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ABSTRACT

In this paper, we study the statistical immersion of codimension one from a Sasakian statistical
manifold of constant φ−curvature to a holomorphic statistical manifold of constant holomorphic
curvature and its converse. We prove that in both cases the constant φ−curvature equals to one
and the constant holomorphic curvature must be zero. Moreover, we construct several examples
of statistical manifolds, Sasakian statistical manifolds and holomorphic statistical manifolds of
constant holomorphic curvature zero.
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1. Introduction

The notion of statistical structure was initially introduced from the treatment of statistical inference problems
in information geometry by S. Amari in 1985[1]. From then on, the geometry of statistical manifolds has
developed in close relations with affine differential geometry[13] and Hessian geometry[16]. By definition,
a statistical structure can be viewed as a generalization of a Riemannian structure containing a Riemannian
metric and its Levi-Civita connection. Inspired from this idea, in 2004, T. Kurose introduced the notion of
holomorphic statistical structure as a generalization of Kähler structure in [12]. Several years later, H. Furuhata
introduced the notion of Sasakian statistical structure as a generalization of Sasakian structure in [10] and
Kenmotsu statistical structure as a generalization of Kenmotsu structure in [9].

Since a statistical structure can be considered as a generalization of a Riemannian structure, it is natural
to consider whether the results in Riemannian geometry still hold in the geometry of statistical manifolds or
not. For example, in 1999, B. Y. Chen[6] obtained a sharp relationship between the squared mean curvature
and the Ricci curvature for a Riemannian submanifold of a real space form, which is known as the Chen-
Ricci inequality. Later in 2015, M. E. Aydin, A. Mihai and I. Mihai[3] established the Chen-Ricci inequality
for a statistical submanifold of a statistical manifold of constant curvature, which generalized Chen’s classical
result. Moreover, many other geometric inequalities in classical Riemannian geometry have been generalized
to various statistical manifolds. For instance, M. E. Aydin, A. Mihai and I. Mihai[4] obtained the generalized
Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature; B. Y. Chen, A.
Mihai, and I. Mihai[7] proved the Chen first inequality for statistical submanifolds in Hessian manifolds
of constant Hessian curvature. Also, some other results in Riemannian geometry can be generalized to the
geometry of statistical manifolds. For example, in 2015, M. Milijević[14] generalized a classical result[11]
on totally real submanifolds of complex space forms to totally real statistical submanifolds of holomorphic
statistical manifolds. Recently, M. Milijević[15] proved the non-existence of CR submanifolds of maximal
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CR dimension with umbilical shape operators in holomorphic statistical manifolds of nonzero constant
holomorphic sectional curvature. This result corresponds to the theorem about the non-existence of umbilical
hypersurfaces in non-flat complex space forms due to Y. Tashiro and S. Tachibana[18].

In 2009, H. Furuhata[8] considers a holomorphic statistical manifold of constant holomorphic curvature
as a statistical hypersurface of a statistical manifold of constant curvature, and proved that the constant
holomorphic curvature must be zero. Inspired by H. Furuhata’s result, in this paper we investigate the
statistical immersion of codimension one from a Sasakian statistical manifold of constant φ−curvature to a
holomorphic statistical manifold of constant holomorphic curvature and its inverse. We prove that in both
cases the constant φ−curvature of the Sasakian statistical manifold must be equal to one and the constant
holomorphic curvature of the holomorphic statistical manifold must be equal to zero(see Theorem 3.1 and
Theorem 4.1).

This paper is organized as follows. In Section 2 we briefly recall some basic knowledge about Sasakian
statistical manifolds, holomorphic statistical manifolds and statistical immersions. Our two main theorems
are presented in Section 3 and Section 4. Besides, we also construct several examples of statistical structures,
Sasakian statistical structures and holomorphic statistical structures in Section 5. Some of these structures
depend on several functions. By choosing these functions adequately we obtain the holomorphic statistical
structures of constant holomorphic curvature zero.

2. Preliminaries

Let (M, g) be a Riemannian manifold and ∇0 be the Levi-Civita connection of g on M. Throughout this
paper, we denote the set of sections of vector bundle E →M by C∞(E). For instance, we denote the set of
all smooth tangent vector fields on M by C∞(TM) and the set of all smooth normal vector fields on M by
C∞(T⊥M). Besides, C∞(M,R) denotes the set of all smooth functions on M.

Let ∇ be an affine connection on a Riemannian manifold (M, g). The affine connection ∇∗ is called the dual
connection of ∇ with respect to g, if

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇∗ZY ) (2.1)

holds for any X,Y, Z ∈ C∞(TM) .

Definition 2.1. [13] Let (M, g) be a Riemannian manifold and ∇ an affine connection on M . The pair (g,∇) is
called a statistical structure or a Codazzi structure, if ∇ is torsion free and (∇Xg)(Y,Z) = (∇Y g)(X,Z) holds
for any X,Y, Z ∈ C∞(TM). In this case, (M, g,∇) is said to be a statistical manifold or a Codazzi manifold.

By definition, a Riemannian structure (g,∇0) is a special statistical structure, which is called a Riemannian
statistical structure or a trival statistical structure. In fact, the Levi-Civita connection∇0 is self-dual with respect
to the Riemannian metric g. Besides, if (g,∇) is a statistical structure, so is (g,∇∗).

