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Abstract 

Today, the increase in demand for electrical energy has revealed a more reliable and higher quality energy concept. This subject has 

taken its place in electrical engineering as "Power Quality" or "Electric Energy Quality" and has made a point for its importance 

with the studies on it. Especially in the process of working with devices containing electronic circuits with direct current and using 

the alternating current offered from the network by using rectifiers, the devices may fail or become disabled due to self-protection 

circuits in case of power quality problems arising from the mains or the rectifiers of the device. In this article, a detailed analysis is 

carried out considering the problem may be due to the power quality due to the fact that the MRI device in Kırıkkale University 

Faculty of Medicine is in continuous failure mode. In addition, the analyzes made in accordance with TS EN 50160 standard within 

the scope of the research were analyzed in computer environment and the results were shared in our article. In this article, the 

relationship between power quality problems and grounding is also examined. 
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1. Introduction 

 

Although statistical information about electrical energy quality is limited, most problems have been identified in recent years. The most 

common problems are; harmonic components that can last from a few seconds to a few hours, complete power outages (voltage 

depressions), voltage fluctuations where the voltage reaches very low or high values, semiconductor technology widespread in all areas, 

the power factor desired to be at least 0.95, even when talking with the mobile phone, relay tripping problems electromagnetic 

interactions that can result. 

 

As the reasons for more frequent mention of energy quality issues in recent years, the following can be said. 

• There are problems affecting the whole system instead of local problems due to interconnected systems, 

• Industrial users who are renewed with microprocessor and power electronics components are more likely to experience the effects 

caused by minor non-standard fluctuations in voltage, 

• Competitions for producing higher quality energy among producers, 

• Consumers begin to be more sensitive and knowledgeable about power quality issues. 

 

The most common energy quality problems in the network can be listed as follows: 

• Voltage disturbances 

• Voltage drop (Dip-Sag) 

• Voltage rise (Swell) 

• Voltage Deduction (Outages) 

• Transients 

• Notch 

• Voltage Fluctuations, Flicker 

• Regular or irregular step voltage changes (Welding and rolling machines are caused by tunnel or mine ventilation systems.) 

• Regular or irregular voltage changes (Arc furnaces) 

• Distortion caused by harmonic components 

• Voltage harmonics 

• Current harmonics 

• Notches 

• Imbalances (Unbalances) 

• Electromagnetic Interference (EMI) 

• Noise (Noise) 

 

In this article, measurements on the causes of frequent malfunctions of MRI devices at Kırıkkale University Medical Faculty were 

analyzed with the equipment purchased with the project numbered 2019/166 supported by Kırıkkale University BAP. The results 

showed that the Faculty grid's energy quality problems are not large enough to affect MRI devices, and device problems are mostly 

caused by user errors. (Anderson & Fouad,1994), (NEMA, 1996), (NFPA 70, 2011), (Arrillaga & Arnold,1990), (Arrillaga et al., 1985) 

 

2. Background of the Electrical Energy Quality Problems 

 

In practice, there is always a close relationship between current and voltage in any power system. Although generators generate voltage 

very close to the sine wave, currents passing through the impedance of the system can cause various disturbances in the voltage. For 

example; 

• The current resulting from a short circuit may cause the voltage to drop or the voltage to collapse completely. 

• Currents resulting from lightning strikes can cause high-impact voltages in the power system, causing "high-impact voltages". 

• The distorted currents formed by harmonic generating loads pass the system impedance and also disturb the voltage and thus,  the 

customers are fed with a distorted voltage. (Arrillaga et al., 1997), (Berg,1978). 

 

In Table 1, it is seen that the weather conditions are mainly caused by voltage depressions and interruptions in the power line. Also, in 

the same table, it is seen that voltage depressions affect the computer systems four times more negatively than interruptions. In addition 

to these, transient events are very important for the systems. The term “Transient” has been used for a long time to indicate  an 

undesirable and instantaneous event in the analysis of power systems. Transient events are very short-lived (up to a few milliseconds) 

voltage distortions, but their intensity is very high and the rise is very fast. Most temporary events are caused by lightning strikes, large 

loads, and reactive loads. Transient states can be classified under two categories as pulsed and oscillating. These terms reflect the 

waveform of the current and voltage transient state. Generally, protection systems keep temporary effects below a certain level of 

security. If the place where temporary events occur is close to the installation or inside the installation, problems may arise(Sankaran, 

2001), (Chapman, 2001), (Domijan & Embriz-Santander,1992). 
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Table 1. Causes of computer system failures due to network disruptive effects 

 

Causes 
Disruptive Effects Computer 

System Failures Breakdowns Outages 

Weather Conditions  37 14 51 

Power System Failures 8 0 8 

Traffic Accidents 8 2 10 

Living beings 5 1 6 

Tree felling 1 1 2 

Unknown 21 2 23 

TOTAL %80 %20 %100 

 

These problems can be listed as follows: 

• The damage caused can be very sudden, 

• Installation or equipment repairs can be damaged in an impossible way, 

• The data on the computer may disappear, 

• The effects can be repeated over time and damage the insulation of the materials. (Dugan, et al., 1996), (Kwasnicki et al., 

2004) 

 

As a result of these accumulations, much larger damages may occur. Costs to take measures are relatively low. The precautions to be 

taken can be listed as follows: 

 

• A low impedance grounding system with a wide frequency range should be selected, with a good low impedance connection 

in the ground electrode system. 

