakian manifolds [5, 13], the paracontact metric manifolds satisfying R(X,Y)¢ =0 for
all X,V [14].

Among the geometric properties of manifolds symmetry is an important one. From the
local point view it was introduced by Shirokov as a Riemannian manifold with covariant constant
curvature tensor R, that is, with VR = 0, where V is the Levi-Civita connection [7]. A wide
theory of symmetric Riemannian manifolds was introduced by Cartan [3]. A manifold is called

semisymmetric if the curvature tensor R satisfies R(X,Y)-R =0, where R(X,Y’) is considered to
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be a derivation of the tensor algebra for the tangent vectors X,Y . Semisymmetric manifolds were
locally introduced by Szabé [9]. A manifold is said to be Ricci semisymmetric if R(X,Y)-S=0,
where S denotes the Ricci tensor. Also, in [11] Yildiz and De studied h-Weyl semisymmetric,
¢-Weyl semisymmetric, h-projectively semisymmetric and ¢-projectively semisymmetric non-
Sasakian (k,p)-contact metric manifolds. Recently, Mandal and De studied certain curvature
conditions on paracontact (k, ;)-spaces [6].

In [1], the authors have studied a new type of paracontact manifold, so-called paracontact
metric (k,u)-spaces, where that the values of ¥ and g in (1) remains unchanged under D-
homothetic deformation. Namely, unlike in the contact Riemannian status, a paracontact (k,u)-
manifold with k& = -1 in general is not para-Sasakian. In fact, there are paracontact (k,u)-
manifolds such that h? =0 (which is equal to take k = 1) but with h # 0. Montano and Terlizzi
gave the first example of paracontact metric (-1,2)-space (M?"*! ¢,&,n,9) with h? = 0 but
h #0 for 5-dimensional in [2] and then Montano et al. gave the first paracontact metric structures
defined on the tangent sphere bundle and constructed an example with arbitrary n in [1]. Later,
in [4] for 3-dimensional, the first numerical example was given. Another important difference with
the contact Riemannian status, due to the non-positive definiteness of the metric, is that while
for contact metric (k,u)-spaces the constant k can not be greater than 1, paracontact metric
(k, ) -space has no limitation for k¥ and p. Also, in [12] Yildiz and De studied some curvature
conditions paracontact metric (k, u)-manifolds provided k # 1.

The projective curvature tensor is a significant tensor from the differential geometric point
of view. Let M be a (2n + 1)-dimensional semi-Riemannian manifold with the metric g. The
Ricei operator @ is defined by g(QX,Y) = S(X,Y). For n > 1, M is locally projectively flat if

and only if projective curvature tensor P vanishes which is defined by [§]
1
P(X.Y)Z = R(X,Y)Z - -{S(Y,2)X - S(X,Z)Y} (2)
n

forall X,Y,ZeT(M).
In fact M is projectively flat if and only if it is of constant curvature [10]. Thus the projective

curvature tensor is the measure of the failure of a semi-Riemannian manifold to be of constant
curvature.

A paracontact metric (k, u)-manifold is called to be an Einstein manifold if satisfies S = A\1g,
and n-Einstein manifold if satisfies S = A\1g + Ao ® 1, where A\; and A9 are constants.

In this paper, we study some curvature properties of a paracontact metric (k, u)-space. The
outline of the paper goes as follows: After introduction, in Section 2, we give basic facts which

we will use throughout the paper. Section 3 deals with some basic results of paracontact metric

96



Ahmet Yildiz / FCMS

manifolds with characteristic vector field ¢ belonging to the (k,u)-nullity distribution. In section
4, we introduce h-projectively semisymmetric and ¢-projectively semisymmetric paracontact
metric (k, p)-manifolds provided k # 1. In the last section, we show that if a paracontact metric

(k, p)-manifold is Ricci pseudo-symmetric, then it is an Einstein manifold provided & # 1.

2. Preliminaries

For more information about paracontact metric geometry, we may refer to [5], [13] and references
therein.

A (2n + 1)-dimensional manifold M is said to have an almost paracontact structure if it

admits a (1,1)-tensor field ¢, a vector field £ and a 1-form 7 satisfying the following equations:

(1) n(é-):]-a ¢2:I—7]®§,

(ii) The tensor field ¢ induces an almost paracomplex structure on each fibre of D = ker(7n), i.e.,

the +1-eigendistributions, D* = Dy(+1) of ¢ have equal dimension n.