It is known that the statistical manifold originated from statistics and here we give a classical statistical
structure on a parametric statistical model.

Example 2.1. [13] Let (Ω, β) be a measurable space andM a parametric statistical model on Ω. Namely,M is a
set of probability distributions on (Ω, β) parametrized by ζ =

(
ζ1, . . . , ζn

)
∈ U ⊂ Rn:

M =

{
p(x, ζ)|p(x, ζ) > 0,

∫
Ω

p(x, ζ)dx = 1

}
.

Under suitable conditions(see [2]),M is regarded as a manifold with a local coordinate system (ζ1, . . . , ζn).
We set

g(ζ) :=
∑
{
∫

Ω

(
∂ log p

∂ζi
(x, ζ)

)(
∂ log p

∂ζj
(x, ζ)

)
p(x, ζ)dx}dζidζj ,

and

Γ
(α)
ijk(ζ) :=

∫
Ω

{
∂2 log p

∂ζi∂ζj
(x, ζ) +

1− α
2

∂ log p

∂ζi
(x, ζ)

∂ log p

∂ζj
(x, ζ)

}
∂ log p

∂ζk
(x, ζ)p(x, ζ)dx(α ∈ R).

Define an affine connection ∇(α) by g(∇(α)
∂

∂ζi

∂
∂ζj ,

∂
∂ζk

) = Γ
(α)
ijk(ζ). It can be proved that (M, g,∇(α)) is a statistical

manifold. In fact, g is known as the Fisher metric and ∇(α) the α−connection with respect to g.
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Proposition 2.1. [8] Let (M, g,∇) be a statistical manifold and ∇0 the Levi-Civita connection of g on M. For
any X,Y, Z ∈ C∞(TM), the difference tensor field K of type (1, 2) defined by KXY = ∇XY −∇0

XY satisfies:

KXY = KYX, g(KXY,Z) = g(KXZ, Y ). (2.2)

Conversely, if a (1, 2)−tensor field K on M satisfies (2.2), then (M, g,∇0 +K) is a statistical manifold.

Next we introduce the notion of statistical immersion and give some basic properties of statistical
submanifolds.

Definition 2.2. [8] Let (M̃, g̃, ∇̃) be a statistical manifold and f : M → M̃ be an immersion. Denote the tangent
mapping and the cotagent mapping of f by f∗ and f∗ respectively. Define g and ∇ on M by

g = f∗g̃, g(∇XY, Z) = g̃(∇̃Xf∗Y, f∗Z), ∀X,Y, Z ∈ C∞(TM).

Then the pair (g,∇) is a statistical structure on M, which is called the induced statistical structure
by f from (g̃, ∇̃).

Let (M, g,∇) and (M̃, g̃, ∇̃) be two statistical manifolds. An immersion f : M → M̃ is called a statistical
immersion if (g,∇) coincides with the induced statistical structure[8]. Also, (M, g,∇) is called a statistical
submanifold of (M̃, g̃, ∇̃). Similar to the Riemannian submanifolds, the Gauss and the Weingarten formulas
in statistical submanifolds are as follows[20]:

∇̃XY = ∇XY + h(X,Y ), ∇̃∗XY = ∇∗XY + h∗(X,Y ), (2.3)

∇̃XN = −ANX +∇⊥XN, ∇̃∗XN = −A∗NX +∇∗⊥X N, (2.4)

where X,Y ∈ C∞(TM), N ∈ C∞(T⊥M). In the above formulas, h and h∗ are the second fundamental forms
with respect to ∇̃ and ∇̃∗, respectively;A andA∗ are the shape operators with respect to ∇̃ and ∇̃∗, respectively.
Besides, there are relationships among them similar to the Riemannian case[20]:

h(X,Y ) = h(Y,X), h∗(X,Y ) = h∗(Y,X), (2.5)

g(ANX,Y ) = g̃(h∗(X,Y ), N), g(A∗NX,Y ) = g̃(h(X,Y ), N). (2.6)

Proposition 2.2. [20] Let f : (M, g,∇)→ (M̃, g̃, ∇̃) be a statistical immersion. Denote the curvature tensor field
of ∇̃(resp. ∇) by R̃(resp. R). Then the Gauss equation is

[R̃(X,Y )Z]> = R(X,Y )Z +Ah(X,Z)Y −Ah(Y,Z)X, (2.7)

where any X,Y, Z ∈ C∞(TM), N ∈ C∞(T⊥M), and [ ]> denotes the tangential component of [ ].

Remark 2.1. By (2.7), if M is a statistical hypersurface of M̃ and N is the unit normal vector field on M, then the
Gauss equation can be written as

[R̃(X,Y )Z]> = R(X,Y )Z + g(A∗X,Z)AY − g(A∗Y, Z)AX, (2.8)

where we respectively denote AN and A∗N by A and A∗ for simplicity.
Next, we review the definition of Kähler manifold, which is known as an important object in Riemannian

geometry.

Definition 2.3. [21] Let M be an even dimensional differential manifold and J a (1, 1)−tensor field on M . J
is called an almost complex structure if J2 = −Id, where Id denotes the identity transformation. A manifold
endowed with an almost complex structure is called an almost complex manifold.

