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Abstract — In this paper, we study many concepts as applications of free group, for 
example, presentation, rank of free group, and inverse of free group. We discussed 
some results about presentation concept and related it with free group. Our main re-
sult about free rank, is if G is a group, then G is free rank n if and only if G Zn.  Al-
so, we obtained a new fact about inverse semigroup which say there is no free in-
verse semigroup is finitely generated as a semigroup. Moreover, we studied some re-
sults of inverse of free semigroup. 
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1 Introduction 
Several authors have investigated the free group. Sury in  [1], defined a free group F on a 
set X by the universal property that abstract map from X to any group G can be extended 
uniquely as a homomorphism from F to G. Note that a group G is free abelian of rank n if 
f G≅Zn. 

Derek Holt introduced the definition generate of subgroup by the following, for all X⊆G 
with G is a group we say a subgroup 〈X〉 of G generated by X in two ways, 〈X〉 is 
intersection of all subgroup H of G that contains X, i.e., 〈X〉=∩H≤G,X⊆HH and if               
X−1={x −1 |x ∈ X}, then A= X ∪ X−1. We say A∗ to be the set of all words over A. Ele-
ments of A∗ represent elements of G, it is closed under concatenation and inversion. So, it 
is a subgroup of G. So 〈X〉 = A∗. In [1], the empty word represents 1G introduced in de-
tails. Also, in [2], we found proof of the following, a finite group G is not free if G ≠ {1}.  
In [3], Jairo Gon, calves studied the existence of free subgroups in unit groups of matrix 
rings and group rings. 
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Charles F. Miller In [4], proved that every group is a quotient group of a free group and 
then if G is a group there is a free group F and a normal subgroup N such that G  F/N. 
Let G be an abelian group and S={x1,…, xt} be a subset of  G. We said  linearly inde-
pendent if for each n1,…,nt belong Z and n1x1,…,nixi=0, then for all 1≤i≤t [2]. Let G be an 
abelian group, then G is called a finitely generated free group if G has a finite basis (see 
[1]). Let S and S-1 be two sets such that sns-1=ϕ, |s|=|s-1|. If s-1 S is a unique elements of 
s in S for all s S-1 and t-1  S is a unique element of  t  s-1, then ((s-1)+1=s), for all s  S 
[3]. Let H≤ G, then H is a free subgroup and F(S) = Z is a free group. 
In [5], Maltsev, studied the equation zxyx−1 y −1 z −1 = aba−1 b−1 in a free group. Also, in 
[6] the authors studied the periodic automorphisms of free groups in details. Periodic 
automorphisms of the two-generator free group was investigated by Meskin in [7]. 
In this article, we introduced some applications of free group and some new results which 
explain the relationships between several concepts and free group. 

2 Presentation of Free Group  
Here we discuss some results about presentation concept and related it with free group.  
Let G=〈S〉 and F(S)=〈S〉 is a F-group. Let R  F(S) and N=〈R〉 be normal subgroups of 
free group F(S) which generated by set R in other words, N=〈{a-1ra:a  F(S), r R}〉. 
Let :F(S)→G be onto homomorphism. So 〈S,R〉 is presentation of G if Ker =N,  i.e. 
F(S)/ N G. If S,R are finite sets, then 〈S,R〉 is a finite presentation of G. 

Remark 2.1. Every element in F(S) is called realtor.  
Note that the presentation of a group is a different from representation of free group. 
Therefore, a presentation of a group G is an expression of Gas a quotient of a free group.  
 
Example 2.2.  G≠〈a, b|a2=1, b3=1〉, then we say G is the quotient F/N F is the free 
group of rank generated by {a, b} and N is the smallest normal subgroup of F 
containing the element a2and b2.Also, we can describe the group above as the free pro-
duct Z2×Z3. Then a≠〈a,b|a2=1, aba-1b-1=1〉  Z2×Z. If we add a new relation, then we 
cannot change the group. See the following G≠〈a,b|a2=1, ab2a-1b-1, ab2a-2b-2=1〉 and 
G=〈a1, a2,…,an〉|r1=r2=…rm=e〉 and if r is a word r1(r2)-1, then we are write  r1=r2 as a 
replacement to r=e. 
Remark 2.3. There is no unique presentation of group (there is many presentations of 
group G. See the following example: 
 
Example 2.4. It is clear Z5=〈a|a5=e〉 because: 

〈a, b, c|ab=c, cb=a, bca=b〉 
=〈a, b. c|ab=c, cbc=a, ca=e〉 
=〈a, b, c|ab=c, cbc=a, c=a-1〉 

                                                  =〈a, b|ab=a-1, a-1ba-1=a〉 
                                                  =〈a, b|b=a-2, a-1ba-1=a 
                                                        =〈a|a-1a-2a-1=a〉 
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                                                        =〈a|a5=e〉. 
 