• The design of lightning protection systems should be done appropriately, taking into account local factors such as determining 

the number of days when lightning events occur per year. 

• Protection systems should be located in the first entrance of the incoming line, including telephone and other communication 

lines. 

• Organizations manufacturing protection systems should also provide protection against temporary events occurring in 

switching devices. (Dommel, 1969), (HPQ,1996) 

 

The transient event is also defined as a sudden change in the steady-state condition without a frequency of power in both voltage and 

current parameters that are one-way (positive or negative) in terms of polarity. They are normally characterized by pulsed transient 

events, rising and delay times. Pulse-like transients can stimulate the natural frequencies of power systems circuits and produce transient 

states. In these cases, the systems have oscillations, mostly. The oscillation is defined as a sudden change in the frequency of power of 

both voltage and current parameters containing non-unidirectional positive and negative polarity values. Oscillation transients include 

currents and voltages whose sudden values quickly change polarity. They are characterized by frequency content, amplitude, and 

duration. The commissioning of capacitor groups in turn will cause the formation of transient currents in the form of oscillations. 

Commissioning and disconnecting wired lines with breakers will also cause voltage transients to oscillating in the same frequency 

region. (Radatz, 1998) 

 

 

Additionally, some voltage changes can occur in the power systems due to their characteristics, too. These changes can last long or 

short term. The ANSI C84.1 standard clearly states the steady-state voltage tolerances in a power system. When the ANSI limits are 

exceeded by values greater than 1 minute, the voltage change is considered for a "long term". Long-term changes can be in the form 

of overvoltage or undervoltage. Overvoltage and low voltages are not generally the result of system failures, but they can occur due 

to load changes in the system and on-off events in the network. However, short term changes include the voltage drops (dips) and 

short voltage cuts according to the International Electrotechnical Commission IEC. Short-term voltage changes occur because of the 

malfunctions. Also, energizing large loads that have high starting current is another reason for this situation. Sometimes, it also 

occurs due to the short-term non-contact in the fasteners. Depending on the location of the malfunction and the state of the system, 

the malfunction may temporarily cause a voltage drop, rise, or cut off voltage completely. The malfunction may be near or far from 
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the point of interest. In both cases, the effect on the voltage during the breakdown is a short-term change until the protection relays 

come on and clear the fault. (Lamoree et al., 1991) 

 

 

Power frequency variations, another problem, are expressed as deviations from the fundamental frequency of the power system, 

determined by nominal values of 50 Hz. or 60 Hz. Power system frequency is directly related to the angular velocity of the generators 

feeding the system. When the dynamic balance between load and production changes, insignificant changes occur in frequency. The 

magnitude and duration of the deviation in frequency depending on the load characteristics and the response of the production control 

system to the load changes. Frequency changes can cause the failure of a large part of the transmission system, large-scale loads, or 

large-power generators to fail if the power system goes beyond the limits accepted for normal steady-state operation. In this case, the 

system has to be black-out. The distortion of the waveform is in principle steady from the ideal sine wave-shaped power frequency, 

which is characterized by the spectral content of the deviation. It is expressed as aberration. There are basically five different waveform 

distortions: These are DC component, harmonics, intermediate harmonics, notch, noise and voltage fluctuation. Electromagnetic 

Interference (EMI) is a small energy distorting wave with amplitude between 100 V and 100 V, frequency between 10 kHz and 1 

GHz. Switched power supplies arise from motor control circuits, radio broadcasts and communications over power lines. For this 

purpose, the examination of the MR waveform becomes important (Frank,1997), (Schwartzenberg et al., 1995), (Kennedy, 2000), 

(Kocatepe et al., 2003), (Ludbrook, 1993), (McGranaghan, 1981), (McGranaghan & Mueller, 1999). 