Definition 2.4. [21] Let (M,J) be an almost complex manifold and g a Riemannian metric onM . If g(JX, JY ) =
g(X,Y ) holds for any X,Y ∈ C∞(TM), then g is called an almost Hermitian metric and (M,J, g) is called an
almost Hermitian manifold.

Proposition 2.3. [21] Let (M,J, g) be an almost Hermitian manifold. For any X,Y ∈ C∞(TM), we define

ω(X,Y ) = g(X, JY ). (2.9)

Then ω is a 2−form on M . Especially, ω(X,X) = 0.
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Definition 2.5. [21] An almost Hermitian manifold (M,J, g) is called a Kähler manifold if ω is closed, namely,
dω = 0.

As we know, a statistical structure can be considered as a generalization of a Riemannian structure.
Motivated by this idea, T. Kurose[12] introduced the notion of holomorphic statistical manifold by endowing
a Kähler manifold with a suitable statistical structure.

Definition 2.6. [8] (M,J, g,∇) is called a holomorphic statistical manifold if (M,J, g) is a Kähler manifold, (∇, g)
is a statistical structure on M and ∇ω = 0, where ω is defined by (2.9).

Proposition 2.4. [8] Let (M,J, g) be a Kähler manifold and (g,∇) a statistical structure on M . Then (M,J, g,∇) is a
holomorphic statistical manifold if and only if the difference tensor field K satisfies

KXJY + JKXY = 0 (2.10)

for any X,Y ∈ C∞(TM).
Conversely, if a (1, 2)−tensor fieldK onM satisfies (2.2) and (2.10), then (M,J, g,∇0 +K) is a holomorphic statistical

manifold, where ∇0 denotes the Levi-Civita connection of g.

Definition 2.7. [8] A holomorphic statistical manifold is said to be of constant holomorphic curvature k ∈ R if

R(X,Y )Z =
k

4
{g(Y,Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY + 2g(X, JY )JZ} (2.11)

holds for any X,Y ∈ C∞(TM), where R is the curvature tensor field of ∇.

Now we recall the notion of Sasakian manifold, which is another classical topic in differential geometry.

Definition 2.8. [5] Let φ, ξ, η respectively represent a (1, 1)−tensor field, a vector field and a 1−form on an odd
dimensional manifold M . If the following equations hold for any X ∈ C∞(TM) :

φ2X = −X + η(X)ξ, η(ξ) = 1, η(φX) = 0, (2.12)

then the triple (φ, ξ, η) is called an almost contact structure. In an almost contact structure (φ, ξ, η), ξ is called
the structure vector field.

Definition 2.9. [5] Let (φ, ξ, η) be an almost contact structure and g be a Riemannian metric on an odd
dimensional manifold M. For any X,Y ∈ C∞(TM), if

g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ), (2.13)

then the quadruple (φ, ξ, η, g) is called an almost contact metric structure and (M,φ, ξ, η, g) is called an almost
contact metric manifold.

Proposition 2.5. [5] Let (M,φ, ξ, η, g) be an almost contact metric manifold. For any X,Y ∈ C∞(TM), we define

Ω(X,Y ) := g(X,φY ). (2.14)

Then Ω is a 2-form on M. In particular, Ω(X,X) = 0 and φξ = 0.

Definition 2.10. [5] An almost contact metric manifold (M,φ, ξ, η, g) is called a Sasakian manifold if

(∇0
Xφ)Y = g(X,Y )ξ − η(Y )X (2.15)

holds for any X,Y ∈ C∞(TM), where ∇0 is the Levi-Civita connection of g on M.

Similarly, H. Furuhata introduced the notion of Sasakian statistical manifold by endowing a Sasakian
manifold with a suitable statistical structure[10].

Definition 2.11. [10] (M,φ, ξ, η, g,∇) is called a Sasakian statistical manifold if (M,φ, ξ, η, g) is a Sasakian
manifold, (∇, g) is a statistical structure on M and ∇Ω = ∇∗Ω, where Ω is defined by (2.14).
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Proposition 2.6. [10] Let (M,φ, ξ, η, g) be a Sasakian manifold and (g,∇) a statistical structure on M .
Then (M,φ, ξ, η, g,∇) is a Sasakian statistical manifold if and only if the difference tensor field K satisfies

KXφY + φKXY = 0 (2.16)

for any X,Y ∈ C∞(TM).
Conversely, if a (1, 2)−tensor field K on M satisfies (2.2) and (2.16), then (M,φ, ξ, η, g,∇0 +K) is a Sasakian

statistical manifold, where ∇0 denotes the Levi-Civita connection of g.

Definition 2.12. A Sasakian statistical manifold (M,φ, ξ, η, g,∇) is said to be of constant φ−curvature c ∈ R if

R(X,Y )Z =
c+ 3

4
{g(Y,Z)X − g(X,Z)Y }+

c− 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y,Z)η(X)ξ + g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ}
(2.17)

holds for any X,Y, Z ∈ C∞(TM), where R is the curvature tensor field of ∇.

3. Sasakian statistical manifolds as hypersurfaces of holomorphic statistical manifolds

Theorem 3.1. Let (M̃, J, g̃, ∇̃) be a (2m+ 2)−dimensional holomorphic statistical manifold of constant holomorphic
curvature k, m ≥ 4, and (M,φ, ξ, η, g,∇) be a (2m+ 1)−dimensional Sasakian statistical manifold of
constant φ−curvature c. If M is a statistical hypersurface of M̃, then k = 0, c = 1.