Theorem 2.5. Let G=〈S|R〉 and H=〈S|R1〉 such that R  R1 then H is isomorphic of quoti-
ent group. 
Proof.  Suppose that F=F(S) and N, N1are two normal subgroups of  which are 
generated by two sets R and R1and, respectively. Since R R1, then N≤N1.Since N F then 
N N1. Since G F/N and H  (F/N) then by (The Third Theorem of Isomorphism), we get 
H F/N  (F/N)/(N1/N) G/N1. We can get presentation of group G by other presentation 
of other group G1 especially G finite group. 

Lemma 2.6.  If G = S│R and  H= S│R1 such that R subset of R1 , then H isomorphic 
quotient of free group G. 
Proof.  Suppose that F=F(S) and let N, N1 be two normal subgroups of F and generated 
by R and R1. Since R subset of R1, then N subgroup of N1. Also, since N F, then N N1. 
We have G≌(F/N) and H≌(F/N), therefore from The Third Theorem of Isomorphism we 
get 

 H=F/N1≌(F/N)/(N1/N)≌G/N1 

Corollary 2.7. Let 〈S,R〉 be finite group and let H be a group satisfying |Q|≤|H|. Let T  H 
be a set of generators such that Q:S → T and (S2)a2,…,(Sn)an , implies to 
Q(S2)a1,Q(S2)a2,…, Q(Sn)an=e,  then G≅H. 

Proof.  Note that G 〈T|Q(R)〉and H=〈T|Q(R)〉 R1〉.  From Lemma 2.6, we obtain H  
G/N such that N G. Thus |G| =|H||N|.  Since |G|≤|H|, then |N| =1 and hence |N|={e}. 
Thus H  G. 

Corollary 2.8.  Let G〈a,b|a2=e, b3=e, (ab)2=e〉. Then G S3. 

Proof. Suppose that N=〈b〉. Since (ab)2=e, then a-1b-1a=b N, also b-1bb=b N. Thus N
G. Now G/N=G/〈b〉 〈a, b|a2=e, b3=e, (ab)2=e, b=-e〉=〈a|a2=e〉 Z2. Since |N|=3, then 
|G|≤6.  But S3=〈(1 2), (1 2 3)  (1 2) (1 2 3)2=(1) and |S3|=6.  Thus G  S3. 

Corollary 2.9. Let 〈a, b|an=e, bm=e, ab=ba〉 then G Zn×Zm. 

Proof. Since ab=ba then G is commutative group. Suppose that N=〈a〉. Hence N G and 
G/N=〈a,b|an=e, bm=e,ab,ba,a=e〉=〈b|bm=e〉 Zm. Since |N|≤n, then |G|≤nm. Now 
Zn×Zm=〈[1], [0], [1]〉 such that m([0], [1])=([0],[0])n, ([1], [0])=([0], [0]) and ([1], 
[0])+([0], [0])=([0], [1])+([1],[0]). Thus G Zn×Zm. 

Corollary 2.10. Let G=〈A, B〉≤GL(2, R)  A= , B= . Then G D4. 

Proof. Note that A4= , B2=  and BA=A3B= .  Thus G=〈A,B,A4=I, 

B2=I,BA=A3B〉. Suppose that N=〈A〉. Since A3=A-1and BA=A3B=A-1B, then  BAB-1=A-1 

N. Also, AAA-1=A N and so N G and hence G/N=〈A,B|A4=I,B2=I, BA=A3B, 
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A=I〉=〈B|B2=I〉=Z2. Since |N|≤4, then |G|≤8. But D4=〈a, b|a4=e, b2=e, ba=a3b〉 and 
|D4|=8. Thus G D4. 