From the definition, we have ¢£ =0, no¢ =0 and the endomorphism ¢ has rank 2n. The

Nijenhius torsion tensor field [¢, ¢] is given by

[6,0](X,Y) = ¢°[X, Y] + [6X,0Y] - ¢[0X, V] - ¢[ X, 9V ].

When the tensor field Ny = [¢, ¢] - 2dn® £ vanishes identically the almost paracontact manifold is
said to be normal. If an almost paracontact manifold admits a pseudo-Riemannian metric g such
that

9(9X,9Y) = —g(X,Y) +n(X)n(Y) (3)
for all X, Y e I'(T'M), then we say that (M,¢,£,m,9) is an almost paracontact metric manifold.
Such a pseudo-Riemannian metric is necessarily of signature (n+1,n). For an almost paracontact
metric manifold, there exists an orthogonal basis {X1,...,X,,Y1,...,Y,, &}, such that g(X;, X;) =
bij» (Vi Yy) = =65, 9(X3,Y;) =0, g(&§, X;) = g(§,Y;) =0 and Y; = ¢X; for any 4,j € {1,...,n},
which is called a ¢-basis.

We can now define the fundamental form of the almost paracontact metric manifold by
O(X,Y)=9g(X,0Y). f dn(X,Y) = g(X,¢Y), then (M, ¢,£,n,g) is said to be paracontact metric
manifold. In a paracontact metric manifold one defines a symmetric, trace-free operator h = %Egd),
where L, denotes the Lie derivative. It is known [13] that h anti-commutes with ¢ and satisfies
hé =0, trh = trh¢ =0 and

VE=-¢+oh, (4)

dh +he = 0. (5)
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Also, h =0 if and only if £ is Killing vector field. Then (M, ¢,&,n,9) is said to be a K-
paracontact manifold. A normal paracontact metric manifold is called a para-Sasakian manifold.
Also, the para-Sasakian case implies the K -paracontact case and the converse holds only in

dimension 3. Moreover, any para-Sasakian manifold satisfies

R(X,Y)E=n(X)Y -n(Y)X.

3. Paracontact Metric (k,p)-Manifolds

Let (M, ¢,£,1n,9) be a paracontact manifold. The (k,u)-nullity distribution of a (M, ¢,&,1,9)

for the pair (k,p) is a distribution

ZeT,M|R(X,Y)Z =k(g(Y,2)X - g(X,Z)Y) } ©)

N(k,p):p = Ny(k, 1) ={ +u(g(Y, Z)hX - g(X, Z)hY)

for some real constants k and p. If the characteristic vector field £ belongs to the (k,p)-nullity
distribution we have (6). [1] is a complete study of paracontact metric manifolds for which the Reeb
vector field of the underlying contact structure satisfies a nullity condition (namely the condition
(6) for some real numbers k and ).

In a (2n + 1)-dimensional paracontact metric (k,p)-manifold for k # -1, the following

relations hold [1]:
n* = (k+1)¢’ (7)

and

(Vx@)Y = —g(X - hX,Y){+n(Y)(X - hX). (8)

Lemma 3.1 [1] Let (M,$,£,m,9) be a paracontact metric (k, u)-manifold of dimension 2n +1.
Then

(Vxh)Y = (Vyh)X = (1 +k)(29(X, Y )& +n(X) oY —n(Y)pX)
+(1=p)(n(X)phY —n(Y)phX)

for any vector fields X,Y on M.

Lemma 3.2 [1] In any (2n + 1) -dimensional paracontact metric (k,u)-manifold (M,$,£,m,9)

with k + -1, the Ricci operator @ is given by
R=2n-D+ph+21-n)+nu)l+2(n-1)+n(2k - pu))n®¢&. (9)

From (9), we have

Q& = 2nkE. (11)
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4. Main Results on Paracontact Metric (k,u)-Manifolds

Definition 4.1 A semi-Riemannian manifold (M***',g), n > 1, is said to be h-projectively
semisymmetric if
(P(X,Y)-h)Z=0
holds on M.
However if we consider three-dimensional paracontact metric (k,p)-manifold, then the
manifold is either a paracontact metric N (k)-manifold or a para-Sasakian manifold.