Proof. Since M is a statistical hypersurface of M̃, substituting (2.11) and (2.17) into the Gauss equation (2.8), we
have

k

4
{g̃(Y,Z)X − g̃(X,Z)Y + g̃(JY, Z)JX − g̃(JX,Z)JY + 2g̃(X,JY )JZ}>

=
c+ 3

4
{g(Y,Z)X − g(X,Z)Y }+

c− 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ

+ g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ}+ g(A∗X,Z)AY − g(A∗Y,Z)AX.

(3.1)

Denote the left-hand side of (3.1) and the right-hand side of (3.1) by A1 and B1 respectively. Let {ei} be a
local orthonormal frame field on M and N be a unit normal vector field on M. Putting Y = Z = ei in (3.1) and
summing with respect to i, one obtains

A1 =
k

4

2m+1∑
i=1

{g̃(ei, ei)X − g̃(X, ei)ei + g̃(Jei, ei)JX − g̃(JX, ei)Jei + 2g̃(X,Jei)Jei}>

=
k

4
{(2m+ 1)X −X − 3J

2m+1∑
i=1

g̃(JX, ei)ei}>

=
k

4
{2mX − 3J [JX − g̃(JX,N)N ]}>

=
k

4
{(2m+ 3)X − 3g(X,JN)JN},
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where we have used the fact that g̃(X,JY ) = −g̃(JX, Y ) and JN is a tangent vector field since g̃(N, JN) = 0.
Besides,

B1 =
c+ 3

4

2m+1∑
i=1

{g(ei, ei)X − g(X, ei)ei}+
c− 1

4

2m+1∑
i=1

{η(X)η(ei)ei − η(ei)η(ei)X

+ g(X, ei)η(ei)ξ − g(ei, ei)η(X)ξ + g(φei, ei)φX − g(φX, ei)φei − 2g(φX, ei)φei}
+ g(A∗X, ei)Aei − g(A∗ei, ei)AX

=
c+ 3

4
{(2m+ 1)X −X}+

c− 1

4
{η(X)

2m+1∑
i=1

g(ei, ξ)ei − g(

2m+1∑
i=1

g(ei, ξ)ei, ξ)X

+ g(X,

2m+1∑
i=1

g(ei, ξ)ei)ξ − (2m+ 1)η(X)ξ − 3φ

2m+1∑
i=1

g(φX, ei)ei}+AA∗X − (trA∗)AX

=
c+ 3

4
(2mX) +

c− 1

4
{η(X)ξ −X + η(X)ξ − (2m+ 1)η(X)ξ + 3X − 3η(X)ξ}

+AA∗X − (trA∗)AX

=
c+ 3

4
(2mX) +

c− 1

4
{(−2− 2m)η(X)ξ + 2X}+AA∗X − (trA∗)AX,

where we have used the equation g(X,φY ) = −g(φX, Y ). Then we have

k

4
{(2m+ 3)X − 3g(X, JN)JN} =

c+ 3

4
(2mX) +

c− 1

4
{(−2− 2m)η(X)ξ + 2X}+AA∗X − (trA∗)AX.

For simplicity, we write

p =
(2m+ 3)k − 2m(c+ 3)− 2(c− 1)

4
, q =

(c− 1)(2m+ 2)

4
, r = −3k

4
,

then the above formula becomes

AA∗X − (trA∗)AX = pX + qη(X)ξ + rg(X, JN)JN. (3.2)

Choose {ei} such that Aei = λiei and assume that A∗ei =
∑
l

aliel. Putting X = ei in (3.2), we obtain∑
l

aliλlel − (trA∗)λiei = pei + qη(ei)
∑
l

η(el)el + rg(ei, JN)
∑
l

g(el, JN)el,

which implies:
aiiλi − (trA∗)λi = p+ qη2(ei) + rg2(ei, JN),

aliλl = qη(ei)η(el) + rg(ei, JN)g(el, JN) (l 6= i).

Hence, we have

AA∗ei =
∑
l

aliλlel = aiiλiei +
∑
l( 6=i)

aliλlel

= aiiλiei +
∑
l(6=i)

[qη(ei)η(el) + rg(ei, JN)g(el, JN)]el,

A∗Aei = λi
∑
l

aliel = λia
i
iei +

∑
l( 6=i)

λia
l
iel = λia

i
iei +

∑
l( 6=i)

λia
i
lel

= aiiλiei +
∑
l(6=i)

[qη(ei)η(el) + rg(ei, JN)g(el, JN)]el,

so that AA∗ = A∗A. Therefore, we can choose a local orthonormal frame field {ei} such that Aei =
λiei and A∗ei = λ∗i ei. Putting X = ei and Y = ej in (3.1), we have

k

4
{g̃(ej , Z)ei − g̃(ei, Z)ej + g̃(Jej , Z)Jei − g̃(Jei, Z)Jej + 2g̃(ei, Jej)JZ}>

=
c+ 3

4
{g(ej , Z)ei − g(ei, Z)ej}+

c− 1

4
{η(ei)η(Z)ej − η(ej)η(Z)ei + g(ei, Z)η(ej)ξ − g(ej , Z)η(ei)ξ

+ g(φej , Z)φei − g(φei, Z)φej − 2g(φei, ej)φZ}+ g(λ∗i ei, Z)λjej − g(λ∗jej , Z)λiei.
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If Z is normal to span {ei, ej}, then it follows that

k

4
{g̃(Jej , Z)Jei − g̃(Jei, Z)Jej + 2g̃(ei, Jej)JZ}>

=
c− 1

4
{η(ei)η(Z)ej − η(ej)η(Z)ei + g(φej , Z)φei − g(φei, Z)φej − 2g(φei, ej)φZ}.