Corollary 2.11. Let G=〈a, b|a2=b3=e, (ab)n=(ab-1ab)k〉. Then 

1. G=〈ab, ab-1ab〉 
2. 〈(ab)n〉≤G.  
Proof. 

1. Suppose that H=〈ab, ab-1ab〉≤G, then ab-1=ab-1ab(ab) , and  a=abb-1  H, then  
H=G. 

2. Suppose that M=〈(ab)n〉≤G. To prove M≤G we need by (1) prove that [(ab)n, ab]=e 
and, [ab]=(ab)-n(ab)n(ab)=(ab)-(n+1)(ab)n+1=e .  Hence (ab)n=(ab-1ab)k=(a-1b-1ab)k

G.  Thus, M ≤G.  

Theorem 2.12. Let G=〈a,b〉 such that x3=e, for all x in G. Then 

1. [a,b]  Z(G). 
2. G is a finite group. 
Proof.  

1. To prove [a, b]  Z(G), we should prove that [a,b]  with a,b. Now 

                                                 a-1[a, b]=a-1(a-1b-1ab) 
                                                              =a(b-1a)ba 

 =a(a-1ba-1b)ba 
                                                              =ba-1b-1a 
                                                              =b(baba)a 
                                                              =b-1aba-1 

=a-1ba-1bba-1 

=a-1ba-1b-1a-1 

=a-1ba-1b-1a-1 

=a-1ba-1b-1a-1 

=a-1ba-1bba-1 

=a-1ba-1b-1a-1 

=a-1ba-1b-1a-1 

=a-1bbabaa-1 

                                                               =a-1b-1ab 
                                                               =[a, b] 

Thus [a,b]a=a[a,b] and by similarly [a,b]b=b[a,b] and so [a, b] Z(G).  
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2. Since [a,b] Z(G), then G/Z(G) commutative group. Therefore, any commutative 
group generated by a finite set and satisfying xn=e such that n Z+. Then G/Z(G) is a 
finite. So, G/Z(G), Z(G) are finite groups. Thus is a finite group. 

3 Rank of Free Group 
In this subsection, we study another application of free group, namely, the rank of 

 group. We can use a generalized linear algebra, therefore we will discuss the 
factors of integers Z. Let G be an  group. Then the set of 
{g1,…,gn} subset of G is called  Z  independent and we have  ∑rigi=0, i=1,…,n.  
If and only if r1=r2=…=rn=0. 
Definition 3.1 Let G be an  group. Then the rank of G is the size of the largest set 
of Z-  independent elements in G. 

Remark 3.2 Let G be an abelian group. Then G is called free of rank n if G has a set of n 
linearly independent generators. Moreover, the set of generators is called basis for G. 

Theorem 3.3 Let G be a group. Then G is free rank n if and only if G Zn. 

Proof. Let g1,…,gn be a basis for G , and let :Zn→G such that (r1,…rn)=∑rigi, i=1,…,n. 
Since x is surjective homomorphism, therefore we need to prove that is injective. Let 
(r1,…,rn) belong to Ker( ), then by definition  ∑rigi=0, i=1,…,n.  Now since gi are 
linearly independent, then ri=0 for all i and so (r1,…,rn)=(0,…,0). Thus Ker(x)={0} and 
this means  is injective and then is isomorphism. 

Corollary 3.4 Let G be an abelian group. If G is n-generated, then rank (G)≤n. 

Proof. Suppose that x:Zn→G be an onto all gi are linearly independent. Since  is onto, 
then there exists h1,…,hk belong to Zn and  (hi)=gi. Suppose that∑rihi=0. Therefore by  
we get: 0= (∑rihi)=∑ri (hi)=∑rigi, i=1,…k. Since gi is a linearly independent, then, 
r1=r2=r3=0 and this implies that hi=0. Also, linearly independent, but k≤n and so rank 
(G)≤n. 
Example 3.5 If Fnis F-group has rank n, then Fn contain sub-F-group Fk, for all 1≤k≤n. If 
Sn={S1,…,Sn} and if Sk={S1,…,Sk}, we get  Fk=F(Sk)≤F(Sn)=Fn. 
 
Remark 3.6 We call  is a free basis of F of and the order of S is a rank of free group Fn . 

If |S|=n, then F is a free group has rank n and denoted by Fn. 
 