Now let M be a h-projectively semisymmetric paracontact metric (k,u)-manifold with

k #—1. Then above equation is equivalent to
P(X,Y)hZ -hP(X,Y)Z =0
for k + 1. Firstly, we get
R(X,Y)hZ-hR(X,Y)Z = p(k+1){g(Y,Z)n(X)§-g(X, Z)n(Y)E

+n(X)n(2)Y =n(Y)n(2)X}
+k{g(hY, Z)n(X)€ - g(hX, Z)n(Y)E (12)
+n(X)n(Z)hY —n(Y)n(Z)hX
+9(9Y, Z)phX — g(o X, Z)phY '}
+(p+ k){g(¢hX, Z)pY - g(¢hY, Z)¢ X}
+2ug($X,Y )phZ.

Then we can write

P(X,Y)hZ - hP(X,Y)Z R(X,Y)hZ - hR(X,Y)Z
—i{S(Y, hZ)X - S(X,hZ)Y
~S(Y,Z)hX + S(X,Z)hY} = 0. (13)

Using (12) in (13), we get
pu(k +1){g(Y; Z2)n(X)¢ - 9(X, Z)n(Y )+ n(X)n(2)Y —n(Y)n(2) X}
+k{g(hY, Z)n(X)€ - g(hX, Z)n(Y )& +n(X)n(Z)hY - n(Y)n(Z)hX
+9(9Y, Z)ohX — g(o X, Z)PhY'} + 2ug(6 X, Y )ohZ
+(u+k){g(ohX, Z)¢Y - g(¢hY, Z)¢ X}
—%{S(Y, hZ)X - S(X,hZ)Y (14)

- S(Y,Z)hX + S(X,Z)hY} = 0.
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Putting Y =AY in (14), we have

p(k + 1) {g(hY, Z)n(X)§ +n(X)n(Z)hY'}
+k{g(R*Y, Z)n(X)& +n(X)n(Z)h*Y
+g(¢hY, Z)phX - g(6 X, Z)ph*Y'}

+(u+ k) {g(ohX, Z)phY — g(ph°Y, Z)p X}

+20g(¢ X, Y )ph*Z
—%{S(hY, hZ)X - S(X,hZ)hY} (15)

- S(hY,Z)hX + S(X,Z)h*Y} = 0.
Multiplying both sides of (15) with &, we obtain
( + Dig(hY, 2) + kg (Y, 2) = 5-S(Y, 2) + k(¥ )(Z)n(X) =0.
Then we have
pg(hY, 2) + kg(Y, Z) + k(Y In(Z) = -5 (Y, 2) =0.
From Lemma 3.2, we can write

S(X,)Y) = 2(1-n)+nuw)g(X,Y)+(2(n+1)+u)g(hX,Y)

+(2(n = 1) +n(2k — @) )n(X)n(Y).
Thus we have

2(1-n)+np

1
g(hX,Y) = mS(X,Y)— 2(n+1)+ug(X7Y)
LB (). (16)
Thus from (16), we have
[ p(2(1 - n) +npu)
2(n+1)+p ¥.2)- 2(n+1)+p 9(¥.2)

+hg(Y, 2) + k(Y )n(2) - 5-S(Y. 2) =0,
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ie.,

7 1
(2(n+ Do+p %)S(Y’ 2)

©(2(1 - n) +npu)

D s B 2)

p(2(n—1) +n(2k - p))

g 2(n+1)+p

=k)n(Y)n(Z) =0,

which turns to

axm:%mxm+§mmmm,

where

i} p 1

A= 2(n+1)+p) 2n

Ny - p(2(1-n)+nu)
2(n+1)+p

)

0= 1) (k- )
Az = 2(n+1)+p k.

So the manifold M is an n-Einstein manifold. Hence, we have the following:
Theorem 4.2 Let (M,$,£,m,9) be a (2n+ 1) -dimensional paracontact (k,p)-manifold with k +

-1. If M is an h-projectively semisymmetric manifold, then M is an n-Finstein manifold provided

w#2(l1-n).

Definition 4.3 A semi-Riemannian manifold (M*"*',g), n > 1, is said to be ¢-projectively

semisymmetric if

(P(X,Y)-$)Z =0
holds on M.

Let M be a ¢-projectively semisymmetric paracontact metric (k, 1)-manifold with k # -1.