(3.3)

If g(φei, ej) = 0 for any i, j, then φei =
∑
k

g(φei, ek)ek = 0, which means φ = 0. Obviously, this is impossible.

Thus, there exist i, j such that g(φei, ej) 6= 0. Assume that c 6= 1, then it follows from (3.3) that φZ ∈
span{ei, ej , φei, φej , (Jei)>, (Jej)>, (JZ)>}. Noting that Z is normal to span {ei, ej}, we see that rankφ ≤ 7. It
contradicts the fact that rankφ = 2m(see Theorem 4.1 in [5]) and m ≥ 4. This proves that c = 1. Then, we have

k

4
{g̃(Jej , Z)Jei − g̃(Jei, Z)Jej + 2g̃(ei, Jej)JZ}> = 0.

If g̃(ei, Jej) = 0 holds for any i, j, then (Jej)
> =

∑
i

g(ei, Jej)ei = 0, which implies that for any tangent vector

field X, JX is parallel with the unit normal vector field N. This is impossible. Hence, there exist i, j such
that g̃(ei, Jej) 6= 0. If k 6= 0, then JZ ∈ span{Jei, Jej , N}, which gives that rankJ ≤ 4. It contradicts the fact that
rankJ = 2m+ 2(see page 7 of [21]) and m ≥ 4 similarly. Thus, k = 0. This completes the proof.

4. Holomorphic statistical manifolds as hypersurfaces of Sasakian statistical manifolds

Theorem 4.1. Let (M̃, φ, ξ, η, g̃, ∇̃) be a (2m+ 1)−dimensional Sasakian statistical manifold of
constant φ−curvature k, m ≥ 5, and (M,J, g,∇) be a 2m−dimensional holomorphic statistical manifold of constant
holomorphic curvature c. If M is a statistical hypersurface of M̃, then k = 1, c = 0.

Proof. SinceM is a statistical hypersurface of Sasakian statistical manifold M̃, substituting (2.11) and (2.17) into
the Gauss equation (2.8), we have

k + 3

4
{g̃(Y,Z)X − g̃(X,Z)Y }> +

k − 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g̃(X,Z)η(Y )ξ − g̃(Y,Z)η(X)ξ

+ g̃(φY,Z)φX − g̃(φX,Z)φY − 2g̃(φX, Y )φZ}>

=
c

4
{g(Y,Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY + 2g(X,JY )JZ}

+ g(A∗X,Z)AY − g(A∗Y,Z)AX.

(4.1)

Denote the left-hand side of (4.1) and the right-hand side of (4.1) by A2 and B2 respectively. Let {ei} be a local
orthonormal frame field onM andN be the normal vector field onM . Putting Y = Z = ei in (4.1) and summing
with respect to i, one obtains

A2 =
k + 3

4
{2mX −X}+

k − 1

4
{η(X)

2m∑
i=1

η(ei)ei −
2m∑
i=1

η(ei)η(ei)X +

2m∑
i=1

g̃(X, ei)η(ei)ξ

−
2m∑
i=1

g̃(ei, ei)η(X)ξ +

2m∑
i=1

g̃(φei, ei)φX −
2m∑
i=1

g̃(φX, ei)φei − 2

2m∑
i=1

g̃(φX, ei)φei}>

=
k + 3

4
(2m− 1)X +

k − 1

4
{η(X)ξ> − |ξ>|2X + η(X)ξ − 2mη(X)ξ − 3φ[

2m∑
i=1

g̃(φX, ei)ei]}>

=
k + 3

4
(2m− 1)X +

k − 1

4
{η(X)ξ> − |ξ>|2X + η(X)ξ − 2mη(X)ξ − 3φ[φX − g̃(φX,N)N ]}>

=
k + 3

4
(2m− 1)X +

k − 1

4
{(3− |ξ>|2)X − (2m+ 1)η(X)ξ> − 3g(X,φN)φN},
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where we have used the fact that g̃(X,φY ) = −g̃(φX, Y ) and φN is a tangent vector field since g̃(φN,N) = 0.
Besides,

B2 =
c

4
{2mX −X − 3J

2m∑
i=1

g(JX, ei)ei}+ g(A∗X, ei)Aei − g(A∗ei, ei)AX

=
c

4
{2mX −X − 3J(JX)}+AA∗X − (trA∗)AX

=
c

4
(2m+ 2)X +AA∗X − (trA∗)AX.

Therefore, we have

k + 3

4
(2m− 1)X +

k − 1

4
{(3− |ξ>|2)X − (2m+ 1)η(X)ξ> − 3g(X,φN)φN}

=
c

4
(2m+ 2)X +AA∗X − (trA∗)AX.