Corollary 3.7. Let G1 and G2 be an abelian group with finite rank. Then rank(G1×G2)  
rank (G1)+rank(G2) 
Proof. Let rank(G1) =k and rank(G2)=h. Suppose g1,…,gn belong to G1 such that are 
linearly independent. Also suppose g1,…,gn be a linearly independent. Therefore we can 
claim linearly (g1,0),…,(gk,0), (0, s1),…,(0, sn) are linearly independent in G1× G2. Now 
suppose that 

    ∑ri(gi+0)∑bj(0, hi)=(0, 0), j=1,…h. 
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Therefore, by linear independence we have r1=r2=…=rk=0 and b1=b2=…bn=0, as 
desired. 
 
Theorem 3.8 Let n be a positive integer number and let Fn+1 be F-group has rank (n+1). 
Then there exists image homomorphism G of group Fn+1 G  Fn. 
 
Proof. Suppose that Fn+1=F(S) such that |S|=n+1. Let S=S1 { } such that |S1|=n. It is 

clear G=G(S1) ≤ F(S1) and :S→ G which define by  

 Can be extended into onto homomorphism :F(S) → G, thus Fn+1 G  Fn. 
Theorem 3.9 Let be a free group with rank n. Then Fn contains subgroup with index m 
for each m Z+. 
 
Proof. Suppose that G〈a〉 is a finite cyclic group with order m and let Fn = F(S) such that 
S={s1,…sn} then there exists onto homo :Fn →G and satisfying (Si)=a, for all 1≤i≤n.  
Then by (First Theorem of  Isomorphic) we get Fn/ker  G.  Thus Ker ≤Fn with index 
n. 
Let G be a free abelian group with Z-basis X In this case we can say the rank of G is the 
cardinality of the basis X. The next example shows some properties of Z-basis: 
Example 3.10 We know that Z is   free abelian group of Z has cardinality one. 

Remark 3.11  
1. Only cyclic generators of Z are {1, -1} and this mean Z has only two basis {1} and {-

1}. 
2. Note that {2, 3} is a generating set of Z and not contain a Z-basis of Z as a subset. 
3. Note that {2} is a Z-independent subset of Z and cannot be extended to Z-basis of Z.   

4.  Inverse of Free Semigroup 
In this subsection, we will study some results of inverse of free semigroup, but before that 
we should discuss a concept of inverse of semigroup. A study of inverse elements in semi-
group very important in this section. 
Definition 4.1 An element y belong to S is called inverse element of x in S, if x=xy and 
y=yxy. 
Remark 4.2 The inverse element of x in S need not be unique. 
Lemma 4.3 Any regular element of x in a set S has an inverse element. 
Proof.  Let s be an element in S such that s is regular, therefore: 

For some s in S, t= . Now  and so sts is also regular element. Now 
 and  is an inverse element of t. 

Now we transition from inverse element to inverse semigroup S. 
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Definition 4.4 Let S be a semigroup. Then S is called an inverse semigroup, if for all s be-
long to S has a unique inverse element s-1 such that s=sss-1 and s-1=s-1ss-1. 
 
Example 4.5 Let S be a group. Then it is an inverse semigroup and the inverse of an ele-
ment s is s-1. 
Theorem 4.6 Let S=[X].  If generator s in X has unique inverse element. Then S is an 
inverse semigroup (s1s2…sn)-1 = (sn)-1,…,sn-1)-1, si in X. 

Proof.  Suppose that x, y  S and have unique inverse elements s-1 and t-1, respectively. 
Therefore st.t-1s-1.st=s1tt-1.s-1s.t=ss-1s.tt-1.t=st. 

 
Corollary 4.7 For all x in S such that S is inverse semigroup, then s=(s-1)-1. 
Remark 4.8 For a semigroup S, we have the following statements are true: 

1. Let S be a semigroup. An element a  S is said to be regular if there exists s S such 
that a=asa.  The elements is an inverse of a if a=asa and s=sas. 
2. If s is an inverse of a, then the elements ax and xa are idempotents in S. i.e. as=sas 
and sa=sasa. 
3. We say that the semigroup S is inverse if a unary operation s1 → s-1 is definitions 
with the properties; s, t  S(s-1)=s, ss-1s=ss-1tt-1=tt-1ss-1. 