Then above equation is equivalent to

P(X,Y)¢Z - pP(X,Y)Z =0
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for k # -1. Firstly, we get

R(X,Y)oZ -¢R(X,Y)Z = g(X,02)Y —g(Y,0Z)X +g(Y,Z)¢X
—9(X,2)¢Y - g(X,¢Z)hY + g(Y,pZ)hX
+g(hY, $2)X - g(hX,¢Z)Y - g(Y, Z)phX
+9(X, Z)¢hY — g(hY, Z)¢X + g(hX, Z)dY (17)

1K
2

=2 {g(hY,62)hX ~ g(hX, 0Z)hY - g(hY, Z)shX

+
+g9(hX, Z)phY } - 1

23
2

{9(hX,0Z)ohY - g(hY,9Z)phX
~g(6hY, Z)hX + g(phX, Z)hY'}

+(k+ D{g(oX, Z)n(Y)§ - g(oY, Z)n(X)E

+n(X)n(Z)pY —n(Y)n(Z)eX}

+(u =1 {g(¢hX, Z)n(Y)§ - g(ohY, Z)n(X)¢

+n(X)In(Z2)phY —n(Y)n(Z)phX}.

Then we have

P(X,Y)$Z - $P(X,Y)Z = R(X,Y)oZ - ¢R(X,Y)Z
~{S(V.02)X - S(X,02)Y
_S(Y, 2)6X + S(X,Z)dYY} = 0. (18)
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Using (17), putting X = ¢X and multiplying with W in (18), we obtain

9(6X,02)g(Y, W) = g(Y,02)g(¢X. W) - g(Y, Z)g(¢X, W)
-9(6X, 2)g(¢Y, W) - (X, 0Z)g(hY, W) + (Y, ¢Z)g(h¢ X, W)
+9(hY,02)g(6 X, W) = g(h¢ X, Z)g(Y, W) = g(Y, Z)g(oho X, W)
+9(0X, 2)g(ohY, W) + g(hY, Z)g(¢ X, oW) + g(h¢ X, Z)g(¢Y, W)

1 - &
12

+
k+1

{9(hY,02)g(ho X, W) - g(h¢ X, ¢Z)g(hY, W)

—g(hY, Z)g(oho X, W) + g(h¢ X, Z)g(dhY, W)}

k1

122
2

{9(he X, 0Z)g(dhY, W) - g(hY, ¢ Z)g(phe X, W)
~g(ohY, Z)g(h¢ X, W) + g(¢pho X, Z)g(hY, W)}
=(k+1){g(¢X,0Z)n(Y)n(W) =n(Y)n(Z2)g(¢X, oW )} (19)

=(p = D{g(ho X, oZ)n(Y)n(W) = n(Y)1(Z)g(oho X, W)}

- {S(Y,62)9(6X, W) - S(6X,62)g(Y, W)

-S(Y,2)g(6° X, W) + S(¢X, Z)g(¢Y, W)} = 0.
Putting Y = W = € in (19), we get

S(¢X,0Z) + 2npug(dhX,92) + kn(X)n(Z) = 0. (20)
Using (3) in (20), we have
S(X,2) - (20— Vkn(X)n(Z) - 20+ 4n - 4+ 2] g(hX, Z) =0,
S(X,2) - (2n - D)kn(X)n(Z)

—[2np+4n—4+2u]{ S(X,Z)

2(n+1)+p

2(1 —n) + np 2(n - 1) +n(2k - ) )
S YD - Ty () =o.

Hence

2np+4dn -4+ 2p

1 2(n+1)+p

15(X,2)

_ 2(1-n)+nu
 2(n+1)+p

n-1)+n(2k—pu)

2(
9(X,Z2)+[(2n- 1)k + CESO Y

In(X)n(Z).
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Thus we have

’ ’

A A
S(X,2) = $79(X, Z) + Tn(X)n(2),
1 1

where

_2np+dAn-4+2p

A=l

! 2(n+1)+p

/ 2(1-n)+np

)\2 = <
2(n+1)+p

o 2(n-1)+n(2k - p)
Ay = (2n-1k+ S+ 1)+

So the manifold M is an n-Einstein manifold. Hence, we have the following:

Theorem 4.4 Let (M,$,£,m,9) be a (2n+ 1) -dimensional paracontact (k,u)-manifold with k +
-1. If M 1is a ¢-projectively semisymmetric manifold, then M is an n-FEinstein manifold provided

w#2(1-n).