 

3. MRI Waveform Type 

 

A wide range of gradient waveforms is utilized for MR imaging. The most common waveforms include trapezoidal, triangular, and 

sinusoidal. MR gradient heating depends on the time derivative of the gradient waveform and on-device shape, size, and conductivity 

of its conductive elements and applied gradient frequency content. Experiments have been performed using simple structures, e.g. 

cylindrical disk, showing that a critical frequency can be identified over which heating becomes less due to inductive effects. In order 

to maximize the amount of power deposited, a low-frequency sine waveform is proposed to evaluate device heating when exposed to 

gradient fields present in an MR scanner. A sine waveform does not contain higher-order harmonics present in the triangle or 

trapezoidal waveforms. Because of this all of the power induced on a test article will be focused at the frequencies not attenuated by 

device inductive effects. It is known that frequency dependence exists related to gradient-induced device heating. As frequency 

decreases below a certain critical frequency, device heating might be maximized. Thus, it is desired to determine the lowest possible 

clinically relevant frequency which a device might experience in an MR scanner assuming a sine wave gradient signal. Using a sine 

wave test signal, the BG(t) function can be described as follows: (Cenelec, 2014) 

 

BG(t) = BG × sin (2π × f × t)           (1) 

 

where 

 

BG is the magnitude of the gradient field in the MR scanner and bench test coil, in T; 

f is the frequency, in Hz; 

t is time, in s. 

 

By differentiating the formula above with respect to time, the following formula is produced: 

 

           (2) 

From this formula, the dB/dt_rms value can be determined as: 

 

           (3) 

 

From the values previously discussed, we have: 

 

            (4) 

Solving for frequency produces the following result: 
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            (5) 

The sine wave frequency for alternative values are shown in Table 2. 

 

Table 2. The sine wave frequency for alternative values 

 

BG 

mT 

Frequency Hz 

60 158 

50 189 

40 236 

35 270 

30 315 

20 473 

 

 

Due to test system BG limitations, it might not be possible to test at the required 

  value. In this case, it is acceptable to apply a BG waveform of the same frequency with lower peak and  

 value and scale the results proportional to the square of the applied  . 

 

4. Power Quality Standards: TS EN 50160 and TS EN 61000-4-30 

 

4.1. TS EN 50160 

The object of this European Standard is to define, describe and specify the characteristics of the supply voltage concerning: 

a) frequency; 

b) magnitude; 

c) waveform; 

d) symmetry of the line voltages. 

 

These characteristics are subject to variations during the normal operation of a supply system due to changes of load, disturbances 

generated by certain equipment and the occurrence of faults which are mainly caused by external events. The characteristics vary in a 

manner which is random in time, with reference to any specific supply terminal, and random in location, with reference to any given 

instant of time. Because of these variations, the values given in this standard for the characteristics can be expected to be exceeded on 

a small number of occasions. Some of the phenomena affecting the voltage are particularly unpredictable, which make it very difficult 

to give useful definite values for the corresponding characteristics. The values given in this standard for the voltage characteristics 

associated with such phenomena, e.g. voltage dips and voltage interruptions, shall be interpreted accordingly. (IEEE, 1995), (Series, 

2014) 

 

4.2. TS EN 61000-4-30 

This part of IEC 61000-4 defines the methods for measurement and interpretation of results for power quality parameters in a.c. 

power supply systems with a declared fundamental frequency of 50 Hz. or 60 Hz. Measurement methods are described for each 

relevant parameter in terms that give reliable and repeatable results, regardless of the method’s implementation. This standard 

addresses measurement methods for in-situ measurements. Measurement of parameters covered by this standard is limited to 

conducted phenomena in power systems. The power quality parameters considered in this standard are power frequency, magnitude 

of the supply voltage, flicker, supply voltage dips and swells, voltage interruptions, transient voltages, supply voltage unbalance, 

voltage harmonics and interharmonics, mains signalling on the supply voltage, rapid voltage changes, and current measurements. (I. 

E. C., 2015) 

 

4.2.1. Classes of measurement 

For each parameter measured, two classes, A and S, are defined in this standard. For each class, measurement methods and appropriate 

performance requirements are included. 
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– Class A 

This class is used where precise measurements are necessary, for example, for contractual applications that may require resolving 

disputes, verifying compliance with standards, etc. Any measurements of a parameter carried out with two different instruments 

complying with the requirements of Class A, when measuring the same signals, will produce matching results within the specified 

uncertainty for that parameter. Synchronization of aggregation intervals for Class A you can see Figure 1 

 

 
Figure 1. Synchronization of aggregation intervals for Class A 

 

– Class S 

This class is used for statistical applications such as surveys or power quality assessment, possibly with a limited subset of parameters. 

Although it uses equivalent intervals of measurement as Class A, the Class S processing requirements are much lower. Some surveys 

may assess power quality parameters of several measurement sites on a network; other surveys assess power quality parameters at a 

single site over a period of time, or at locations within a building or even within a single large piece of equipment. 

 

– Class B 

For Class B information, see Annex E (informative) of this standard. Class B methods shall not be employed for new instruments. 