For simplicity, we write

p =
(k + 3)(2m− 1) + (k − 1)(3− |ξ>|2)− c(2m+ 2)

4
, q =

(2m+ 1)(1− k)

4
, r =

3(1− k)

4
,

then the above formula becomes

AA∗X − (trA∗)AX = pX + qη(X)ξ> + rg(X,φN)φN. (4.2)

Choose {ei} such that Aei = λiei and assume that A∗ei =
∑
l

aliel. Putting X = ei in (4.2), we obtain

∑
l

aliλlel − (trA∗)λiei = pei + qη(ei)
∑
l

η(el)el + rg(ei, φN)
∑
l

g(el, φN)el,

which implies:
aiiλi − (trA∗)λi = p+ qη2(ei) + rg2(ei, φN),

aliλl = qη(ei)η(el) + rg(ei, φN)g(el, φN) (l 6= i).

Hence, we have

AA∗ei = A
∑
l

aliel =
∑
l

aliλlel = aiiλiei +
∑
l( 6=i)

aliλlel

= aiiλiei +
∑
l(6=i)

[qη(ei)η(el) + rg(ei, φN)g(el, φN)]el,

A∗Aei = A∗λiei = λi
∑
l

aliel = λia
i
iei +

∑
l(6=i)

λia
l
iel = λia

i
iei +

∑
l(6=i)

λia
i
lel

= aiiλiei +
∑
l(6=i)

[qη(ei)η(el) + rg(ei, φN)g(el, φN)]el,

so that AA∗ = A∗A. Therefore, we can choose a local orthonormal frame field {ei} such that Aei =
λiei and A∗ei = λ∗i ei. Putting X = ei and Y = ej in (4.1), we obtain

k + 3

4
{g̃(ej , Z)ei − g̃(ei, Z)ej}+

k − 1

4
{η(ei)η(Z)ej − η(ej)η(Z)ei + g̃(ei, Z)η(ej)ξ − g̃(ej , Z)η(ei)ξ

+ g̃(φej , Z)φei − g̃(φei, Z)φej − 2g̃(φei, ej)φZ}>

=
c

4
{g(ej , Z)ei − g(ei, Z)ej + g(Jej , Z)Jei − g(Jei, Z)Jej + 2g(ei, Jej)JZ}

+ g(λ∗i ei, Z)λjej − g(λ∗jej , Z)λiei.

If Z is normal to span {ei, ej}, then

k − 1

4
{η(ei)η(Z)ej − η(ej)η(Z)ei + g̃(φej , Z)φei − g̃(φei, Z)φej − 2g̃(φei, ej)φZ}>

=
c

4
{g(Jej , Z)Jei − g(Jei, Z)Jej + 2g(ei, Jej)JZ}.

(4.3)
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If g̃(φei, ej) = 0 for any i, j, then (φei)
> =

∑
k

g̃(φei, ek)ek = 0, which implies that for any X ∈ C∞(TM), φX is

parallel with N. This is impossible. Thus, there exist i, j such that g̃(φei, ej) 6= 0. Assume that k 6= 1, then it
follows from (4.3) that φZ ∈ span{ei, ej , φei, φej , N, Jei, Jej , JZ}. Noting that Z is normal to span{ei, ej , N}, we
see that rankφ ≤ 9. It contradicts the fact that rankφ = 2m(see Theorem 4.1 in [5]) and m ≥ 5. This proves
that k = 1. Then,

c

4
{g(Jej , Z)Jei − g(Jei, Z)Jej + 2g(ei, Jej)JZ} = 0.

If g(ei, Jej) = 0 holds for any i, j, then Jej =
∑
i

g(ei, Jej)ei = 0,which means that JX = 0 for any tangent vector

field X. This is impossible. Hence, there exist i, j such that g(ei, Jej) 6= 0. If c 6= 0, then JZ ∈ span{Jei, Jej},
which gives that rankJ ≤ 2. It contradicts the fact that rankJ = 2m(see page 7 of [21]) and m ≥ 5 similarly.
Thus, c = 0. This completes the proof.

5. Examples of statistical manifolds

In this section we show some examples of statistical manifolds and provide several methods to construct
Sasakian statistical manifolds and holomorphic statistical manifolds(see Example 5.2 and Example 5.3).
Especially, we give all the Sasakian statistical structures on the usual Sasakian manifold R3 in terms of three
independent functions(see Proposition 5.1). Moreover, we find out all the holomorphic statistical structures
of constant holomorphic curvature 0 on a Kähler manifold due to A. N. Siddiqui and M. H. Shahid[17](see
Proposition 5.2).

Example 5.1. Consider a 3-dimensional manifold M = {(x, y, z) ∈ R3|y 6= 0}, where (x, y, z) are the standard
coordinate system in R3. Let g be the Riemannian metric defined by g = y2(dx2 + dy2 + dz2). Then (M, g) is a
Riemannian manifold. Take e1 = ∂

∂x , e2 = ∂
∂y , e3 = ∂

∂z , then {ei} is an orthogonal frame field on M. Define an
affine connection ∇ on M by

∇e1e1 = 0, ∇e1e2 =
2

y
e1, ∇e1e3 =

1

y
e3,

∇e2e1 =
2

y
e1, ∇e2e2 = 0, ∇e2e3 = 0,

∇e3e1 =
1

y
e3, ∇e3e2 = 0, ∇e3e3 =

1

y
e1 −

2

y
e2.