5. Ricci Pseudo-Symmetric Paracontact Metric (k,p)-Manifolds

Definition 5.1 A semi-Riemannian manifold (M***',g), n > 1, is said to be Ricci pseudo-

symmetric if

(R(X,Y)-S)(Z, W)= fQ(g,9)(X,Y; Z,W),
where

(R(X,Y)-S)(Z,W) = R(X,Y)S(Z,W)

~S(R(X,Y)Z,W) - S(Z,R(X,Y)W)

and

fQUg, )X, Y;Z,W) = [{S(X AY)Z, W)+ 5(Z, (X AY)W)}

hold on M, f is some function and (X AY)Z =g(Y,Z)X -g(X,Z)Y, for all XY, Z, W € x(M).

Let M be a Ricci pseudo-symmetric paracontact metric (k, u)-manifold with k& # —1. Then

we can write

~S(R(X,Y)Z,W) - S(Z,R(X,Y)W) (21)
= oY, 2)S(X, W) - g(X,Z2)S(Y, W)

+g(Y,W)S(X,Z) —g(X,W)S(Y, Z)}
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Putting X =¢ in (21), we get

S(R(E,Y)Z,W)+S(Z,R(£,Y)W)
= fI(@)SY,W)-g(Y,2)S(& W)

+(W)S(Y, Z) - g(Y,W)5(¢, 2)}-
On the other hand from (6), we obtain

R(&Y)Z = k{g(Y, 2)§ =n(2)Y '} + u{g(hY, Z)§ - n(Z)hY }.
Using this fact in (22), we get

k{g(Y,2)S(§&, W) -=n(Z)S(Y, W)
+9(Y,W)S(&,2) -n(W)S(Y, 2)}
+u{g(hY, 2)S(&, W) —-n(Z)S(hY, W)
+g(hY,W)S(&, Z2) - n(W)a(SY, Z)}
= f{n(Z2)S(Y,W)-g(Y,Z)S({ W)
+n(W)S(Y, Z) - g(Y,W)S(§,2)},
which turns to
(k+ )){g(Y, 2)S(E, W) - 1(Z)S(Y, W)
+9(Y,W)S(&,2) -n(W)S(Y,2)}
+u{g(hY, Z)S(&W) = n(Z)S(hY, W)
+g(hY,W)S(&,2) -n(W)S(hY, Z)} = 0.
Now we have three cases:
(i) k+f=#0, u=0,
(i) k+f=0, p#0,
(iti) k+f#0, p=0.
For proof of (¢), putting W =¢ in (24), we get
9(Y,2)S(§,8) - S(Y, Z) =0,
which turns to
S(Y,Z) =2nkg(Y,Z).

For proof of (it), putting W =¢ in (24),

g(hY, Z)S(€,€) - S(hY, Z) = 0.

(26)
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Taking Y =AY in (26), we obtain
(k+1){g(Y, 2)5(£,€) - S(Y, 2)} = 0.

Since k # -1, then we get

S(Y,Z) =2nkg(Y,Z).
For proof of (iii), putting W = ¢ in (24), we have
(k+ [){9(Y,2)S(& ) -n(Z)S(Y. &) +9(Y,£)5(§,2) - S(Y, Z)} (27)
+u{g(hY,2)S(&,€) - S(hY, Z)} = 0.

Taking Y =AY in (27), we obtain

(k+ ) {g(hY, 2)S(&,€) - S(hY, Z)} - p{g(h?Y, Z)S(&,€) - S(h?Y, Z)} = 0,
which turns to

(k+ f){g(hY,Z2)S(§,§) - S(hY, Z)} (28)
-k +1){g(Y, 2)5(&,€) -n(Y)n(2)S5(&,€)

Then using (26) in (28), we have

(k+ D)pfg (Y, 2)S(€.€) - S(V, Z)} = 0,
Since k # -1, then we get
S(Y,2)-g(Y,2)5(£,¢) =0,

which turns to

S(Y,Z) =2nkg(Y,Z).

Considering above facts, we state the following:

Theorem 5.2 Let (M,$,£,m,9) be a (2n+1)-dimensional paracontact (k, p)-manifold with k +

-1. If M is a Ricci pseudo-symmetric manifold, then the manifold is an Finstein manifold.
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