Class B is moved to Annex E on the basis that all new instrument designs will comply with either Class A or Class S. Class B may be 

relevant for legacy instruments that are still in use. Class B may be removed in the next edition of this standard. 

 

4.2.2. Rapid voltage change (RVC) 

An RVC event is generally an abrupt transition between two r.m.s. voltages. By definition, the two r.m.s. voltages must be “steady 

state”, a condition that is defined in the method below. 

 

Dips and swells often begin or end with abrupt transitions between two r.m.s. voltages. However, by definition these are not RVC 

events because they exceed the dip or swell thresholds. Figure 2.  

 

 
Figure 2. RVC event: example of a change in r.m.s voltage that results in an RVC event 
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5. Harmonic Limits 

 

For Class A equipment, the harmonics of the input current shall not exceed the values given in Table 3. 

 

Table 3. Limits for Class A equipment 

 
 

6. About Power Quality Measurement 

 

According to EMRA Regulation on Service Quality Regarding Electricity Distribution and Retail Sale; Regarding the recording of 

technical quality parameters, the devices to be used must measure Class A specifications specified in the TS EN 61000-4-30 standard. 

Measurements will be made at OG and AG levels. Measurements will be carried out in locations where general assessment can be 

made through sampling to ensure different network characteristics and load profiles, customer groups, network sections that serve 

different population densities, from the network sections with the highest short circuit currents to the lowest network conditions. 

 

7. Measurement Equipment 

 

Portable power analyzer for measuring and recording all electrical parameters in singlephase, two-phase and three-phase networks. 

Measures leakage currents, power quality parameters and records transients. AR6 is an integral tool for problem diagnosis and detection 

in any electrical installation and can also be used to prepare energy studies. Technical features are high-accuracy energy-consumption 

studies, detection of problems relating to electrical protection elements, analysis of power quality and transient phenomena, local 

recording of start-up currents and other variables of interest on the unit. 

 

 
Figure 3. Circutor AR6 Class A Power Analyzer 
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8. Measurement Data 

 

Measurement results are as follows. Figure 4, Figure 5, Figure 6, Figure 7, Figure 8. Phase-Neutral voltage value tolerances (T) were 

found to be T <10%. It has been observed that these tolerance values are suitable for devices and equipment that contain sensitive 

electronic structures. The voltage tolerance values declared by the manufacturers for the device containing sensitive electronic 

structures should be taken into consideration and, if necessary, they should be supplied via online power supplies. UPS tested has been 

found to have UPS in Figure 4. 

 
 

Figure 4. Voltage Graphic 

 

5 min. records obtained in periods, we can state that the amount of current drawn in the system reaches 4.7A levels and an abnormality 

cannot be seen in Figure 5. 

 

 
 

Figure 5. Current Graphic 

 

It has been observed that the compensation system is generally sufficient for the observed time period in Figure  6. 

 
 

Figure 6. Power Factor Graphic 
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As seen in Table 6, the total voltage harmonics are around 2% and below the limit value (5%) that EN 50160, ANSI / IEEE-519-1992 

and EMRA predict. No fault is anticipated due to the total voltage harmonics. Total current harmonics (TTB = total demand distortion) 

exceed the 20% value predicted in EMRA and IEEE-519. It is seen that the current total harmonic distortion level in A2 phase reaches 

up to 26,70%. Depending on the current harmonics, sensitive devices have the risk of malfunction in Figure 7. 

 

 
 

Figure 7. Harmonics Graphic 

 

 
 

Figure 8. Flicker 

 

Although the short-term flicker (in Figure  8) values detected were instantaneously above the limit values, they were generally found 

appropriate. No adverse effects are expected on medical equipment. 
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10. Conclusions And Future Work 

 

According to the results of the measurement performed at the Energy input, UPS output and UPS input of the Kırıkkale Universi ty 

Faculty of Medicine MRI device, it was understood that there was no network-related harmonic, flicker problem, but the energy quality 

problem shown as the reason that the device constantly switched to Quench mode, and the problem was caused by the helium gas 

leakage of the MRI device. Also, according to the measurement results, it was observed that there was no grounding deficiency. In 
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medical locations it is necessary to ensure the safety of patients likely to be subjected to the application of ME (medical electrical) 

equipment. For every activity and function in a medical location, the particular requirements for safety have to be considered. Safety 

can be achieved by ensuring the safety of the installation and the safe operation and maintenance of ME equipment connected to it. 

The use of ME equipment on patients undergoing critical care has called for enhanced reliability and safety of Electrical installations 

in hospitals so as to improve the safety and continuity of supplies which is met by application of standards. In the later stages of the 

study, besides energy analysis, ROI analyzes will be carried out and a solution will be produced for high-end devices such as MRI. 
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