It can be easily proved that (∇Xg)(Y,Z) = (∇Y g)(X,Z) and ∇XY −∇YX − [X,Y ] = 0 hold for any X,Y, Z ∈
C∞(TM). By Definition 2.1, (M, g,∇) is a statistical manifold.

Example 5.2. Let (M,φ, ξ, η, g) be a Sasakian manifold. Take a vector field Ψ ∈ C∞(TM) orthogonal to ξ and
define a tensor field K of type (1, 2) on M by

K(X,Y ) = {g(φΨ, X)g(Ψ, Y ) + g(φΨ, Y )g(Ψ, X)}Ψ + {g(Ψ, X)g(Ψ, Y )− g(φΨ, X)g(φΨ, Y )}φΨ, (5.1)

where X,Y ∈ C∞(TM), then K satisfies (2.2) and (2.16). According to Proposition 2.6, (M,φ, ξ, η, g,∇0 +K) is
a Sasakian statistical manifold, where ∇0 is the Levi-Civita connection of g on M.

Proposition 5.1. Consider a 3-dimensional manifold M = {(x, y, z) ∈ R3}, where (x, y, z) is the standard coordinate
system in R3. The usual Sasakian structure on M is given by[5]

ξ = 2
∂

∂z
, η =

1

2
(dz − ydx),

g = η ⊗ η +
1

4
(dx⊗ dx+ dy ⊗ dy),

φ(X
∂

∂x
+ Y

∂

∂y
+ Z

∂

∂z
) = Y

∂

∂x
−X ∂

∂y
+ Y y

∂

∂z
.

Take e1 = ∂
∂x , e2 = ∂

∂y , e3 = ∂
∂z , then {ei} is an orthogonal frame field on M . Denote by {ωi} the dual frame field of {ei}.

Let K =
3∑

i,j,l=1

Kl
ijel ⊗ ωi ⊗ ωj be a (1, 2)−tensor field on M. By Proposition 2.6, (M,φ, ξ, η, g,∇0 +K) is a Sasakian

www.iejgeo.com 54

http://www.iej.geo.com


F. Wu, Y. Jiang& L. Zhang

statistical manifold if and only if K satisfies:

K(ei, ej) = K(ej , ei),

g(K(ei, ej), ek) = g(K(ei, ek), ej),

K(ei, φej) + φK(ei, ej) = 0,

or equivalently, the coefficients {Kl
ij} satisfy:

K1
11 = −K1

22 = −K2
12 = −K2

21 = a, K1
12 = K1

21 = K2
11 = −K2

22 = b, K3
33 = c,

K3
12 = K3

21 = yb, K3
13 = K3

31 = −yc, K3
22 = −ay, K3

11 = ya+ y2c,

K1
13 = K1

23 = K1
31 = K1

32 = K1
33 = K2

13 = K2
23 = K2

31 = K2
32 = K2

33 = K3
23 = K3

32 = 0,

(5.2)

where a, b, c ∈ C∞(M,R).

Example 5.3. Let (M,J, g) be a Kähler manifold. Take a vector field Ψ ∈ C∞(TM) and define a tensor field K
of type (1, 2) on M by

K(X,Y ) = {λ[g(Ψ, X)g(Ψ, Y )− g(Ψ, JX)g(Ψ, JY )]− µ[g(Ψ, JX)g(Ψ, Y ) + g(Ψ, X)g(Ψ, JY )]}Ψ
+ {λ[g(Ψ, X)g(Ψ, JY ) + g(Ψ, JX)g(Ψ, Y )]− µ[g(Ψ, JX)g(Ψ, JY )− g(Ψ, X)g(Ψ, Y )]}JΨ,

(5.3)

where λ, µ ∈ C∞(M,R), X, Y ∈ C∞(TM), then K satisfies (2.2) and (2.10). According to Proposition 2.4,
(M,φ, ξ, η, g,∇0 +K) is a holomorphic statistical manifold, where ∇0 is the Levi-Civita connection of g on
M.

Lemma 5.1. [17] Consider a 2−dimensional manifold M = {(x, y) ∈ R2|x > 0, y > 0}, where (x, y) is the standard
coordinate system in R2. The Riemannian metric g on M is given by g = x{(dx)2 + (dy)2} and the complex structure J
is defined by

J
∂

∂x
=

∂

∂y
, J

∂

∂y
= − ∂

∂x
,

then (M, g, J) is a Kähler manifold.

Proposition 5.2. Let (M, g, J) be the Kähler manifold defined in Lemma 5.1 and ∇ be an affine connection on M . Then
(M, g, J,∇) is a holomorphic statistical manifold of constant holomorphic curvature 0 if and only if

∇ ∂
∂x

∂

∂x
=

1− 2c2
2x

∂

∂x
+
c1
x

∂

∂y
,∇ ∂

∂x

∂

∂y
=
c1
x

∂

∂x
+

1 + 2c2
2x

∂

∂y
,

∇ ∂
∂y

∂

∂x
=
c1
x

∂

∂x
+

1 + 2c2
2x

∂

∂y
,∇ ∂

∂y

∂

∂y
=
−1 + 2c2

2x

∂

∂x
− c1
x

∂

∂y
,

(5.4)

where c1 and c2 are constants satisfying c21 + c22 = 1
4 .