4. Let s be nonempty set and X-1={s-1:s X} be a set in one-one correspondence with  
and disjoint from it. 

5. Let Y=X X-1and consider Y+ the free semigroup on Y. We define the inverse for the 
elements of Y+ by the result (s-1)-1, s X. Also (t1,…,tn)-1=(tn)-1,…,(tn)-1, t1,…,tn Y, and for 
any w Y+    (w-1)-1=w. 

6. Let T be the congruence generated by the set T={(w-1w, w):w in Y+} {ww-1zz-1, zz-

1ww-1):  in Y+}, Y+/T is a semigroup under the multiplication (Wt)( )=( )T, w, z in 
Y+. The map:X→(Y+/T), s→sT, is obviously well-defined and is the mapping that we asso-
ciate to Y+/T to prove that this inverse semigroup is in fact the free inverse semigroup. 

7. Let Sbe any inverse semigroup and any map from X into S. We can extend  to Y 
by defining s-1 =(s )-1s X, where (s )-1is the inverse of s S. Since YT is the free se-
migroup on Y, we can define a semigroup 1:YT→S by the rule (t1t2…tn) 1 =t1 t2 , t1, t2, 
…, .  

 

Corollary 4.9 There is no free inverse semigroup is  as a semigroup. 

Proof.  Let ≠Ø be a set and FIX is defined by the S-group presentation 〈Y/R〉, where Y 
and R are finite. If X is infinite. Let s X not occurring in the relations of R, then the rela-
tion s=s-1does not hold in FIX, this is a contradiction, so X must be finite. We may express 
each element in Y as a product of elements in X, so Y=X. Let use the finite set of relati-
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ons {si=sj: si, sj X, i≠j}, we are identifying all the elements of X as a unique element, so 
we obviously obtain the free inverse semigroup, but this semigroup is not finitely 
generated and so FIX is not finitely generated. 
Remark 4.11 Let S be an inverse semigroup. Then we have the following is true in gene-
ral: 

s≤t  e: t=te ss-1=ts-1 s=st-1s= ss-1=st-1 ss-1=t-1s t-1s s-1t s=ss-1t. 

Acknowledgment 
The authors declare that this work is completely private effort and it has not been sup-
ported by any governmental, financial, educational or otherwise establishment. The 
authors would like to thank the referee, whose careful reading and thoughtful comments 
have helped improve the paper. 

Conflict of Interest Declaration 
The authors declare that there is no conflict of interest statement.  

Ethics Committee Approval and Informed Consent 
 The authors declare that declare that that there is no ethics committee approval and/or 
informed consent statement. 
 
References  
[1] B.Sury, Free groups – basics, Stat-Math Unit Indian Statistical Institute Bangalore, India, IIT 

Bombay, (2010). 

[2] B. Baumslag and B. Chandler, Outline of Theory and Problems of Group Theory, New York 
University, Schaum's Outline Series, Mcgraw-Hill Book Company, New York, San Francisco, 
Toronto, Sydney, (1986). 

[3] J. Z. Gon¸calves and D. S. Passman, Linear groups and group rings, J. Algebra 295 2006, 94–
118,  

[4] C. F. Miller,Combinatorial Group Theory III, Australian National University, (2004). 

[5] A. I. Maltsev, On the equation zxyx−1 y−1 z−1 = aba−1 b−1 in a free group, Algebra and 
Logic, 1(5) 1962, 45-50. 

[6] J. L. Dyer and G. P. Scott, Periodic automorphisms of free groups, Comm. Alg., 3 (1975), 
195-201. 

[7] S. Meskin, Periodic automorphisms of the two-generator free group, in: Proc. Conf. Canberra, 
1973 (Lecture Notes in Math., 372 (1974), 494-498). Berlin: Springer. 

 
Karim S. Kalaf,  ORCID: https://orcid.org/0000-0002-2632-9141 
Hekmat Sh. Mustafa, ORCID: https://orcid.org/0000-0002-4774-2971 
Majid M. Abed, ORCID: https://orcid.org/0000-0003-0483-2093 
 

https://orcid.org/0000-0000-0000-0000

	1 Introduction
	2 Presentation of Free Group
	3 Rank of Free Group
	4.  Inverse of Free Semigroup
	Acknowledgment
	Conflict of Interest Declaration
	Ethics Committee Approval and Informed Consent