Proof. Take e1 = ∂
∂x , e2 = ∂

∂y for simplicity, then {ei} is an orthogonal frame field on M . Denote the Levi-Civita
connection of g on M by ∇0. By using Koszul’s formula[19]:

2g(∇0
XY, Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ]),

we get:

∇0
e1e1 =

1

2x
e1,∇0

e1e2 =
1

2x
e2,

∇0
e2e1 =

1

2x
e2,∇0

e2e2 = − 1

2x
e1.

Let {ωi} be the dual frame field of {ei} and K =
2∑

i,j,l=1

Kl
ijel ⊗ ωi ⊗ ωj be a (1, 2)-tensor field on M. By

Proposition 2.4, (M, g, J,∇0 +K) is a holomorphic statistical manifold if and only if K satisfies:

K(ei, ej) = K(ej , ei),

g(K(ei, ej), ek) = g(K(ei, ek), ej),

K(ei, Jej) + JK(ei, ej) = 0,
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or equivalently the coefficients {Kl
ij} satisfy:

K1
12 = K1

21 = K2
11 = −K2

22 = a,

−K1
11 = K1

22 = K2
12 = K2

21 = b,
(5.5)

where any a, b ∈ C∞(M,R). Therefore, (M, g, J,∇ = ∇0 +K) is a holomorphic statistical manifold if and only
if the affine connection ∇ is given by

∇e1e1 = (
1

2x
− b)e1 + ae2,∇e1e2 = ae1 + (

1

2x
+ b)e2,

∇e2e1 = ae1 + (
1

2x
+ b)e2,∇e2e2 = (− 1

2x
+ b)e1 − ae2.

(5.6)

According to equation (2.11), (M, g, J,∇) is of constant holomorphic curvature 0 if and only if R(X,Y )Z = 0
holds for any X,Y, Z ∈ C∞(TM), which is equivalent to

R(e1, e2)e1 = 0, R(e1, e2)e2 = 0.

By (5.6), we calculate

R(e1, e2)e1 = ∇e1∇e2e1 −∇e2∇e1e1

= ∇e1(ae1 + (
1

2x
+ b)e2)−∇e2((

1

2x
− b)e1 + ae2)

= e1(a)e1 + a[(
1

2x
− b)e1 + ae2]− 1

2x2
e2 +

1

2x
[ae1 + (

1

2x
+ b)e2] + e1(b)e2

+ b[ae1 + (
1

2x
+ b)e2]− 1

2x
[ae1 + (

1

2x
+ b)e2] + e2(b)e1 + b[ae1 + (

1

2x
+ b)e2]

− e2(a)e2 − a[(− 1

2x
+ b)e1 − ae2]

= [e1(a) + e2(b) +
a

x
]e1 + [e1(b)− e2(a) + 2(a2 + b2) +

b

x
− 1

2x2
]e2,

and similarly,

R(e1, e2)e2 = [e1(b)− e2(a)− 2(a2 + b2) +
b

x
+

1

2x2
]e1 + [−e1(a)− e2(b)− a

x
]e2.

Hence, (M, g, J,∇) is of constant holomorphic curvature 0 if and only if

e1(a) + e2(b) +
a

x
= 0, (5.7)

e1(b)− e2(a) + 2(a2 + b2) +
b

x
− 1

2x2
= 0, (5.8)

e1(b)− e2(a)− 2(a2 + b2) +
b

x
+

1

2x2
= 0. (5.9)

In the following we solve the system of equations above.
(I)If b = 0, then we get a = 1

2x from (5.7), which satisfying (5.8) and (5.9).
(II)If a = 0, then we get b = 1

2x from (5.7), which satisfying (5.8) and (5.9).
(III)If a 6= 0 and b 6= 0, then it can be proved that e2(a) = e2(b) = 0. In fact, subtracting (5.9) from (5.8), we get

a2 + b2 =
1

4x2
, (5.10)

which implies that (5.8) and (5.9) are equivalent to

e1(b)− e2(a) = − b
x
. (5.11)

Taking the derivative of (5.10) with respect to e1 and e2 respectively, we obtain

ae1(a) + be1(b) = − 1

4x3
, (5.12)
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ae2(a) + be2(b) = 0. (5.13)

Multiplying (5.11) by b and (5.7) by a, we obtain

be1(b)− be2(a) = −b
2

x
,

ae1(a) + ae2(b) +
a2

x
= 0.

Adding the above two equations up, one gets

ae1(a) + be1(b) + ae2(b)− be2(a) = −a
2 + b2

x
,

which together with (5.10), (5.12) and (5.13) gives

−a
2 + b2

b
e2(a) = 0.

From the above equation and (5.13), we see that e2(a) = 0 and e2(b) = 0. Hence, (5.7) and (5.11) can be rewritten
as

e1(a) = −a
x
, e1(b) = − b

x
.

One can easily solve the above ordinary differential equations:

a =
c1
x
, b =

c2
x
,

where c1 and c2 are two constant real numbers. Substituting them into (5.10), one has c21 + c22 = 1
4 .

Combining (I), (II) and (III), we prove that (M, g, J,∇) is of constant holomorphic curvature 0 if and only if

a =
c1
x
, b =

c2
x
,

where c1, c2 are two constants satisfying c21 + c22 = 1
4 . Substituting them into (5.6), we will get (5.4). This

completes the proof.
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